Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. hIgG Precipitation
2.3. Critical Flux
3. Results
3.1. Module Geometry
3.2. Effect of Disodium Malonate
3.3. Effect of Feed Flow Rate
3.4. Multi-Stage Filtration
3.5. Long-Term Filtration
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DSM | Disodium malonate |
hIgG | Human serum immunoglobulin G |
MES | 2-morpholineoethanesulphonic acid |
PEG | Polyethylene glycol |
SPTFF | Single-pass tangential flow filtration |
TFF | Tangential flow filtration |
TMP | Transmembrane pressure difference |
References
- Ziegelbauer, K.; Light, D. Monoclonal antibody therapeutics: Leading companies to maximise sales and market share. J. Commer. Biotechnol. 2008, 14, 65–72. [Google Scholar] [CrossRef]
- Mane, P. Global Monoclonal Antibodies Market 2022—Future Trends, Analysis, Competitive Landscape and Regional Forecast 2030; Grand View Research: San Francisco, CA, USA, 2022. [Google Scholar]
- ADI—Dementia Statistics. Alzheimer’s Disease International. Available online: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/ (accessed on 8 July 2025).
- Huang, Y.; Hu, W.; Rustandi, E.; Chang, K.; Yusuf-Makagiansar, H.; Ryll, T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010, 26, 1400–1410. [Google Scholar] [CrossRef]
- Handlogten, M.W.; Lee-O’Brien, A.; Roy, G.; Levitskaya, S.V.; Venkat, R.; Singh, S.; Ahuja, S. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol. Bioeng. 2017, 115, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Bansode, V.; Gupta, P.; Kateja, N.; Rathore, A.S. Contribution of protein A step towards cost of goods for continuous production of monoclonal antibody therapeutics. J. Chem. Technol. Biotechnol. 2021, 97, 2420–2433. [Google Scholar] [CrossRef]
- Dutra, G.; Komuczki, D.; Jungbauer, A.; Satzer, P. Continuous capture of recombinant antibodies by ZnCl2 precipitation without polyethylene glycol. Eng. Life Sci. 2020, 20, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gu, Q.; Coffman, J.L.; Przybycien, T.; Zydney, A.L. Continuous precipitation for monoclonal antibody capture using countercurrent washing by microfiltration. Biotechnol. Prog. 2019, 35, e2886. [Google Scholar] [CrossRef]
- Hammerschmidt, N.; Hobiger, S.; Jungbauer, A. Continuous polyethylene glycol precipitation of recombinant antibodies: Sequential precipitation and resolubilization. Process Biochem. 2016, 51, 325–332. [Google Scholar] [CrossRef]
- Martinez, M.; Mannall, G.; Spitali, M.; Norrant, E.L.; Bracewell, D.G. Reactor design for continuous monoclonal antibody precipitation based upon micro-mixing. J. Chem. Technol. Biotechnol. 2021, 97, 2434–2447. [Google Scholar] [CrossRef]
- Ferreira-Faria, D.; Domingos-Moreira, F.; Aires-Barros, M.R.; Ferreira, A.; Azevedo, A.M. Continuous precipitation of antibodies using oscillatory flow reactor: A proof of concept. Sep. Purif. Technol. 2023, 317, 123924. [Google Scholar] [CrossRef]
- Burgstaller, D.; Jungbauer, A.; Satzer, P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol. Bioeng. 2019, 116, 1053–1065. [Google Scholar] [CrossRef]
- Minervini, M.; Mergy, M.; Zhu, Y.; Gutierrez Diaz, M.A.; Pointer, C.; Shinkazh, O.; Oppenheim, S.F.; Cramer, S.M.; Przybycien, T.M.; Zydney, A.L. Continuous precipitation-filtration process for initial capture of a monoclonal antibody product using a four-stage countercurrent hollow fiber membrane washing step. Biotechnol. Bioeng. 2024, 121, 2258–2268. [Google Scholar] [CrossRef]
- Minervini, M.; Zydney, A.L. Effect of module geometry on the sustainable flux during microfiltration of precipitated IgG. J. Membr. Sci. 2022, 660, 120834. [Google Scholar] [CrossRef]
- Subramani, A.; Kim, S.; Hoek, E.V.M. Pressure, flow, and concentration profiles in open and spacer-filled membrane channels. J. Membr. Sci. 2006, 277, 7–17. [Google Scholar] [CrossRef]
- Binabaji, E.; Ma, J.; Rao, S.; Zydney, A.L. Ultrafiltration of highly concentrated antibody solutions: Experiments and modeling for the effects of module and buffer conditions. Biotechnol. Prog. 2016, 32, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Mendes, S.; Faria, T.Q.; Nascimento, A.; Noverraz, M.; Bollmann, F.; Nestola, P.; Roldao, A.; Peixoto, C.; Silva, R.J.S. Accelerated development of AAV purification process using a high-throughput automated crossflow system. Separations 2024, 11, 73. [Google Scholar] [CrossRef]
- Bodik, I.; Blstakova, A.; Dancova, L.; Sedlacek, S. Comparison of flat sheet and hollow fiber membrane modules in municipal wastewater treatment. Polish J. Environ. Stud. 2009, 18, 331–340. [Google Scholar]
- Mundle, S.T.; Hernandez, H.; Hamberger, J.; Catalan, J.; Zhou, C.; Stegalkina, S.; Tiffany, A.; Kleanthous, H.; Delagrave, S.; Anderson, S.F. High-purity preparation of HSV-2 vaccine candidate Acam529 is immunogenic and efficacious in vivo. PLoS ONE 2013, 8, e57224. [Google Scholar] [CrossRef]
- Reid, J.; Ni, J.; Chen, A.; Gomes, P.; Szto, A.; Yu, S.; Luo, A.; Kong, B.; Adams, C.; Jeyachandran, N.; et al. Exploration of alternative microfiltration modalities for the harvest and clarification of diverse recombinant proteins from high-density E. coli culture and lysate using hollow fibre, flat sheet cassette, and vibro membrane filtration technologies. J. Ind. Microbiol. Biotech 2025, 52, kuaf008. [Google Scholar] [CrossRef]
- Behboudi, A.; Minervini, M.; Badinger, Z.S.; Haddad, W.W.; Zydney, A.L. Addition of disodium malonate alters the morphology and increases the critical flux during tangential flow filtration of precipitated immunoglobulins. Protein Sci. 2024, 33, e5010. [Google Scholar] [CrossRef]
- Bhut, B.V.; Weaver, J.; Carter, A.R.; Wickramasinghe, S.R.; Husson, S.M. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations. Biotechnol. Bioeng. 2011, 108, 2645–2653. [Google Scholar] [CrossRef]
- Feng, L.; Song, Y.; Basurdy, S.; Sirkar, K.K. IgG-BSA separation and purification by internally staged ultrafiltration. Sep. Purif. Tech. 2025, 354, 129245. [Google Scholar] [CrossRef]
- Crossflow Filtration Method Handbook; GE Healthcare: Uppsala, Sweden, 2018; Available online: https://static.fishersci.eu/content/dam/fishersci/en_EU/suppliers/GE/Cross_Flow_Filtration_Method.pdf (accessed on 8 July 2025).
- Minervini, M.; Behboudi, A.; Marzella, J.R.; Zydney, A.L. Optimizing particle morphology during antibody precipitation for enhanced tangential flow filtration performance. Sep. Purif. Tech. 2024, 338, 126574. [Google Scholar] [CrossRef]
Pellicon XL50 | Critical Flux (L/m2/h) | Conversion | Hollow Fiber | Critical Flux (L/m2/h) | Conversion |
---|---|---|---|---|---|
No malonate | 60 ± 12 | 0.17 ± 0.03 | No malonate | 100 ± 7 | 0.46 ± 0.03 |
With malonate | 260 ± 12 | 0.70 ± 0.03 | With malonate | 150 ± 7 | 0.70 ±.0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badinger, Z.; Behboudi, A.; Zydney, A.L. Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes. Membranes 2025, 15, 245. https://doi.org/10.3390/membranes15080245
Badinger Z, Behboudi A, Zydney AL. Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes. Membranes. 2025; 15(8):245. https://doi.org/10.3390/membranes15080245
Chicago/Turabian StyleBadinger, Zachary, Ali Behboudi, and Andrew L. Zydney. 2025. "Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes" Membranes 15, no. 8: 245. https://doi.org/10.3390/membranes15080245
APA StyleBadinger, Z., Behboudi, A., & Zydney, A. L. (2025). Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes. Membranes, 15(8), 245. https://doi.org/10.3390/membranes15080245