From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)
Abstract
1. Introduction
2. Review Methodology
3. PM2.5 Pollution: Source Complexity and Societal Impact
3.1. Major Anthropogenic and Natural Sources of PM2.5
3.2. Health Risks and Socioeconomic Burden
4. Key Machine Learning Approaches for PM2.5 Monitoring
4.1. Supervised Learning
4.2. Semi-Supervised Learning
4.3. Unsupervised Learning
4.4. Reinforcement Learning
4.5. Other Paradigms
5. Framework of Machine Learning Integration in PM2.5 Management
5.1. Sensor Calibration
5.2. Next-Generation Monitoring
5.3. Forecasting
5.4. Predictive Modeling
5.5. PM2.5 Management
6. Machine Learning Applications in PM2.5 Monitoring and Modeling
6.1. Machine Learning for Low-Cost PM2.5 Sensor Calibration
6.2. Next-Generation PM2.5 Monitoring Powered by Machine Learning
6.3. Machine Learning-Driven PM2.5 Forecasting
6.4. Machine Learning for Predictive PM2.5 Modeling
7. Green and Sustainable Mitigation Strategies for PM2.5 Management
7.1. Nature-Based Solutions
7.2. Technological Interventions
7.3. Policy and Implementation Frameworks
7.4. Integrated Assessment Approaches
8. Discussion
9. Conclusions and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Xu, F.; Liu, W.; Liu, X.; Wang, D. Characteristics, Sources, Exposure, and Health Effects of Heavy Metals in Atmospheric Particulate Matter. Curr. Pollut. Rep. 2025, 11, 16. [Google Scholar] [CrossRef]
- Titova, A.G.; Zanyatkin, I.A.; Volkova, A.G.; Nechaev, D.N.; Trusov, G.A. Epigenetic Markers of The Influence of Particulate Matter with Different Aerodynamic Diameters on Human Health: A Review. Ekol. Cheloveka Hum. Ecol. 2021, 28, 4–12. [Google Scholar] [CrossRef]
- Yadav, V.K.; Bijekar, S.; Gacem, A.; Alkahtani, A.M.; Yadav, K.K.; Alreshidi, M.A.; Kumar, P.; Ghosh, T.; Verma, R.K.; Mishra, S.; et al. The Impact of Fine Particulate Matters (PM10, PM2.5) from Incense Smokes on the Various Organ Systems: A Review of an Invisible Killer. Part. Part. Syst. Charact. 2024, 41, 2300157. [Google Scholar] [CrossRef]
- Afthab, M.; Hambo, S.; Kim, H.; Alhamad, A.; Harb, H. Particulate Matter-Induced Epigenetic Modifications and Lung Complications. Eur. Respir. Rev. 2024, 33, 240129. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Qiu, X.; Li, K.; Li, J.; Ren, Y.; Zhu, C.; Zhang, X. Characteristics and Health Risks of PM2.5-Bound Metals in a Central City of Northern China: A One-Year Observation Study. Aerosol Air Qual. Res. 2024, 24, 230165. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 27 May 2025).
- Gao, D.; Zhao, B.; Wang, S.; Wang, Y.; Gaudet, B.; Zhu, Y.; Wang, X.; Shen, J.; Li, S.; He, Y.; et al. Increased Importance of Aerosol–Cloud Interactions for Surface PM2.5 Pollution Relative to Aerosol–Radiation Interactions in China with the Anthropogenic Emission Reductions. Atmos. Chem. Phys. 2023, 23, 14359–14373. [Google Scholar] [CrossRef]
- Roy, A.; Mandal, M.; Das, S.; Popek, R.; Rakwal, R.; Agrawal, G.K.; Awasthi, A.; Sarkar, A. The Cellular Consequences of Particulate Matter Pollutants in Plants: Safeguarding the Harmonious Integration of Structure and Function. Sci. Total. Environ. 2024, 914, 169763. [Google Scholar] [CrossRef]
- Kurniawati, S.; Santoso, M.; Nurhaini, F.F.; Atmodjo, D.P.D.; Lestiani, D.D.; Ramadhani, M.F.; Kusmartini, I.; Syahfitri, W.Y.N.; Damastuti, E.; Tursinah, R. Assessing Low-Cost Sensor for Characterizing Temporal Variation of PM2.5 in Bandung, Indonesia. Kuwait J. Sci. 2025, 52, 100297. [Google Scholar] [CrossRef]
- Yang, Z.; Zdanski, C.; Farkas, D.; Bang, J.; Williams, H. Evaluation of Aerosol Optical Depth (AOD) and PM2.5 Associations for Air Quality Assessment. Remote Sens. Appl. Soc. Environ. 2020, 20, 100396. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of Meteorological Conditions on PM2.5 Concentrations across China: A Review of Methodology and Mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial Intelligence in Environmental Monitoring: Advancements, Challenges, and Future Directions. Hyg. Environ. Health Adv. 2024, 12, 100114. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, S.; Zhang, K.; Yin, J.; Varela, M.; Miao, J. Developing High-Resolution PM2.5 Exposure Models by Integrating Low-Cost Sensors, Automated Machine Learning, and Big Human Mobility Data. Front. Environ. Sci. 2023, 11, 1223160. [Google Scholar] [CrossRef]
- Tao, H.; Jawad, A.H.; Shather, A.H.; Al-Khafaji, Z.; Rashid, T.A.; Ali, M.; Al-Ansari, N.; Marhoon, H.A.; Shahid, S.; Yaseen, Z.M. Machine Learning Algorithms for High-Resolution Prediction of Spatiotemporal Distribution of Air Pollution from Meteorological and Soil Parameters. Environ. Int. 2023, 175, 107931. [Google Scholar] [CrossRef]
- Damkliang, K.; Chumnaul, J. Deep Learning and Statistical Approaches for Area-Based PM2.5 Forecasting in Hat Yai, Thailand. J. Big Data 2025, 12, 36. [Google Scholar] [CrossRef]
- Popescu, S.M.; Mansoor, S.; Wani, O.A.; Kumar, S.S.; Sharma, V.; Sharma, A.; Arya, V.M.; Kirkham, M.B.; Hou, D.; Bolan, N.; et al. Artificial Intelligence and IoT Driven Technologies for Environmental Pollution Monitoring and Management. Front. Environ. Sci. 2024, 12, 1336088. [Google Scholar] [CrossRef]
- Adong, P.; Bainomugisha, E.; Okure, D.; Sserunjogi, R. Applying Machine Learning for Large Scale Field Calibration of Low-Cost PM2.5 and PM10 Air Pollution Sensors. Appl. AI Lett. 2022, 3, e76. [Google Scholar] [CrossRef]
- Tang, D.; Zhan, Y.; Yang, F. A Review of Machine Learning for Modeling Air Quality: Overlooked but Important Issues. Atmos. Res. 2024, 300, 107261. [Google Scholar] [CrossRef]
- Niu, Z.; He, Q.; Chen, C. A PM2.5 Pollution-Level Adaptive Air Filtration System Based on Elastic Filters for Reducing Energy Consumption. J. Hazard. Mater. 2024, 478, 135546. [Google Scholar] [CrossRef]
- Li, L.; Zheng, M.; Zhang, J.; Li, C.; Ren, Y.; Jin, X.; Chen, J. Effects of Green Infrastructure on the Dispersion of PM2.5 and Human Exposure on Urban Roads. Environ. Res. 2023, 223, 115493. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tomar, G.; Nagpure, A.S.; Kumar, V.; Jain, Y. High Resolution Vehicular Exhaust and Non-Exhaust Emission Analysis of Urban-Rural District of India. Sci. Total Environ. 2022, 805, 150255. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Chen, T.-F.; Chang, K.-H. Role of an Ultra-Large Coal-Fired Power Plant in PM2.5 Pollution in Taiwan. Atmosphere 2024, 15, 56. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lai, C.-H.; Hsieh, T.-H.; Tsai, C.-Y. Source Apportionment and Health Effects of Particle-Bound Metals in PM2.5 near a Precision Metal Machining Factory. Air Qual. Atmos. Health 2022, 15, 605–617. [Google Scholar] [CrossRef]
- Zauli-Sajani, S.; Thunis, P.; Pisoni, E.; Bessagnet, B.; Monforti-Ferrario, F.; De Meij, A.; Pekar, F.; Vignati, E. Reducing Biomass Burning Is Key to Decrease PM2.5 Exposure in European Cities. Sci. Rep. 2024, 14, 10210. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, D.; Huang, L.; Guo, C.; Gao, X.; Xu, Z.; Yang, Z.; Chen, Y.; Li, M.; Yang, J. Global Associations between Long-Term Exposure to PM2.5 Constituents and Health: A Systematic Review and Meta-Analysis of Cohort Studies. J. Hazard. Mater. 2024, 474, 134715. [Google Scholar] [CrossRef]
- Khreis, H.; Sanchez, K.A.; Foster, M.; Burns, J.; Nieuwenhuijsen, M.J.; Jaikumar, R.; Ramani, T.; Zietsman, J. Urban Policy Interventions to Reduce Traffic-Related Emissions and Air Pollution: A Systematic Evidence Map. Environ. Int. 2023, 172, 107805. [Google Scholar] [CrossRef]
- Lan, R.; Eastham, S.D.; Liu, T.; Norford, L.K.; Barrett, S.R.H. Air Quality Impacts of Crop Residue Burning in India and Mitigation Alternatives. Nat. Commun. 2022, 13, 6537. [Google Scholar] [CrossRef]
- Lai, A.; Lee, M.; Carter, E.; Chan, Q.; Elliott, P.; Ezzati, M.; Kelly, F.; Yan, L.; Wu, Y.; Yang, X.; et al. Chemical Investigation of Household Solid Fuel Use and Outdoor Air Pollution Contributions to Personal PM2.5 Exposures. Environ. Sci. Technol. 2021, 55, 15969–15979. [Google Scholar] [CrossRef]
- Guo, F.; Xie, S. Formation Mechanisms of Secondary Sulfate and Nitrate in PM2.5. Prog. Chem. 2023, 35, 1313–1326. [Google Scholar] [CrossRef]
- Delbari, S.H.; Zare Shahne, M.; Hosseini, V. An Analysis of Primary Contributing Sources to the PM2.5 Composition in a Port City in Canada Influenced by Traffic, Marine, and Wildfire Emissions. Atmos. Environ. 2024, 334, 120712. [Google Scholar] [CrossRef]
- Parra, J.C.; Gómez, M.; Salas, H.D.; Botero, B.A.; Piñeros, J.G.; Tavera, J.; Velásquez, M.P. Linking Meteorological Variables and Particulate Matter PM2.5 in the Aburrá Valley, Colombia. Sustainability 2024, 16, 10250. [Google Scholar] [CrossRef]
- Liu, M.; Lei, Y.; Wang, X.; Xue, W.; Zhang, W.; Jiang, H.; Wang, J.; Bi, J. Source Contributions to PM2.5-Related Mortality and Costs: Evidence for Emission Allocation and Compensation Strategies in China. Environ. Sci. Technol. 2023, 57, 4720–4731. [Google Scholar] [CrossRef]
- Yu, W.; Xu, R.; Ye, T.; Abramson, M.J.; Morawska, L.; Jalaludin, B.; Johnston, F.H.; Henderson, S.B.; Knibbs, L.D.; Morgan, G.G.; et al. Estimates of Global Mortality Burden Associated with Short-Term Exposure to Fine Particulate Matter (PM2·5). Lancet Planet. Health 2024, 8, e146–e155. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Su, H.; Burnett, R.T.; Guo, Y.; Cheng, Y. Long-Term Exposure to PM2.5 Has Significant Adverse Effects on Childhood and Adult Asthma: A Global Meta-Analysis and Health Impact Assessment. One Earth 2024, 7, 1953–1969. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Peng, Z.-X.; Zheng, Z.-Y.; Ni, H.-G. Big Picture Thinking of Global PM2.5-Related COPD: Spatiotemporal Trend, Driving Force, Minimal Burden and Economic Loss. J. Hazard. Mater. 2025, 488, 137321. [Google Scholar] [CrossRef]
- Montone, R.A.; Rinaldi, R.; Bonanni, A.; Severino, A.; Pedicino, D.; Crea, F.; Liuzzo, G. Impact of Air Pollution on Ischemic Heart Disease: Evidence, Mechanisms, Clinical Perspectives. Atherosclerosis 2023, 366, 22–31. [Google Scholar] [CrossRef]
- Saini, P.; Sharma, M. Cause and Age-Specific Premature Mortality Attributable to PM2.5 Exposure: An Analysis for Million-Plus Indian Cities. Sci. Total Environ. 2020, 710, 135230. [Google Scholar] [CrossRef]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhong, K.; Islam, A.; Sakunkoo, P. An Update on Adverse Health Effects from Exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lung, S.-C.C.; Chen, Y.-C.; Wang, L.-C. Pulmonary Toxicity of Actual Alveolar Deposition Concentrations of Ultrafine Particulate Matters in Human Normal Bronchial Epithelial Cell. Environ. Sci. Pollut. Res. 2021, 28, 50179–50187. [Google Scholar] [CrossRef]
- Thiankhaw, K.; Chattipakorn, N.; Chattipakorn, S.C. PM2.5 Exposure in Association with AD-Related Neuropathology and Cognitive Outcomes. Environ. Pollut. 2022, 292, 118320. [Google Scholar] [CrossRef]
- Krzyzanowski, B.; Searles Nielsen, S.; Turner, J.R.; Racette, B.A. Fine Particulate Matter and Parkinson Disease Risk Among Medicare Beneficiaries. Neurology 2023, 101, e2058–e2067. [Google Scholar] [CrossRef]
- Lončar, D.; Tyack, N.B.; Krstić, V.; Paunković, J. Methods for Assessing the Impact of PM2.5 Concentration on Mortality While Controlling for Socio-Economic Factors. Heliyon 2022, 8, e10729. [Google Scholar] [CrossRef]
- Xie, Y.; Zhong, H.; Weng, Z.; Guo, X.; Kim, S.E.; Wu, S. PM2.5 Concentration Declining Saves Health Expenditure in China. Front. Environ. Sci. Eng. 2023, 17, 90. [Google Scholar] [CrossRef]
- Frazenburg, C.; Sepadi, M.M.; Chitakira, M. Investigating the Disproportionate Impacts of Air Pollution on Vulnerable Populations in South Africa: A Systematic Review. Atmosphere 2025, 16, 49. [Google Scholar] [CrossRef]
- Yin, H.; McDuffie, E.E.; Martin, R.V.; Brauer, M. Global Health Costs of Ambient PM2·5 from Combustion Sources: A Modelling Study Supporting Air Pollution Control Strategies. Lancet Planet. Health 2024, 8, e476–e488. [Google Scholar] [CrossRef]
- Tiwari, A. Chapter 2–Supervised Learning: From Theory to Applications. In Artificial Intelligence and Machine Learning for EDGE Computing; Pandey, R., Khatri, S.K., Singh, N.K., Verma, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 23–32. ISBN 978-0-12-824054-0. [Google Scholar]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Hasan, M.; Islam, R.; Awang, N.R.; Hamzah, Z.; Rak, A.E.; Salam, M.A. Potential of ARIMA-ANN, ARIMA-SVM, DT and CatBoost for Atmospheric PM2.5 Forecasting in Bangladesh. Atmosphere 2021, 12, 100. [Google Scholar] [CrossRef]
- Choojam, S.; Chumnau, J.; Jetwanna, K.W.N. Accurate Model for Forecasting PM2.5 Concentrations in Hat Yai, Songkhla, Thailand: The ARIMA-ANN-REG HybridApproach via AAR4PM. EnvironmentAsia 2024, 17, 115. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lim, Y.-K.; Cha, J.W. Short-Term Prediction of Particulate Matter (PM10 and PM2.5) in Seoul, South Korea Using Tree-Based Machine Learning Algorithms. Atmos. Pollut. Res. 2022, 13, 101547. [Google Scholar] [CrossRef]
- Li, J.; Crooks, J.; Murdock, J.; de Souza, P.; Hohsfield, K.; Obermann, B.; Stockman, T. A Nested Machine Learning Approach to Short-Term PM2.5 Prediction in Metropolitan Areas Using PM2.5 Data from Different Sensor Networks. Sci. Total Environ. 2023, 873, 162336. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Saha, S. PM2.5 Concentration Prediction during COVID-19 Lockdown over Kolkata Metropolitan City, India Using MLR and ANN Models. Environ. Chall. 2021, 4, 100155. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; King, I.; Xu, Z. A Survey on Deep Semi-Supervised Learning. IEEE Trans. Knowl. Data Eng. 2023, 35, 8934–8954. [Google Scholar] [CrossRef]
- Ramadan, M.N.A.; Ali, M.A.H.; Khoo, S.Y.; Alkhedher, M. SecureIoT-FL: A Federated Learning Framework for Privacy-Preserving Real-Time Environmental Monitoring in Industrial IoT Applications. Alex. Eng. J. 2025, 114, 681–701. [Google Scholar] [CrossRef]
- Paluang, P.; Thavorntam, W.; Phairuang, W. Application of Multilayer Perceptron Artificial Neural Network (MLP-ANN) Algorithm for PM2.5 Mass Concentration Estimation during Open Biomass Burning Episodes in Thailand. Int. J. Geoinformatics 2024, 20, 28–42. [Google Scholar] [CrossRef]
- Zhang, M. Unsupervised Learning Algorithms in Big Data: An Overview; Atlantis Press: Dordrecht, The Netherlands, 2022; pp. 910–931. [Google Scholar]
- Yadav, V.; Yadav, A.K.; Singh, V.; Singh, T. Artificial Neural Network an Innovative Approach in Air Pollutant Prediction for Environmental Applications: A Review. Results Eng. 2024, 22, 102305. [Google Scholar] [CrossRef]
- Huang, H.; Qian, C. Modeling PM2.5 Forecast Using a Self-Weighted Ensemble GRU Network: Method Optimization and Evaluation. Ecol. Indic. 2023, 156, 111138. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition. Sci. Total Environ. 2021, 768, 144516. [Google Scholar] [CrossRef]
- Karimian, H.; Li, Y.; Chen, Y.; Wang, Z. Evaluation of Different Machine Learning Approaches and Aerosol Optical Depth in PM2.5 Prediction. Environ. Res. 2023, 216, 114465. [Google Scholar] [CrossRef]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement Learning Algorithms: A Brief Survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Guyu, Z.; Xiaoyuan, Y.; Jiansen, S.; Hongdou, H.; Qian, W. A PM2.5 Spatiotemporal Prediction Model Based on Mixed Graph Convolutional GRU and Self-Attention Network. Environ. Pollut. 2025, 368, 125748. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Cao, H.; Thé, J.; Tan, Z.; Yu, H. Multi-Step Forecast of PM2.5 and PM10 Concentrations Using Convolutional Neural Network Integrated with Spatial–Temporal Attention and Residual Learning. Environ. Int. 2023, 171, 107691. [Google Scholar] [CrossRef]
- Terroso-Saenz, F.; Morales-García, J.; Muñoz, A. Nationwide Air Pollution Forecasting with Heterogeneous Graph Neural Networks. ACM Trans. Intell. Syst. Technol. 2024, 15, 1–19. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R.; et al. A Survey of Uncertainty in Deep Neural Networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Mohammadi, F.; Teiri, H.; Hajizadeh, Y.; Abdolahnejad, A.; Ebrahimi, A. Prediction of Atmospheric PM2.5 Level by Machine Learning Techniques in Isfahan, Iran. Sci. Rep. 2024, 14, 2109. [Google Scholar] [CrossRef]
- Pan, P.; Malarvizhi, A.S.; Yang, C. Data Augmentation Strategies for Improved PM2.5 Forecasting Using Transformer Architectures. Atmosphere 2025, 16, 127. [Google Scholar] [CrossRef]
- Faraji, M.; Nadi, S.; Ghaffarpasand, O.; Homayoni, S.; Downey, K. An Integrated 3D CNN-GRU Deep Learning Method for Short-Term Prediction of PM2.5 Concentration in Urban Environment. Sci. Total Environ. 2022, 834, 155324. [Google Scholar] [CrossRef]
- Hosna, A.; Merry, E.; Gyalmo, J.; Alom, Z.; Aung, Z.; Azim, M.A. Transfer Learning: A Friendly Introduction. J. Big Data 2022, 9, 102. [Google Scholar] [CrossRef]
- Ramadan, M.N.A.; Ali, M.A.H.; Jaber, H.; Alkhedher, M. Blockchain-Secured IoT-Federated Learning for Industrial Air Pollution Monitoring: A Mechanistic Approach to Exposure Prediction and Environmental Safety. Ecotoxicol. Environ. Saf. 2025, 300, 118442. [Google Scholar] [CrossRef]
- Wong, P.-Y.; Su, H.-J.; Candice Lung, S.-C.; Liu, W.-Y.; Tseng, H.-T.; Adamkiewicz, G.; Wu, C.-D. Explainable Geospatial-Artificial Intelligence Models for the Estimation of PM2.5 Concentration Variation during Commuting Rush Hours in Taiwan. Environ. Pollut. 2024, 349, 123974. [Google Scholar] [CrossRef]
- Rautela, K.S.; Goyal, M.K. Transforming Air Pollution Management in India with AI and Machine Learning Technologies. Sci. Rep. 2024, 14, 20412. [Google Scholar] [CrossRef]
- Shakya, D.; Deshpande, V.; Goyal, M.K.; Agarwal, M. PM2.5 Air Pollution Prediction through Deep Learning Using Meteorological, Vehicular, and Emission Data: A Case Study of New Delhi, India. J. Clean. Prod. 2023, 427, 139278. [Google Scholar] [CrossRef]
- Kumar, V.; Sahu, M. Evaluation of Nine Machine Learning Regression Algorithms for Calibration of Low-Cost PM2.5 Sensor. J. Aerosol Sci. 2021, 157, 105809. [Google Scholar] [CrossRef]
- Park, D.; Yoo, G.-W.; Park, S.-H.; Lee, J.-H. Assessment and Calibration of a Low-Cost PM2.5 Sensor Using Machine Learning (HybridLSTM Neural Network): Feasibility Study to Build an Air Quality Monitoring System. Atmosphere 2021, 12, 1306. [Google Scholar] [CrossRef]
- Srisang, W.; Jaroensutasinee, K.; Jaroensutasinee, M.; Khongthong, C.; Piamonte, J.R.P.; Sparrow, E.B. PM2.5 IoT Sensor Calibration and Implementation Issues Including Machine Learning. Emerg. Sci. J. 2024, 8, 2267–2277. [Google Scholar] [CrossRef]
- Qor-el-aine, A.; Béres, A.; Géczi, G. Calibration of CAMS PM2.5 Data over Hungary: A Machine Learning Approach. Environ. Res. Commun. 2024, 6, 075026. [Google Scholar] [CrossRef]
- Ly, B.-T.; Matsumi, Y.; Vu, T.V.; Sekiguchi, K.; Nguyen, T.-T.; Pham, C.-T.; Nghiem, T.-D.; Ngo, I.-H.; Kurotsuchi, Y.; Nguyen, T.-H.; et al. The Effects of Meteorological Conditions and Long-Range Transport on PM2.5 Levels in Hanoi Revealed from Multi-Site Measurement Using Compact Sensors and Machine Learning Approach. J. Aerosol Sci. 2021, 152, 105716. [Google Scholar] [CrossRef]
- Chai, J.; Song, J.; Xu, Y.; Zhang, L.; Guo, B. Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using Machine Learning Models in China. J. Sens. 2022, 2022, 7148682. [Google Scholar] [CrossRef]
- Lee, J.; Barquilla, C.A.M.; Park, K.; Hong, A. Urban Form and Seasonal PM2.5 Dynamics: Enhancing Air Quality Prediction Using Interpretable Machine Learning and IoT Sensor Data. Sustain. Cities Soc. 2024, 117, 105976. [Google Scholar] [CrossRef]
- Li, T.; Huang, X.; Zhang, Q.; Wang, X.; Wang, X.; Zhu, A.; Wei, Z.; Wang, X.; Wang, H.; Chen, J.; et al. Machine Learning-Guided Integration of Fixed and Mobile Sensors for High Resolution Urban PM2.5 Mapping. npj Clim. Atmos. Sci. 2025, 8, 95. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Nong, M.; Liao, J.; Li, F.; Sun, W. PM2.5 Concentrations Forecasting in Beijing through Deep Learning with Different Inputs, Model Structures and Forecast Time. Atmos. Pollut. Res. 2021, 12, 101168. [Google Scholar] [CrossRef]
- Zaini, N.; Ean, L.W.; Ahmed, A.N.; Abdul Malek, M.; Chow, M.F. PM2.5 Forecasting for an Urban Area Based on Deep Learning and Decomposition Method. Sci. Rep. 2022, 12, 17565. [Google Scholar] [CrossRef]
- Wood, D.A. Trend-Attribute Forecasting of Hourly PM2.5 Trends in Fifteen Cities of Central England Applying Optimized Machine Learning Feature Selection. J. Environ. Manag. 2024, 356, 120561. [Google Scholar] [CrossRef] [PubMed]
- Abuouelezz, W.; Ali, N.; Aung, Z.; Altunaiji, A.; Shah, S.B.; Gliddon, D. Exploring PM2.5 and PM10 ML Forecasting Models: A Comparative Study in the UAE. Sci. Rep. 2025, 15, 9797. [Google Scholar] [CrossRef] [PubMed]
- Makhdoomi, A.; Sarkhosh, M.; Ziaei, S. PM2.5 Concentration Prediction Using Machine Learning Algorithms: An Approach to Virtual Monitoring Stations. Sci. Rep. 2025, 15, 8076. [Google Scholar] [CrossRef]
- Wen, Z.; Ma, X.; Xu, W.; Si, R.; Liu, L.; Ma, M.; Zhao, Y.; Tang, A.; Zhang, Y.; Wang, K.; et al. Combined Short-Term and Long-Term Emission Controls Improve Air Quality Sustainably in China. Nat. Commun. 2024, 15, 5169. [Google Scholar] [CrossRef]
- Patel, V.K.; Kuttippurath, J.; Kashyap, R. Increased Global Cropland Greening as a Response to the Unusual Reduction in Atmospheric PM2.5 Concentrations during the COVID-19 Lockdown Period. Chemosphere 2024, 358, 142147. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Lin, F.; Wang, X.; Wang, H.; Shi, Y.; Chen, L.; Weng, Y.; Chen, X.; Zeng, Y.; Wang, Y.; et al. Residential Blue Space, Cognitive Function, and the Role of Air Pollution in Middle-Aged and Older Adults: A Cross-Sectional Study Based on UK Biobank. Ecotoxicol. Environ. Saf. 2024, 288, 117355. [Google Scholar] [CrossRef] [PubMed]
- Irga, P.J.; Morgan, A.; Fleck, R.; Torpy, F.R. Phytoremediation of Indoor Air Pollutants from Construction and Transport by a Moveable Active Green Wall System. Atmos. Pollut. Res. 2023, 14, 101896. [Google Scholar] [CrossRef]
- Han, Y.; Lee, J.; Haiping, G.; Kim, K.-H.; Wanxi, P.; Bhardwaj, N.; Oh, J.-M.; Brown, R.J.C. Plant-Based Remediation of Air Pollution: A Review. J. Environ. Manag. 2022, 301, 113860. [Google Scholar] [CrossRef]
- Park, S.-J.; Kang, G.; Choi, W.; Kim, D.-Y.; Kim, J.; Kim, J.-J. Effects of Fences and Green Zones on the Air Flow and PM2.5 Concentration around a School in a Building-Congested District. Appl. Sci. 2021, 11, 9216. [Google Scholar] [CrossRef]
- Ma, X.; Wang, M.; She, X.; Zhao, J. Unlocking Urban Breathability: Investigating the Synergistic Mitigation of PM2.5 and CO2 by Community Park Green Space in the Built Environment Using Simulation. Buildings 2024, 14, 3407. [Google Scholar] [CrossRef]
- Plitsiri, I.; Taemthong, W. Green Wall Systems as a Solution for PM2.5 Mitigation in Indoor Environments: Comparing Passive and Active Systems. Int. J. Environ. Sci. Dev. 2024, 15, 294–299. [Google Scholar] [CrossRef]
- Muenrew, J.; Rakarcha, S.; Nuammee, A.; Panyadee, P.; Tala, W.; Yabueng, N.; Chantara, S. Efficiency of Tropical Plants and Smart Green Wall on Reduction of Fine Particulate Matters (PM2.5 and PM0.3–1.1) in a Closed-System Chamber. Environ. Technol. Innov. 2025, 39, 104268. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Min, M.; Zhang, Y.; Dai, Y.; Tang, L. Do We Need More Urban Green Space to Alleviate PM2.5 Pollution? A Case Study in Wuhan, China. Land 2022, 11, 776. [Google Scholar] [CrossRef]
- Li, K.; Li, C.; Liu, M.; Hu, Y.; Wang, H.; Wu, W. Multiscale Analysis of the Effects of Urban Green Infrastructure Landscape Patterns on PM2.5 Concentrations in an Area of Rapid Urbanization. J. Clean. Prod. 2021, 325, 129324. [Google Scholar] [CrossRef]
- Luo, S.; Chen, W.; Sheng, Z.; Wang, P. The Impact of Urban Green Space Landscape on PM2.5 in the Central Urban Area of Nanchang City, China. Atmos. Pollut. Res. 2023, 14, 101903. [Google Scholar] [CrossRef]
- Jiang, R.; Xie, C.; Man, Z.; Zhou, R.; Che, S. Effects of Urban Green and Blue Space on the Diffusion Range of PM2.5 and PM10 Based on LCZ. Land 2023, 12, 964. [Google Scholar] [CrossRef]
- Fan, Z.; Zhan, Q.; Liu, H.; Wu, Y.; Xia, Y. Investigating the Interactive and Heterogeneous Effects of Green and Blue Space on Urban PM2.5 Concentration, a Case Study of Wuhan. J. Clean. Prod. 2022, 378, 134389. [Google Scholar] [CrossRef]
- Cao, W.; Wang, L.; Li, R.; Zhou, W.; Zhang, D. Unveiling the Nonlinear Relationships and Co-Mitigation Effects of Green and Blue Space Landscapes on PM2.5 Exposure through Explainable Machine Learning. Sustain. Cities Soc. 2025, 122, 106234. [Google Scholar] [CrossRef]
- Jeong, C.; Heo, S.; Woo, T.; Kim, S.; Yoo, C. AI-Driven Ventilation Control Policy Proximal Optimization Coupled with Dynamic-Informed Real-Time Model Calibration for Healthy and Sustainable Indoor PM2.5 Management. Energy Build. 2024, 323, 114786. [Google Scholar] [CrossRef]
- Wang, N.; Wei, C.; Zhao, X.; Wang, S.; Ren, Z.; Ni, R. Does Green Technology Innovation Reduce Anthropogenic PM2.5 Emissions? Evidence from China’s Cities. Atmos. Pollut. Res. 2023, 14, 101699. [Google Scholar] [CrossRef]
- Sokolovskij, E.; Kilikevičius, A.; Chlebnikovas, A.; Matijošius, J.; Vainorius, D. Innovative Electrostatic Precipitator Solutions for Efficient Removal of Fine Particulate Matter: Enhancing Performance and Energy Efficiency. Machines 2024, 12, 761. [Google Scholar] [CrossRef]
- Vakharia, A.; Chavan, A. Development of a Compact IoT-Enabled Air Purification System for Indoor Air Quality Improvement. In Proceedings of the 2025 5th International Conference on Trends in Material Science and Inventive Materials (ICTMIM), Kanyakumari, India, 7–9 April 2025; pp. 1115–1123. [Google Scholar]
- Zhu, X.; Jin, Q. Investigating the GHG Emissions, Air Pollution and Public Health Impacts from China’s Aluminium Industry: Historical Variations and Future Mitigation Potential. J. Environ. Manag. 2025, 376, 124530. [Google Scholar] [CrossRef] [PubMed]
- Cuéllar-Álvarez, Y.; Guevara-Luna, M.A.; Belalcázar-Cerón, L.C.; Clappier, A. Well-to-Wheels Emission Inventory for the Passenger Vehicles of Bogotá, Colombia. Int. J. Environ. Sci. Technol. 2023, 20, 12141–12154. [Google Scholar] [CrossRef]
- Vallejo, F.; Villacrés, P.; Yánez, D.; Espinoza, L.; Bodero-Poveda, E.; Díaz-Robles, L.A.; Oyaneder, M.; Campos, V.; Palmay, P.; Cordovilla-Pérez, A.; et al. Prolonged Power Outages and Air Quality: Insights from Quito’s 2023–2024 Energy Crisis. Atmosphere 2025, 16, 274. [Google Scholar] [CrossRef]
- Lee, D.; Barquilla, C.A.M.; Lee, J. Analyzing Dispersion Characteristics of Fine Particulate Matter in High-Density Urban Areas: A Study Using CFD Simulation and Machine Learning. Land 2025, 14, 632. [Google Scholar] [CrossRef]
- Xu, G.; Liu, H.; Jia, C.; Zhou, T.; Shang, J.; Zhang, X.; Wang, Y.; Wu, M. Spatiotemporal Patterns and Drivers of Public Concern about Air Pollution in China: Leveraging Online Big Data and Interpretable Machine Learning. Environ. Impact Assess. Rev. 2025, 114, 107897. [Google Scholar] [CrossRef]
- Razak, I.H.A.; Phuang, Z.X.; Woon, K.S.; Sudesh, K. Life Cycle Assessment on Global Warming and Fine Particulate Matter Formation for Biological Extraction Method in Polyhydroxyalkanoates (PHA) Production: A Sustainable Alternative. Chem. Eng. Trans. 2024, 113, 397–402. [Google Scholar] [CrossRef]
- ApSimon, H.; Oxley, T.; Woodward, H.; Mehlig, D.; Dore, A.; Holland, M. The UK Integrated Assessment Model for Source Apportionment and Air Pollution Policy Applications to PM2.5. Environ. Int. 2021, 153, 106515. [Google Scholar] [CrossRef]
- Guo, X.; Jia, C.; Xiao, B. Spatial Variations of PM2.5 Emissions and Social Welfare Induced by Clean Heating Transition: A Gridded Cost-Benefit Analysis. Sci. Total Environ. 2022, 826, 154065. [Google Scholar] [CrossRef]
Source Type | Specific Source | Contribution/Characteristics | Reference |
---|---|---|---|
Anthropogenic | Vehicular exhaust | 25–40% of urban PM2.5 in developed regions | [22,26] |
Coal-fired power plants | Major contributor to combustion-related PM2.5 | [23] | |
Industrial manufacturing | Persistent contributor in urban industrial zones | [24] | |
Biomass burning (agricultural/residential) | 30–50% in rural areas in developing countries | [25,26] | |
Diesel combustion in urban traffic | Responsible for localized PM2.5 hotspots | [27] | |
Crop residue burning | Increases rural PM2.5 background levels | [28] | |
Household solid fuel combustion | Significant in rural areas | [29] | |
Combustion Byproduct | Black Carbon (BC) | 5–15% of PM2.5 mass in megacities; elevated near industrial zones | [26] |
Secondary Sources | Sulphur dioxide and nitrogen oxides | Undergo atmospheric chemical transformation to sulfates and nitrates, increasing PM2.5 load | [30] |
Natural Sources | Dust storms, volcanic activity, wildfires, sea spray | Variable by geoclimatic zone; less controllable | [31] |
Meteorological Factors | Wind speed, humidity, solar radiation | Influence source interaction and spatial distribution of PM2.5 | [32] |
Transboundary Pollution | Regional emissions from outside areas | ~50% of PM2.5 mortality burden in China attributed to external sources | [27] |
ML Paradigm | Data Requirement | Interpretability | Computational Demand | Spatiotemporal Resolution | Scalability | Representative Applications |
---|---|---|---|---|---|---|
Supervised | High (requires labeled data) | Moderate to High (via XAI) | Moderate | High (with GNN, LSTM integration) | Good | Forecasting, sensor calibration, source attribution |
Semi-Supervised | Moderate (limited labeled + large unlabeled data) | Moderate | Moderate | High | Excellent | Network augmentation, unmonitored site estimation, data-scarce regions |
Unsupervised | Low (unlabeled data only) | Low to Moderate | Low | Medium | High | Emission clustering, feature extraction, anomaly detection |
Reinforcement | Moderate (requires interactive environment) | Low | High | High (adaptive learning) | Moderate | Real-time deployment, sensor network optimization, strategy control |
Hybrid | Variable (multi-modal and multi-source data) | Low to High (context-dependent) | High | Very High (spatiotemporal + domain fusion) | Good | Multi-station modeling, fusion of physics and ML, high-resolution forecasting |
Physics-Informed | Moderate to High | High (integrated domain knowledge) | High | High | Moderate | Physically consistent modeling, interpretable forecasting, regulatory-relevant applications |
Transfer Learning | Low (for new domain adaptation) | Moderate | Moderate | High | Excellent | Cross-regional generalization, rapid deployment in data-scarce environments |
Sensor Type | Reference Instrument | ML Models Evaluated | Best Performing Model(s) | Performance Metrics | Ref. |
---|---|---|---|---|---|
Plantower PMS5003 | Thermo Fisher SHARP 5030 | MLR, Lasso, Ridge, SVR, MLP, Regression Tree, kNN, RF, GB | kNN, RF, GB | Train Score = 0.99; Test Score: kNN = 0.97, RF = 0.96, GB = 0.95 | Kumar and Sahu [74] |
Unspecified low-cost sensor | Gravimetric method | MLR, DNN, HybridLSTM | HybridLSTM | RMSE reduced 41–60% (raw), 30–51% (MLR), 8–40% (DNN); R2 = 0.93 (HybridLSTM) | Park et al. [75] |
AirQo Sensors | Beta Attenuation Monitor (BAM) | kNN, SVR, MLR, Ridge, Lasso, Elastic Net, XGBoost, MLP, RF, GB | Random Forest | RMSE reduced from 18.6 to 7.2 µg/m3 (mean ref. = 37.8 µg/m3) | Adong et al. [17] |
Plantower PMS3003 | Davis AirLink | Linear Regression, Decision Trees, RF, GBT, kNN, NN, Gaussian Process | Decision Trees, Neural Networks | R2 > 0.858 after implementing a suitable calibration model over a 320-day study | Srisang et al. [76] |
CAMS Model Data (0.1° × 0.1° grid) | In situ air quality stations (Hungary) | LightGBM, RF, MLR | LightGBM | R2 up to 0.93, SR ~0.95, RSR < 0.5, NSE > 0.75 | Qor-el-aine et al. [77] |
Study Objective | ML Algorithm | Key Innovation | Sensor Infrastructure | Dominant Predictors | Geographic Scope | Data Fusion Strategy | Ref |
---|---|---|---|---|---|---|---|
Attribution of PM2.5 to meteorology and long-range transport | Random Forest | Integration of RF with CWT for transboundary analysis | Compact air sensors at three sites | Wind direction, temperature, humidity, source trajectory | Hanoi, Thai Nguyen (Vietnam) | RF + CWT + weather data | Ly et al. [78] |
Improve PM2.5 estimation using satellite-AOD with ML | eXtreme Gradient Boosting (XGBoost) | Satellite-AOD and LUR fusion with XGBoost | Satellite MODIS AOD data, limited ground monitors | AOD, land use, anthropogenic indicators | Nationwide (China) | Satellite AOD + XGBoost + LUR | Chai et al. [79] |
Develop high-resolution exposure models integrating mobility | AutoML with hybrid Land Use Regression (LUR) | Incorporation of SafeGraph mobility data into exposure modeling | PurpleAir sensors and regulatory monitors (eight US cities) | AOD, NDVI, meteorology, time, land use, human mobility | Eight major U.S. cities | AutoML + sensor + mobility + LUR | Yu et al. [13] |
Explore PM2.5–urban form–seasonal interaction using IoT and ML | Random Forest with Recursive Feature Elimination (RFE) | Urban morphology and seasonally differentiated analysis | 1069 IoT sensors across Seoul | Building density, green space, road width, traffic | Seoul, South Korea | IoT + urban morphology + RF | Lee et al. [80] |
High-resolution PM2.5 mapping via fixed-mobile sensor fusion | LightGBM with SHAP (XAI-enhanced) | Real-time, fused mobile–fixed monitoring with XAI guidance | 614 fixed micro-sensors + 200 mobile vehicle sensors | Secondary inorganic aerosols, meteorology, traffic, urban form | Jinan, China | Fixed and mobile sensors + meteorology + SHAP | Li et al. [81] |
Location and Data Period | Models Used | Forecast Horizon | Key Input Features | Architecture Type | Best Performing Model(s) | Reference |
---|---|---|---|---|---|---|
Beijing, China (2015–2016) | LSTM, CNN, CNN-LSTM, BPNN | 1 to 24 h | Historical PM2.5, meteorological parameters, co-pollutants | Deep learning (LSTM, CNN, hybrid) | CNN-LSTM (1–12 h), LSTM (>12 h) | Yang et al. [82] |
Cheras and Batu Muda, Malaysia | EEMD-LSTM | 1 h | Decomposed PM2.5 IMFs, atmospheric parameters | Hybrid signal processing + deep learning | EEMD-LSTM | Zaini et al. [83] |
Yangtze River Delta (3 + 23 cities) | STA-ResCNN, CNN, LSTM | 1 to 4 h | PM2.5, PM10, meteorological data, spatiotemporal correlations | CNN + Residual + Spatial–Temporal Attention | STA-ResCNN | Zhang et al. [63] |
15 cities, Central England (2018–2022) | LASSO, KNN, SVR, XGB | t0 to t + 12 h | Trend attributes (t-1 to t-12), selected via feature optimization | Supervised ML (regression + boosting) | LASSO (efficiency), SVR (accuracy) | Wood [84] |
Abu Dhabi, UAE (5 years) | DT, RF, SVR, CNN, LSTM, Prophet | 1–2 h, 1 day, 1 week | Historical PM2.5, meteorological data | ML, DL, and time-series hybrid | SVR (short-term), Prophet (long-term) | Abuouelezz et al. [85] |
Dhaka, Narayanganj, Gazipur, Bangladesh (2013–2019) | ARIMA-ANN, ARIMA-SVM, DT, CatBoost, PCR | 1 day | Historical PM2.5, meteorological parameters, air quality indicators | Hybrid ML + Tree-based models | CatBoost | Shahriar et al. [48] |
Hat Yai, Thailand (2016–2022) | ARIMA, ANN, ARIMA-ANN, ARIMA-ANN-REG | 1 day | Historical PM2.5 concentrations, meteorological variables | Hybrid statistical + deep learning + regression layer | ARIMA-ANN-REG | Choojam et al. [49] |
Multi-regional (three datasets) | Self-weighted VMD-GRU | Multi-scale | Decomposed PM2.5 IMFs via VMD | Adaptive ensemble deep learning | Self-weighted VMD-GRU | Huang and Qian [58] |
Beijing, China | EMD-GRU | Short-term (unspecified) | Decomposed PM2.5 (IMFs) + meteorological features | Hybrid EMD + GRU | EMD-GRU | Huang et al. [59] |
Study Location | Temporal Scale | ML Models Used | Best Model Identified | Input Features | Sensor Type | Data Period | Spatial Resolution | Comparison with Traditional Models | Ref |
---|---|---|---|---|---|---|---|---|---|
Denver, USA | Hourly | GNN-LSTM + FC NN | GNN-LSTM + FC | PM2.5 from dual networks, socio-environmental data | Regulatory + low-cost sensors | 2021 | Unmonitored sites estimation | Outperformed baseline models | Li et al. [51] |
Pukou, China | Hourly | WT + XGBoost, RF, GBRT, MLR | WT + XGBoost | PM2.5 time series + AOD; decomposed via WT + mRMR feature selection | Ground PM2.5, AOD | 2016–2017 | Single location | Outperformed MLR by large margins | Karimian et al. [60] |
Seoul, South Korea | Hourly and Daily | LightGBM (LGB), RF, others | LightGBM | Meteorological forecast data (LDAPS), station location, time features | Ground monitoring + meteorological forecasts | July 2018–June 2021 | City-wide prediction | Outperformed CTM by 21% (%RMSE) and 0.20 (R2) | Kim et al. [50] |
Isfahan, Iran | Daily | ANN, KNN, SVM, RF | ANN | Meteorological data (Tavg, RH, Precip., WD, WSavg, WSmax) | Ground meteorological stations | 9 years (unspecified) | City-wide prediction | ANN outperformed other ML models | Mohammadi et al. [66] |
Mashhad, Iran | Daily | LGBM, XGBR, RF, GBR | GBR | Meteorological + air quality (e.g., visibility, RH, wind, dust freq.) | Ground meteorological and air quality stations | 2016–2022 | Urban-wide virtual stations | GBR outperformed other ML models | Makhdoomi et al. [86] |
Kolkata, India | Daily | MLR, ANN | ANN | PM2.5, Meteorological parameters | Regulatory monitors + weather repositories | 2020 (Lockdown period) | City-wide | ANN outperformed MLR (R2: 0.91, RMSE: 3.74) | Bera et al. [52] |
Northern Thailand | Daily | MLP-ANN | MLP-ANN (8-16-1) | Meteorological data, AOD, open biomass burning emissions | Satellite + ground monitors | Dry season 2024 | Province level (four provinces) | Underestimated PCD slightly, but effective with AOD + OBB | Paluang et al. [55] |
Tehran, Iran | Hourly and Daily | 3D CNN-GRU, LSTM, GRU, ANN, SVR, ARIMA | 3D CNN-GRU | PM2.5, spatial correlations, historical AQ data | Ground AQ stations | 2016–2019 | Urban-wide | Outperformed LSTM/GRU (R2: 0.84 hourly, 0.78 daily) | Faraji et al. [68] |
Beijing–Tianjin–Hebei, China | Hourly | MGCGRU-SAN | MGCGRU-SAN | Short-term AQ + meteorology, Long-term PM2.5, spatial graph, SAN | Ground stations | 2022–2023 | Multi-city, multi-station | Outperformed baselines by 6–9% across metrics | Guyu et al. [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, A.; Hussain, C.M. From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025). Processes 2025, 13, 2207. https://doi.org/10.3390/pr13072207
Adhikari A, Hussain CM. From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025). Processes. 2025; 13(7):2207. https://doi.org/10.3390/pr13072207
Chicago/Turabian StyleAdhikari, Arpita, and Chaudhery Mustansar Hussain. 2025. "From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)" Processes 13, no. 7: 2207. https://doi.org/10.3390/pr13072207
APA StyleAdhikari, A., & Hussain, C. M. (2025). From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025). Processes, 13(7), 2207. https://doi.org/10.3390/pr13072207