Critical Assessment of Migration Strategies for Corrosion in Molten Salts
Abstract
1. Introduction
2. Review of the Corrosion Process in CSP
2.1. Static Corrosion
2.1.1. Influence of Molten Salt Composition
2.1.2. Influence of Temperature
2.1.3. Influence of Alloy Composition
2.1.4. Influence of Impurities
2.1.5. Influence of Atmosphere
2.1.6. Additional Key Factors
2.2. Dynamic Corrosion
Influence of Velocity
Material | Molten Salt | Type | Working Temperature (°C) | Exposition Time (h) | Flow Rate (m/s) | Corrosion Rate (µm/yr) | Conclusion | Ref. |
---|---|---|---|---|---|---|---|---|
SS304 | Solar Salt | St * | 550 | 1000 | - | 44.24 | Influence of molten salt type: Hitec salt generally exhibits a higher corrosion rate compared to binary salt. However, under prolonged exposure, Hitec ternary salt may degrade over time, gradually transitioning toward the composition of a binary salt. | [28] |
SS304 | Solar Salt | St * | 550 | 2000 | 30.84 | |||
SS304 | Hitec | St * | 550 | 1000 | 117.56 | |||
SS304 | Hitec | St * | 550 | 2000 | 21.20 | |||
SS304 | KNO3 + NaNO2 + LiNO3 + NaNO3 | St * | 550 | 1000 | 40.30 | |||
SS304 | KNO3 + NaNO2 + LiNO3 + NaNO3 | St * | 550 | 2000 | 48.00 | |||
SS316L | Solar Salt | St * | 565 | 1187 | - | 21.00 | [65] | |
A1 | Hitec XL | St * | 390 | 2000 | - | 6.57 | Influence of molten salt composition and alloy. | [29] |
A1 | Solar Salt | St * | 390 | 2000 | 970.61 | |||
T22 | Hitec XL | St * | 390 | 2000 | 3.85 | |||
T22 | Solar Salt | St * | 390 | 2000 | 70.96 | |||
SS316 | NaCl-KCl-ZnCl2 | St * | 700 | 504 | - | 1700 | Influence of molten salt composition and alloy. | [30] |
C276 | NaCl-KCl-ZnCl2 | St * | 700 | 504 | 668 | |||
In625 | NaCl-KCl-ZnCl2 | St * | 700 | 504 | 447 | |||
In718 | NaCl-KCl-ZnCl2 | St * | 700 | 504 | 962 | |||
C276 | Li2CO3-Na2CO3-K2CO3 | St * | 700 | 504 | 100 | |||
In625 | Li2CO3-Na2CO3-K2CO3 | St * | 700 | 504 | 936 | |||
In718 | Li2CO3-Na2CO3-K2CO3 | St * | 700 | 504 | 146 | |||
SS316 | LiF-Na2CO3-K2CO3 | St * | 700 | 336 | 796 | |||
C276 | LiF-Na2CO3-K2CO3 | St * | 700 | 504 | 1304 | |||
In625 | LiF-Na2CO3-K2CO3 | St * | 700 | 504 | 2097 | |||
SS304 | NaNO2-KNO3-K2CO3 | St * | 600 | 250 | - | 186 | Influence of exposure time. | [31] |
SS304 | NaNO2-KNO3-K2CO3 | St * | 600 | 500 | 95 | |||
SS304 | NaNO2-KNO3-K2CO3 | St * | 600 | 750 | 78 | |||
SS304 | NaNO2-KNO3-K2CO3 | St * | 600 | 1000 | 68 | |||
SS321 | Solar Salt | St * | 400 | 3000 | - | 1 | Influence of temperature and alloy. | [35] |
SS321 | Solar Salt | St * | 500 | 3000 | 7.1 | |||
SS321 | Solar Salt | St * | 600 | 3000 | 15.9 | |||
SS321 | Solar Salt | St * | 680 | 1000 | 460 | |||
SS347 | Solar Salt | St * | 400 | 3000 | 0.7 | |||
SS347 | Solar Salt | St * | 500 | 3000 | 4.6 | |||
SS347 | Solar Salt | St * | 600 | 3000 | 10.4 | |||
SS347 | Solar Salt | St * | 680 | 1000 | 447 | |||
HA230 | Solar Salt | St * | 600 | 3000 | - | 23.6 | Influence of temperature and alloy. | [36] |
In625 | Solar Salt | St * | 600 | 3000 | 16.8 | |||
HA230 | Solar Salt | St * | 680 | 1000 | 688 | |||
In625 | Solar Salt | St * | 680 | 1000 | 694 | |||
SS304 | LiF-BeF2 | St * | 500 | 1000 | - | 10.25 | Influence of temperature and alloy. | [38] |
SS304 | LiF-BeF2 | St * | 600 | 1000 | 10.6 | |||
SS316L | LiF-BeF2 | St * | 500 | 1000 | 3.26 | |||
SS316L | LiF-BeF2 | St * | 600 | 1000 | 5.42 | |||
Nicrofer 3718, 253 MA, SS330, SS310, IN600, IN601, Hastelloy N, In800 and Ni200 | Solar Salt | St * | 510–705 | - | - | - | Alloys with higher Cr content have greater resistance to corrosion. Demonstrated influence of temperature, very severe corrosion effect with temperatures above 650 °C. | [39] |
SB450 | LiNO3-NaNO3-KNO3 | St * | 550 | 1000 | - | 153 | Influence of alloy composition. | [40] |
T22 | LiNO3-NaNO3-KNO3 | St * | 550 | 1000 | 139 | |||
T5 | LiNO3-NaNO3-KNO3 | St * | 550 | 1000 | 110 | |||
T9 | LiNO3-NaNO3-KNO3 | St * | 550 | 1000 | 13.3 | |||
X20 | LiNO3-NaNO3-KNO3 | St * | 550 | 1000 | 5.5 | |||
TP347H | NaCl-KCl-CaCl2 | St * | 600 | 400 | - | 2383.6 | Influence of alloy composition. | [42] |
HA230 | NaCl-KCl-CaCl2 | St * | 600 | 400 | 487.6 | |||
In625 | NaCl-KCl-CaCl2 | St * | 600 | 400 | 5437.5 | |||
SS304 | Solar Salt | St * | 570 | 7000 | - | 6 | Influence of alloy composition. | [43] |
SS316 | Solar Salt | St * | 570 | 7000 | 15 | |||
SS321H | Solar Salt | St * | 550 | 3000 | - | 9 | Influence of alloy composition. | [34] |
SS316L | Solar Salt | St * | 550 | 3000 | 8.6 | |||
SS310S | Li2CO3-Na2CO3-K2CO3 | St * | 650 | 24 | - | 3500 | Influence of alloy composition. | [44] |
SS316L | Li2CO3-Na2CO3-K2CO3 | St * | 650 | 24 | 2900 | |||
SS304 | Li2CO3-Na2CO3-K2CO3 | St * | 650 | 24 | 500 | |||
SS310 | Li2CO3-Na2CO3-K2CO3 | St * | 600 | 600 | - | 118.26 | Influence of alloy composition. | [45] |
SS347 | Li2CO3-Na2CO3-K2CO3 | St * | 600 | 600 | 119.72 | |||
A516Gr70 | Solar Salt | St * | 400 | 1504 | - | 83.2 | Influence of chloride content impurities. | [49] |
A516Gr70 | Solar Salt + 0.7% Cl- | St * | 400 | 1504 | 587.8 | |||
A516Gr70 | Solar Salt + 1.8% Cl- | St * | 400 | 1504 | 987.3 | |||
800H | Solar Salt-Commercial | St * | 565 | 1470 | - | 52.9 | Influence of impurities. | [50] |
800H | Solar Salt-High-Purity | St * | 565 | 1470 | 32.4 | |||
In625 | Solar Salt-Commercial | St * | 565 | 1470 | 9.6 | |||
In625 | Solar Salt-High-Purity | St * | 565 | 1470 | 7.4 | |||
X20 | Solar Salt | St * | 600 | 1000 | - | 113.88 | Influence of impurities. | [51] |
X20 | Solar Salt + (500 ppm Cl + 500 ppm S) | St * | 600 | 1000 | 148.92 | |||
X20 | Solar Salt + (1000 ppm Cl + 1000 ppm S) | St * | 600 | 1000 | 613.2 | |||
800H | Solar Salt | St * | 600 | 1000 | 105.12 | |||
800H | Solar Salt + (1000 ppm Cl + 1000 ppm S) | St * | 600 | 1000 | 70.08 | |||
HA230 | Solar Salt | St * | 600 | 1000 | 65 | |||
HA230 | Solar Salt + (500 ppm Cl + 500 ppm S) | St * | 600 | 1000 | 43.8 | |||
HA230 | Solar Salt + (1000 ppm Cl + 1000 ppm S) | St * | 600 | 1000 | 65 | |||
A516Gr70 | Solar Salt | St * | 400 | 1632 | - | 27.6 (C) | Influence of exposure type, continuous (C) versus intermittent (I), as well as operating temperature. | [17] |
A516Gr70 | Solar Salt | St * | 400 | 1632 | 238 (I) | |||
A516Gr70 | Solar Salt | St * | 280–325 | 1680 | 8 (C) | |||
A516Gr70 | Solar Salt | St * | 280–325 | 1680 | 18 (I) | |||
A387Gr11 | Solar Salt | St * | 400 | 1632 | 19 (C) | |||
A387Gr11 | Solar Salt | St * | 400 | 1632 | 420 (I) | |||
A387Gr11 | Solar Salt | St * | 280–325 | 1680 | 8.02 (C) | |||
A387Gr11 | Solar Salt | St * | 280–325 | 1680 | 14.8 (I) | |||
A387Gr5 | Solar Salt | St * | 400 | 1632 | 1.63 (C) | |||
A387Gr5 | Solar Salt | St * | 400 | 1632 | 464 (I) | |||
A387Gr5 | Solar Salt | St * | 280–325 | 1680 | 2.25 (C) | |||
A387Gr5 | Solar Salt | St * | 280–325 | 1680 | 1.98 (I) | |||
A387Gr9 | Solar Salt | St * | 400 | 1632 | 0.45 (C) | |||
A387Gr9 | Solar Salt | St * | 400 | 1632 | 1.47 (I) | |||
A387Gr9 | Solar Salt | St * | 280–325 | 1680 | 0.72 (C) | |||
A387Gr9 | Solar Salt | St * | 280–325 | 1680 | 0.55 (I) | |||
A304L | Solar Salt | St * | 400 | 1632 | 0.41 (C) | |||
A304L | Solar Salt | St * | 400 | 1632 | 0.61(I) | |||
A304L | Solar Salt | St * | 280–325 | 1680 | 0.11 (C) | |||
A304L | Solar Salt | St * | 280–325 | 1680 | 0.25 (I) | |||
A316L | Solar Salt | St * | 400 | 1632 | 0.14 (C) | |||
A316L | Solar Salt | St * | 400 | 1632 | 0.44 (I) | |||
A316L | Solar Salt | St * | 280–325 | 1680 | 0.01 (C) | |||
A316L | Solar Salt | St * | 280–325 | 1680 | 0.11 (I) | |||
A347 | Solar Salt | St * | 400 | 1632 | 0.77 (C) | |||
A347 | Solar Salt | St * | 400 | 1632 | 0.36 (I) | |||
A347 | Solar Salt | St * | 280–325 | 1680 | 0.32 (C) | |||
A347 | Solar Salt | St * | 280–325 | 1680 | 0.48 (I) | |||
A516 | LiNO3-KNO3-NaNO3 | Dy * | 390 | 1000 | 0.3 | 15 | [66] | |
SS304 | NaNO3-Na2CO3 | Dy * | 600 | 1000 | 2 | 21.7 | Influence of alloy composition. | [61] |
SS316L | NaNO3-Na2CO3 | Dy * | 600 | 1000 | 2 | 12.2 | ||
SS347H | NaNO3-Na2CO3 | Dy * | 600 | 1000 | 2 | 7.6 | ||
SS316 | Solar Salt | Dy * | 565 | 1000 | 1 | 4.5 | Influence of flow rate and alloy composition. | [62] |
SS321 | Solar Salt | Dy * | 565 | 1000 | 1 | 5.1 | ||
SS316 | Solar Salt | Dy * | 565 | 1000 | 2 | 4.6 | ||
SS321 | Solar Salt | Dy * | 565 | 1000 | 2 | 5.4 | ||
SS316 | Solar Salt | Dy * | 565 | 1000 | 3 | 5.1 | ||
SS321 | Solar Salt | Dy * | 565 | 1000 | 3 | 5.7 | ||
304SS | Solar Salt | Dy * | 500 | 500 | 2.5 | 59 | Influence of alloy composition and welding effects | [63] |
304SS (With welds) | Solar Salt | Dy * | 500 | 500 | 2.5 | 66 | ||
Q275 | Solar Salt | Dy * | 500 | 500 | 2.5 | 93 |
3. Corrosion Mitigation Strategies
3.1. Molten Salt Purification
3.2. Addition of Nanoparticles
3.3. Alumina-Forming Alloys
3.4. Corrosion Inhibitors
3.5. Coatings
3.6. Graphitization
Material | Molten Salt | Mitigation Strategies | Conclusion | Ref. |
---|---|---|---|---|
SS310/In800H | MgCl2-KCl-NaCl | Molten salt purification | Salt purification decreases corrosion by minimizing the reactive impurities that destabilize oxide layers on metal surfaces. | [67] |
SS347 | Solar Salt (Refined) | Addition of nanoadditives: Al2O3, SiO2 | Solar salt with the addition of 1 wt% Al2O3 nanoparticle: 0.007 mm/yr Solar salt with the addition of 1 wt% SiO2 nanoparticle: 0.022 mm/yr Solar salt without nanoadditives 0.021 mm/yr | [69] |
SS347 | Solar Salt (Industrial) | Addition of nanoadditives: Al2O3, SiO2 | Solar salt with the addition of 1 wt% Al2O3 nanoparticle: 0.019 mm/yr Solar salt with the addition of 1 wt% SiO2 nanoparticle: 0.024 mm/yr Solar salt without nanoparticles: 0.027 mm/yr | |
Carbon steel | Solar Salt | Addition of nanoadditives: Al2O3, SiO2 | The corrosion layer was approximately three times thinner compared to the fluid without nanoparticles. | [12] |
In625 | NaCl-KCl-MgCl2 | Addition of nanoadditives: Al2O3 | Better corrosion behavior compared to the case without additives. | [70] |
Carbon steel | NaNO3-KNO3-Ca(NO3)2 | Addition of nanoadditives: Al2O3, SiO2 | Solar salt with the addition of 1 wt% Al2O3 nanoparticle: 0.013 mm/yr Solar salt with the addition of 1 wt% SiO2 nanoparticle: 0.023 mm/yr Solar salt without nanoparticles: 0.0075 mm/yr | [71] |
SS304/OC4/OC-T/In702/HR224 | LiNO3-KNO3 -NaNO3 Li2CO3 -Na2CO3-K2CO3 LiCl-KCl | Alumina-forming alloys | The corrosion rates were significantly lower compared to non-alumina-forming austenitic alloys | [73] |
HR224, OC4 | Li2CO3-Na2CO3-K2CO3 | Alumina-forming alloys | Both alloys present corrosion rates lower than those reported for similar alloys in molten carbonates. | [23] |
In702, HR224, Kanthal APMT | MgCl2-KCl | Alumina-forming alloys | Pre-oxidation was used to form protective oxides, surface passivation. | [74] |
SS310, In800H, C276 | MgCl2-KCl-NaCl | Corrosion inhibitor: Mg | The corrosion rates were found to be significantly reduced by about 83% for SS310, 70% for In800H, and 94% for C276 compared with the exposure tests without Mg addition. | [75] |
SS316L | Li2CO3-Na2CO3 | Corrosion inhibitor: Mg, Ca | As the concentration of Mg and Ca additives increased (over 1.5% mol) further, the SS316L became more corrosion resistant. | [76] |
P91 | Solar Salt | Coating: ZrO2-Y2O3 | The results clearly show the good behavior of the coated samples. | [87] |
SS304 | ZnCl2-KCl | Coating: Ni20Cr | The corrosion results described clearly that a high Ni content of the alloy is very effective in improving the corrosion resistance while Cr plays a detrimental role. | [88] |
S310, SS316, SS347, In800H | Li2CO3-Na2CO3-K2CO3 | Coating: fractal-textured Ni electrodeposition | The corrosion rate of double-layer Ni coatings on ferrous alloys was reduced by as much as 60% from that of uncoated surfaces. | [89] |
SS310, SS316, SS347, In800H | MgCl2-KCl-NaCl | Coating: fractal-textured Ni electrodeposition | The results are 70% lower than those typically observed in uncoated alloys. | [90] |
Carbon steel | HitecXL·H2O | Graphitization | Corrosion rate of graphitized carbon steel: 11.4 ± 1.2 µm/yr Corrosion rate of non-graphitized carbon steel: 31.5 ± 1.6 µm/yr | [91] |
SS310, SS347 | Li2CO3-Na2CO3-K2CO3 | Graphitization | A considerable improvement in corrosivity was achieved when graphitization was applied. | [45] |
Carbon steel | Solar Salt | Graphitization | Corrosion rates were reduced almost twice when graphitization was applied. | [92] |
4. Discussion
- Evaluating the compatibility between the storage medium and structural materials, along with the specific operating conditions, is critical for the reliable performance of TES systems. Different materials exhibit varying degrees of compatibility with specific molten salts, highlighting the importance of careful material selection. Alloys with high chromium and nickel content tend to offer better corrosion resistance in more aggressive environments, such as chloride and carbonate salts. In contrast, stainless steels and carbon steels have shown effective performance in nitrate-based salts, particularly at moderate operating temperatures. This compatibility assessment is key to ensuring long-term durability and efficiency in TES applications.
- One of the most significant contributions of this review is its analysis of dynamic corrosion, a topic often overlooked in favour of simpler static testing. Although dynamic conditions more accurately reflect real-world TES environments, most previous studies have focused on static setups because of their simplicity. This review emphasizes how factors such as flow rate and thermal cycling accelerate corrosion by removing protective oxide layers and exposing fresh metal surfaces to corrosive molten salts. These erosion–corrosion mechanisms play a critical role in long-term material degradation, highlighting the importance of considering dynamic corrosion when evaluating TES materials. By addressing this gap, the review also underscores the need to investigate real plant conditions, such as those in electric heaters, where temperature cycling and the formation of hot spots further complicate corrosion behavior and require deeper exploration.
- The purification of molten salts to eliminate reactive impurities, especially chlorides, or the use of high-purity salts, plays a crucial role in influencing corrosion mechanisms. In parallel, the addition of corrosion inhibitors, such as magnesium (Mg) and calcium (Ca), presents an effective alternative for significantly reducing corrosion rates. These approaches are not only practical and cost-effective but are also highly relevant for extending the service life of components used in thermal energy storage (TES) systems. By minimizing corrosive interactions, these strategies contribute to the long-term reliability and economic feasibility of TES technologies.
- Various additional strategies have been explored to enhance corrosion resistance in TES systems, including the use of additives, alumina-forming alloys, and protective coatings. Incorporating alumina and silica nanoparticles into molten salts has shown promising potential in improving corrosion resistance by stabilizing protective layers on material surfaces. Alumina-forming alloys demonstrate strong resistance in aggressive salt environments, especially in chloride and carbonate-based salts. However, to make these high-performance materials more widely accessible, the development of cost-effective alumina-forming alloys is essential for the broader implementation of TES technologies. The alternative of protective coatings has also been analyzed; however, they present certain limitations, such as their applicability to fluoride-based salts and the requirement for 100% coverage to be effective.
5. Conclusions
- Although the corrosion behavior of alloys in molten salts has been extensively studied under static conditions, this review highlights that corrosion rates generally increase under flow conditions, even when experimental parameters remain constant. Therefore, it is essential to prioritize corrosion studies under dynamic conditions that better reflect real plant operations.
- Corrosion behavior is influenced by several interdependent factors, including temperature, impurities, the chemical composition of alloys and molten salts, the surrounding gas atmosphere, and flow rate. A comprehensive understanding of these variables is crucial for developing effective mitigation strategies.
- Various corrosion mitigation approaches, such as the addition of nanoparticles, the use of corrosion inhibitors, and the application of protective coatings, have shown promise. However, these strategies require further optimization and validation under realistic operational conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Opeyemi, B.M. Path to Sustainable Energy Consumption: The Possibility of Substituting Renewable Energy for Non-Renewable Energy. Energy 2021, 228, 120519. [Google Scholar] [CrossRef]
- Hu, Y.; Man, Y. Energy Consumption and Carbon Emissions Forecasting for Industrial Processes: Status, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2023, 182, 113405. [Google Scholar] [CrossRef]
- Lemonnier, V. The EU Green Deal Industrial Plan: European State Aid Law Quarterly. Eur. State Aid Law Q. 2023, 22, 123–131. [Google Scholar] [CrossRef]
- Zhao, X.; Huning, A.J.; Burek, J.; Guo, F.; Kropaczek, D.J.; Pointer, W.D. The Pursuit of Net-Positive Sustainability for Industrial Decarbonization with Hybrid Energy Systems. J. Clean. Prod. 2022, 362, 132349. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables 2020—CSP; IEA: Paris, France, 2020. [Google Scholar]
- Awan, A.B.; Khan, M.N.; Zubair, M.; Bellos, E. Commercial Parabolic Trough CSP Plants: Research Trends and Technological Advancements. Sol. Energy 2020, 211, 1422–1458. [Google Scholar] [CrossRef]
- Guccione, S.; Guedez, R. Techno-Economic Optimization of Molten Salt Based CSP Plants through Integration of Supercritical CO2 Cycles and Hybridization with PV and Electric Heaters. Energy 2023, 283, 128528. [Google Scholar] [CrossRef]
- Pardillos-Pobo, D.; González-Gómez, P.A.; Laporte-Azcué, M.; Santana, D. Thermo-Economic Design of an Electric Heater to Store Renewable Curtailment in Solar Power Tower Plants. Energy Convers. Manag. 2023, 297, 117710. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Rosales-Asensio, E.; Palmero-Marrero, A.I.; Acikkalp, E. Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets. Energies 2022, 15, 1672. [Google Scholar] [CrossRef]
- Cabeza, L.F.; de Gracia, A.; Zsembinszki, G.; Borri, E. Perspectives on Thermal Energy Storage Research. Energy 2021, 231, 120943. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Siddiqui, S.; Sreedhar, I.; Parameshwaran, R. Molten Salts: Potential Candidates for Thermal Energy Storage Applications. Int. J. Energy Res. 2022, 46, 17755–17785. [Google Scholar] [CrossRef]
- Nithiyanantham, U.; Grosu, Y.; González-Fernández, L.; Zaki, A.; Igartua, J.M.; Faik, A. Corrosion Aspects of Molten Nitrate Salt-Based Nanofluids for Thermal Energy Storage Applications. Sol. Energy 2019, 189, 219–227. [Google Scholar] [CrossRef]
- Villada, C.; Jaramillo, F.; Castaño, J.G.; Echeverría, F.; Bolívar, F. Design and Development of Nitrate-Nitrite Based Molten Salts for Concentrating Solar Power Applications. Sol. Energy 2019, 188, 291–299. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Zheng, K.; Yin, H.; Wang, D. Corrosion Behaviors of SS310 and IN718 Alloys in Molten Carbonate. J. Electrochem. Soc. 2021, 168, 121510. [Google Scholar] [CrossRef]
- Han, D.-M.; Shuai, Y.; Lougou, B.G.; Geng, B.-X.; He, X.-B.; Yan, T.-T.; Song, J.-M. Corrosion Evaluation and Resistance Study of Alloys in Chloride Salts for Concentrating Solar Power Plants. Rare Met. 2023, 43, 1222–1233. [Google Scholar] [CrossRef]
- An, X.H.; Cheng, J.H.; Su, T.; Zhang, P. Determination of Thermal Physical Properties of Alkali Fluoride/Carbonate Eutectic Molten Salt. AIP Conf. Proc. 2016, 1850, 070001. [Google Scholar]
- Prieto, C.; Ruiz-Cabañas, J.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Lessons Learned from Corrosion of Materials with Molten Salts during Molten Salt Tank Preheating. Sol. Energy Mater. Sol. Cells 2022, 247, 111943. [Google Scholar] [CrossRef]
- HITEC ® Heat Transfer Salt. Available online: https://coastalchem.com/products/heat-transfer-fluids/hitec-heat-transfer-salt/ (accessed on 27 July 2025).
- Villada, C.; Bonk, A.; Bauer, T.; Bolívar, F. High-Temperature Stability of Nitrate/Nitrite Molten Salt Mixtures under Different Atmospheres. Appl. Energy 2018, 226, 107–115. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, C.; Zhang, Q.; Wu, L.; Yu, C.; Liu, X. Progress in Optimizing Thermal Performance of Nitrate Salts and Their Mixtures for Thermal Energy Storage. Renew. Sustain. Energy Rev. 2025, 212, 115379. [Google Scholar] [CrossRef]
- Manzoor, M.T.; Peinturier, L.; Tetreault-Friend, M. Concrete Based Molten Salt Storage Tanks. J. Energy Storage 2023, 57, 106151. [Google Scholar] [CrossRef]
- Zhang, J.; Forsberg, C.W.; Simpson, M.F.; Guo, S.; Lam, S.T.; Scarlat, R.O.; Carotti, F.; Chan, K.J.; Singh, P.M.; Doniger, W.; et al. Redox Potential Control in Molten Salt Systems for Corrosion Mitigation. Corros. Sci. 2018, 144, 44–53. [Google Scholar] [CrossRef]
- Fernández, A.G.; Pineda, F.; Walczak, M.; Cabeza, L.F. Corrosion Evaluation of Alumina-Forming Alloys in Carbonate Molten Salt for CSP Plants. Renew. Energy 2019, 140, 227–233. [Google Scholar] [CrossRef]
- Ding, W.; Bonk, A.; Bauer, T. Corrosion Behavior of Metallic Alloys in Molten Chloride Salts for Thermal Energy Storage in Concentrated Solar Power Plants: A Review. Front. Chem. Sci. Eng. 2018, 12, 564–576. [Google Scholar] [CrossRef]
- Ai, H.; Ye, X.X.; Jiang, L.; Leng, B.; Shen, M.; Li, Z.; Jia, Y.; Wang, J.Q.; Zhou, X.; Xie, Y.; et al. On the Possibility of Severe Corrosion of a Ni-W-Cr Alloy in Fluoride Molten Salts at High Temperature. Corros. Sci. 2019, 149, 218–225. [Google Scholar] [CrossRef]
- Bell, S.; Steinberg, T.; Will, G. Corrosion Mechanisms in Molten Salt Thermal Energy Storage for Concentrating Solar Power. Renew. Sustain. Energy Rev. 2019, 114, 109328. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Durham, R.N.; Galetz, M.C. Corrosion Behavior of Stainless and Low-Chromium Steels and IN625 in Molten Nitrate Salts at 600 °C. Sol. Energy Mater. Sol. Cells 2016, 144, 109–116. [Google Scholar] [CrossRef]
- Villada, C.; Toro, A.; Bolívar, F. Corrosion Performance of Austenitic Stainless Steel SS304 in Molten Nitrate Salts and Raman Microscopy for Stability Analysis in Thermal Energy Storage Applications. J. Energy Storage 2021, 44, 103465. [Google Scholar] [CrossRef]
- Fernández, A.G.; Galleguillos, H.; Fuentealba, E.; Pérez, F.J. Corrosion of Stainless Steels and Low-Cr Steel in Molten Ca(NO3)2-NaNO3-KNO3 Eutectic Salt for Direct Energy Storage in CSP Plants. Sol. Energy Mater. Sol. Cells 2015, 141, 7–13. [Google Scholar] [CrossRef]
- Liu, T.; Xu, X.; Liu, W.; Zhuang, X. Corrosion of Alloys in High Temperature Molten-Salt Heat Transfer Fluids with Air as the Cover Gas. Sol. Energy 2019, 191, 435–448. [Google Scholar] [CrossRef]
- Na, H.; Zhang, C.; Wu, Y.; Wang, G.; Bao, G.; Lu, Y. Thermal Stability and Corrosion Characteristic Analysis of Low Melting Point Ternary Molten Salt for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2025, 286, 113587. [Google Scholar] [CrossRef]
- Hu, M.; Yang, X.; Wang, X.; Liu, H.; Su, X.; Zhou, X. Effect of Te on the Corrosion Behavior of GH3535 Alloy in Molten LiF-NaF-KF Salt. Corros. Sci. 2024, 227, 111761. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Wu, Y.; Lu, Y. Comparative Review of Different Influence Factors on Molten Salt Corrosion Characteristics for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2022, 235, 111485. [Google Scholar] [CrossRef]
- Gomes, A.; Navas, M.; Uranga, N.; Paiva, T.; Figueira, I.; Diamantino, T.C. High-Temperature Corrosion Performance of Austenitic Stainless Steels Type AISI 316L and AISI 321H, in Molten Solar Salt. Sol. Energy 2019, 177, 408–419. [Google Scholar] [CrossRef]
- Kruizenga, A.; Gill, D. Corrosion of Iron Stainless Steels in Molten Nitrate Salt. Energy Procedia 2014, 49, 878–887. [Google Scholar] [CrossRef]
- McConohy, G.; Kruizenga, A. Molten Nitrate Salts at 600 and 680 °C: Thermophysical Property Changes and Corrosion of High-Temperature Nickel Alloys. Sol. Energy 2014, 103, 242–252. [Google Scholar] [CrossRef]
- Zhu, M.; Zeng, S.; Zhang, H.; Li, J.; Cao, B. Electrochemical Study on the Corrosion Behaviors of 316 SS in HITEC Molten Salt at Different Temperatures. Sol. Energy Mater. Sol. Cells 2018, 186, 200–207. [Google Scholar] [CrossRef]
- Kondo, M.; Nagasaka, T.; Sagara, A.; Noda, N.; Muroga, T.; Xu, Q.; Nagura, M.; Suzuki, A.; Terai, T. Metallurgical Study on Corrosion of Austenitic Steels in Molten Salt LiF-BeF2 (Flibe). J. Nucl. Mater. 2009, 386–388, 685–688. [Google Scholar] [CrossRef]
- Slusser, J.W.; Titcomb, J.B.; Heffelfinger, M.T.; Dunbobbin, B.R. Corrosion in Molten Nitrate-Nitrite Salts. JOM 1985, 37, 24–27. [Google Scholar] [CrossRef]
- Cheng, W.J.; Chen, D.J.; Wang, C.J. High-Temperature Corrosion of Cr-Mo Steel in Molten LiNO3-NaNO3-KNO3 Eutectic Salt for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2015, 132, 563–569. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, Z.; Zhang, P.; Su, X. Corrosion Behavior of 316SS and Ni-Based Alloys in a Ternary NaCl-KCl-MgCl2 Molten Salt. Sol. Energy 2018, 171, 320–329. [Google Scholar] [CrossRef]
- Xiao, J.; Ren, J.; Xiao, S.; Zhang, H.; Chen, J.; Ren, Y.; Liu, C.; Jia, C. Corrosion Behavior of Different Alloys in Novel Chloride Molten Salts for Concentrating Solar Power Plants. Sol. Energy Mater. Sol. Cells 2025, 286, 113531. [Google Scholar] [CrossRef]
- Goods, S.H.; Bradshaw, R.W. Corrosion of Stainless Steels and Carbon Steel by Molten Mixtures of Commercial Nitrate Salts. J. Mater. Eng. Perform. 2004, 13, 78–87. [Google Scholar] [CrossRef]
- Sah, S.P.; Tada, E.; Nishikata, A. Corrosion Behaviour of Austenitic Stainless Steels in Carbonate Melt at 923 K under Controlled CO2-O2 Environment. Corros. Sci. 2018, 133, 310–317. [Google Scholar] [CrossRef]
- Grosu, Y.; Anagnostopoulos, A.; Navarro, M.E.; Ding, Y.; Faik, A. Inhibiting Hot Corrosion of Molten Li2CO3-Na2CO3-K2CO3 Salt through Graphitization of Construction Materials for Concentrated Solar Power. Sol. Energy Mater. Sol. Cells 2020, 215, 110650. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, D.; Wu, Z. Investigation on Corrosion Behaviors of Ternary Nitrate Molten Salt on 304 and 316L at High Temperatures. J. Mater. Eng. Perform. 2023, 33, 13843–13854. [Google Scholar] [CrossRef]
- Cordaro, J.G.; Rubin, N.C.; Bradshaw, R.W. Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions. J. Sol. Energy Eng. Trans. ASME 2011, 133, 011014. [Google Scholar] [CrossRef]
- Prieto, C.; Ruiz-Cabañas, F.J.; Rodríguez-Sanchez, A.; Rubio Abujas, C.; Fernández, A.I.; Martínez, M.; Oró, E.; Cabeza, L.F. Effect of the Impurity Magnesium Nitrate in the Thermal Decomposition of the Solar Salt. Sol. Energy 2019, 192, 186–192. [Google Scholar] [CrossRef]
- Prieto, C.; Gallardo-González, J.; Ruiz-Cabañas, F.J.; Barreneche, C.; Martínez, M.; Segarra, M.; Fernández, A.I. Study of Corrosion by Dynamic Gravimetric Analysis (DGA) Methodology. Influence of Chloride Content in Solar Salt. Sol. Energy Mater. Sol. Cells 2016, 157, 526–532. [Google Scholar] [CrossRef]
- Prieto, C.; Ruiz-Cabañas, F.J.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Corrosion Performance of Alloy 800H and Alloy 625 for Potential Use as Molten Salts Solar Receiver Materials in Concentrating Solar Power Tower Plants. J. Energy Storage 2022, 55, 105824. [Google Scholar] [CrossRef]
- Oskay, C.; Grégoire, B.; Meißner, T.M.; Burek, B.O.; Solimani, A.; Galetz, M.C. In-Depth Corrosion Mechanisms of Fe- and Ni-Based Alloys in Molten Solar Salt with Varying Extents of Chloride and Sulfate Impurities. Corros. Sci. 2025, 247, 112775. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, B.; Wei, X.; Lu, J.; Ding, J.; Wang, W. High-Temperature Corrosion Behavior of Inconel 625 Alloy in a Ternary Molten Salt of NaCl-CaCl2-MgCl2 in Air and N2. Sol. Energy 2022, 238, 216–225. [Google Scholar] [CrossRef]
- Bell, S.; Jones, M.W.M.; Graham, E.; Peterson, D.J.; van Riessen, G.A.; Hinsley, G.; Steinberg, T.; Will, G. Corrosion Mechanism of SS316L Exposed to NaCl/Na2CO3 Molten Salt in Air and Argon Environments. Corros. Sci. 2022, 195, 109966. [Google Scholar] [CrossRef]
- Bradshaw, R.W.; Goods, S.H. Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate Molten Salts; No. SAND2001-8518; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2001. [Google Scholar]
- Ouyang, F.Y.; Chang, C.H.; You, B.C.; Yeh, T.K.; Kai, J.J. Effect of Moisture on Corrosion of Ni-Based Alloys in Molten Alkali Fluoride FLiNaK Salt Environments. J. Nucl. Mater. 2013, 437, 201–207. [Google Scholar] [CrossRef]
- Grosu, Y.; Bondarchuk, O.; Faik, A. The Effect of Humidity, Impurities and Initial State on the Corrosion of Carbon and Stainless Steels in Molten HitecXL Salt for CSP Application. Sol. Energy Mater. Sol. Cells 2018, 174, 34–41. [Google Scholar] [CrossRef]
- Ruiz-Cabañas, F.J.; Prieto, C.; Osuna, R.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Corrosion Testing Device for In-Situ Corrosion Characterization in Operational Molten Salts Storage Tanks: A516 Gr70 Carbon Steel Performance Under Molten Salts Exposure. Sol. Energy Mater. Sol. Cells 2016, 157, 383–392. [Google Scholar] [CrossRef]
- García-Martín, G.; Lasanta, M.I.; Encinas-Sánchez, V.; de Miguel, M.T.; Pérez, F.J. Evaluation of Corrosion Resistance of A516 Steel in a Molten Nitrate Salt Mixture Using a Pilot Plant Facility for Application in CSP Plants. Sol. Energy Mater. Sol. Cells 2017, 161, 226–231. [Google Scholar] [CrossRef]
- Fernández, A.G.; Henriquez, M.; Mallco, A.; Muñoz-Sánchez, B.; Nieto-Maestre, J. Dynamic Corrosion Tests Comparison: Dynamic Reactor vs High Temperature Pilot Plant Scale Setup for Chilean LiNO3 Containing Molten Salt. AIP Conf. Proc. 2018, 2033, 090009. [Google Scholar] [CrossRef]
- Mallco, A.; Pineda, F.; Mendoza, M.; Henriquez, M.; Carrasco, C.; Vergara, V.; Fuentealba, E.; Fernandez, A.G. Evaluation of Flow Accelerated Corrosion and Mechanical Performance of Martensitic Steel T91 for a Ternary Mixture of Molten Salts for CSP Plants. Sol. Energy Mater. Sol. Cells 2022, 238, 111623. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, C.; Ma, L.; Wu, Y.; Lu, Y. Dynamic Hot Corrosion Behavior of Austenitic Stainless Steels in Binary Nitrate-Carbonate Molten Salts at 600 °C. Sol. Energy Mater. Sol. Cells 2025, 285, 113533. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Wu, Y.; Lu, Y. Experimental Research of High Temperature Dynamic Corrosion Characteristic of Stainless Steels in Nitrate Eutectic Molten Salt. Sol. Energy 2020, 209, 618–627. [Google Scholar] [CrossRef]
- Yang, P.; Deng, Z.; Chen, B.; Wang, Y. High-Temperature Dynamic Corrosion Mechanisms of Austenitic Stainless and Carbon Steels in Nitrates for Concentrating Solar Power. Sol. Energy Mater. Sol. Cells 2024, 266, 112690. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Wu, Y.; Lu, Y.; Ma, C. Dynamic Corrosion Behavior of 316L Stainless Steel in Quaternary Nitrate-Nitrite Salts under Different Flow Rates. Sol. Energy Mater. Sol. Cells 2020, 218, 110821. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Wang, X.; Xia, X.X.; Zhou, D.; Zhang, X.C.; Gong, J.; Tu, S.T. Interaction between Molten Solar Salt Corrosion and Creep Loading on the High-Temperature Corrosion and Cracking Behavior of 316L Stainless Steel. Eng. Fract. Mech. 2025, 315, 110791. [Google Scholar] [CrossRef]
- Fernández, A.G.; Muñoz-Sánchez, B.; Nieto-Maestre, J.; Cabeza, L.F. Dynamic Corrosion Test Using LiNO3 Containing Molten Salt for CSP Applications. Appl. Sci. 2020, 10, 4305. [Google Scholar] [CrossRef]
- Gong, Q.; Shi, H.; Chai, Y.; Yu, R.; Weisenburger, A.; Wang, D.; Bonk, A.; Bauer, T.; Ding, W. Molten Chloride Salt Technology for Next-Generation CSP Plants: Compatibility of Fe-Based Alloys with Purified Molten MgCl2-KCl-NaCl Salt at 700 °C. Appl. Energy 2022, 324, 119708. [Google Scholar] [CrossRef]
- Camacho, I.; Chen, Q.; González-Fernández, L.; Bondarchuk, O.; Bartolomé, L.; Jiang, Z.; Ding, Y.; Grosu, Y. On the Anticorrosion Mechanism of Molten Salts Based Nanofluids. Sol. Energy Mater. Sol. Cells 2022, 234, 111424. [Google Scholar] [CrossRef]
- Fernández, A.G.; Muñoz-Sánchez, B.; Nieto-Maestre, J.; García-Romero, A. High Temperature Corrosion Behavior on Molten Nitrate Salt-Based Nanofluids for CSP Plants. Renew. Energy 2019, 130, 902–909. [Google Scholar] [CrossRef]
- Han, D.; Hou, Y.; Jiang, B.; Geng, B.; He, X.; Shagdar, E.; Lougou, B.G.; Shuai, Y. Enhanced Corrosion Resistance of Alloy in Molten Chloride Salts by Adding Nanoparticles for Thermal Energy Storage Applications. J. Energy Storage 2023, 64, 107172. [Google Scholar] [CrossRef]
- Grosu, Y.; Udayashankar, N.; Bondarchuk, O.; González-Fernández, L.; Faik, A. Unexpected Effect of Nanoparticles Doping on the Corrosivity of Molten Nitrate Salt for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2018, 178, 91–97. [Google Scholar] [CrossRef]
- Gwalani, B.; Escobar, J.; Song, M.; Thomas, J.; Silverstein, J.; Chuang, A.C.; Singh, D.; Brady, M.P.; Yamamoto, Y.; Watkins, T.R.; et al. Mechanisms for High Creep Resistance in Alumina Forming Austenitic (AFA) Alloys. Acta Mater. 2024, 263, 119494. [Google Scholar] [CrossRef]
- Fernandez, A.G.; Henriquez, M.; Fuentealba, E. Corrosion Evaluation Advances for Promising Tes Materials in Alumina Forming Alloys. In Proceedings of the EuroSun 2016, Palma de Mallorca, Spain, 11–14 October 2016; International Solar Energy Society (ISES): Freiburg im Breisgau, Germany, 2017; pp. 1–8. [Google Scholar]
- Gomez-Vidal, J.C.; Fernandez, A.G.; Tirawat, R.; Turchi, C.; Huddleston, W. Corrosion Resistance of Alumina-Forming Alloys against Molten Chlorides for Energy Production. I: Pre-Oxid. Treat. Isothermal Corros. Tests. Sol. Energy Mater. Sol. Cells 2017, 166, 222–233. [Google Scholar] [CrossRef]
- Ding, W.; Shi, H.; Jianu, A.; Xiu, Y.; Bonk, A.; Weisenburger, A.; Bauer, T. Molten Chloride Salts for next Generation Concentrated Solar Power Plants: Mitigation Strategies against Corrosion of Structural Materials. Sol. Energy Mater. Sol. Cells 2019, 193, 298–313. [Google Scholar] [CrossRef]
- Frangini, S.; Loreti, S. The Role of Alkaline-Earth Additives on the Molten Carbonate Corrosion of 316L Stainless Steel. Corros. Sci. 2007, 49, 3969–3987. [Google Scholar] [CrossRef]
- Jiang, W.; Molian, P. Laser Based Flexible Fabrication of Functionally Graded Mould Inserts. Int. J. Adv. Manuf. Technol. 2002, 19, 646–654. [Google Scholar] [CrossRef]
- Wu, X. In situ formation by laser cladding of a TiC composite coating with a gradient distribution. Surf. Coat. Technol. 1999, 115, 111–115. [Google Scholar] [CrossRef]
- Yakovlev, A.; Bertrand, P.; Smurov, I. Laser cladding of wear resistant metal matrix composite coatings. Thin Solid. Film. 2004, 453–454, 133–138. [Google Scholar] [CrossRef]
- Yakovlev, A.; Trunova, E.; Grevey, D.; Pilloz, M.; Smurov, I. Laser-Assisted Direct Manufacturing of Functionally Graded 3D Objects. Surf. Coat. Technol. 2005, 190, 15–24. [Google Scholar] [CrossRef]
- Riabkina-Fishman, M.; Rabkin, E.; Levin, P.; Frage, N.; Dariel, M.; Weisheit, A.; Galun, R.; Mordike, B. Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel. Mater. Sci. Eng. A 2001, 302, 106–114. [Google Scholar] [CrossRef]
- Samiee, F.; Raeissi, K.; Golozar, M.A. The Effect of Heat Treatment Temperature on the Structure and Barrier Performance of a Zirconia Coating Electrodeposited by Pulse Current. Corros. Sci. 2011, 53, 1969–1975. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, D.; Li, X.; Chen, K.; Mingmin, H. Effects of CeO2 Nanoparticles on Microstructure and Properties of Laser Cladded NiCoCrAlY Coatings. J. Rare Earths 2010, 28, 246–250. [Google Scholar] [CrossRef]
- Wang, C. shan Influence of Yttrium on Microstructure and Properties of Ni–Al Alloy Coatings Prepared by Laser Cladding. Def. Technol. 2014, 10, 22–27. [Google Scholar] [CrossRef]
- Mingxi, L.; Yizhu, H.; Xiaomin, Y. Effect of Nano-Y2O3 on Microstructure of Laser Cladding Cobalt-Based Alloy Coatings. Appl. Surf. Sci. 2006, 252, 2882–2887. [Google Scholar] [CrossRef]
- Fernandes, F.; Ramalho, A.; Loureiro, A.; Guilemany, J.M.; Torrell, M.; Cavaleiro, A. Influence of Nanostructured ZrO2 Additions on the Wear Resistance of Ni-Based Alloy Coatings Deposited by APS Process. Wear 2013, 303, 591–601. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Batuecas, E.; Macías-García, A.; Mayo, C.; Díaz, R.; Pérez, F.J. Corrosion Resistance of Protective Coatings against Molten Nitrate Salts for Thermal Energy Storage and Their Environmental Impact in CSP Technology. Sol. Energy 2018, 176, 688–697. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Sotelo-Mazon, O.; Salinas-Bravo, V.M.; Arrieta-Gonzalez, C.D.; Ramos-Hernandez, J.J.; Cuevas-Arteaga, C. Electrochemical Performance of Ni20Cr Coatings Applied by Combustion Powder Spray in ZnCl2-KCL Molten Salts. Int. J. Electrochem. Sci. 2012, 7, 1134–1148. [Google Scholar] [CrossRef]
- Kondaiah, P.; Pitchumani, R. Novel Textured Surfaces for Superior Corrosion Mitigation in Molten Carbonate Salts for Concentrating Solar Power. Renew. Sustain. Energy Rev. 2022, 170, 112961. [Google Scholar] [CrossRef]
- Kondaiah, P.; Pitchumani, R. Electrodeposited Nickel Coatings for Exceptional Corrosion Mitigation in Industrial Grade Molten Chloride Salts for Concentrating Solar Power. Renew. Sustain. Energy Rev. 2024, 189, 113848. [Google Scholar] [CrossRef]
- Grosu, Y.; Nithiyanantham, U.; Zaki, A.; Faik, A. A Simple Method for the Inhibition of the Corrosion of Carbon Steel by Molten Nitrate Salt for Thermal Storage in Concentrating Solar Power Applications. Npj Mater. Degrad. 2018, 2, 34. [Google Scholar] [CrossRef]
- Gonzalez, M.; Nithiyanantham, U.; Carbó-Argibay, E.; Bondarchuk, O.; Grosu, Y.; Faik, A. Graphitization as Efficient Inhibitor of the Carbon Steel Corrosion by Molten Binary Nitrate Salt for Thermal Energy Storage at Concentrated Solar Power. Sol. Energy Mater. Sol. Cells 2019, 203, 110172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavón-Moreno, M.C.; Lopez-Paneque, A.; Gallardo, J.M.; Paul, A.; Díaz-Gutierrez, E.; Prieto, C. Critical Assessment of Migration Strategies for Corrosion in Molten Salts. Materials 2025, 18, 3804. https://doi.org/10.3390/ma18163804
Pavón-Moreno MC, Lopez-Paneque A, Gallardo JM, Paul A, Díaz-Gutierrez E, Prieto C. Critical Assessment of Migration Strategies for Corrosion in Molten Salts. Materials. 2025; 18(16):3804. https://doi.org/10.3390/ma18163804
Chicago/Turabian StylePavón-Moreno, M. Carmen, Antonio Lopez-Paneque, Jose María Gallardo, Antonio Paul, Eduardo Díaz-Gutierrez, and Cristina Prieto. 2025. "Critical Assessment of Migration Strategies for Corrosion in Molten Salts" Materials 18, no. 16: 3804. https://doi.org/10.3390/ma18163804
APA StylePavón-Moreno, M. C., Lopez-Paneque, A., Gallardo, J. M., Paul, A., Díaz-Gutierrez, E., & Prieto, C. (2025). Critical Assessment of Migration Strategies for Corrosion in Molten Salts. Materials, 18(16), 3804. https://doi.org/10.3390/ma18163804