Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,859)

Search Parameters:
Keywords = adsorptions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 801 KB  
Article
Exploring the Potential of Cupriavidus metallidurans and Ochrobactrum anthropi for 241Am Bioaccumulation in Aqueous Solution
by Leandro Goulart de Araujo, Tania Regina de Borba, Rafael Luan Sehn Canevesi, Sabine Neusatz Guilhen, Edson Antonio da Silva and Júlio Takehiro Marumo
AppliedChem 2025, 5(4), 34; https://doi.org/10.3390/appliedchem5040034 - 11 Nov 2025
Abstract
This study explores, for the first time, the bioaccumulation of americium-241 (241Am) by Cupriavidus metallidurans and Ochrobactrum anthropi, two bacterial strains previously investigated mainly for their interactions with other heavy metals and radionuclides. To the best of our knowledge, no [...] Read more.
This study explores, for the first time, the bioaccumulation of americium-241 (241Am) by Cupriavidus metallidurans and Ochrobactrum anthropi, two bacterial strains previously investigated mainly for their interactions with other heavy metals and radionuclides. To the best of our knowledge, no prior studies have reported the use of these microorganisms for 241Am removal from aqueous solutions. The effects of initial 241Am concentration and solution pH on removal performance were evaluated through batch experiments. Kinetic analyses were performed using pseudo-first-order (PFO) and pseudo-second-order (PSO) models, with the PSO model providing a better fit, suggesting chemisorption as the rate-limiting step in the process. Initial 241Am concentrations ranged from 75 to 300 Bq mL−1, and both bacterial strains demonstrated comparable maximum bioaccumulation capacities of approximately 1.5 × 10−8 mmol g−1. However, O. anthropi exhibited superior resistance to 241Am, maintaining colony growth at activity levels up to 1200 Bq mL−1, compared to a threshold of 400 Bq mL−1 for C. metallidurans. These findings highlight the robustness and efficiency of these bacterial strains—particularly O. anthropic—in removing 241Am from liquid radioactive waste, offering promising implications for bioremediation technologies. Full article
Show Figures

Graphical abstract

18 pages, 3944 KB  
Article
Ion Exchange Membrane-like Deposited Electrodes for Capacitive De-Ionization: Performance Evaluation and Mechanism Study
by Siyue Xue, Chengyi Wang, Tianxiao Leng, Chenglin Zhang, Long-Fei Ren and Jiahui Shao
Membranes 2025, 15(11), 338; https://doi.org/10.3390/membranes15110338 - 11 Nov 2025
Abstract
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited [...] Read more.
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited polyethyleneimine (PEI), an ion exchange polymer with positive charge and ion selectivity, onto an AC electrode to serve as an anode for addressing these issues. Firstly, compared to traditional AC and commercial AEM-AC, the PEI-doped AC (PDAC) anode delivered a superior SAC of 36.3 mg/g, as the positively charged PEI enhanced electrostatic attraction, suppressed the co-ion effect, and offered extra sites. However, it showed poor cycling stability with 77.1% retention, owing to mass loss and anode oxidation. We further developed an electrode coated with a PEI-based membrane (PMAC), which exhibited a balanced performance with a high SAC of 33.4 mg/g and significantly improved long-term retention of 97.5%. The hydrophilic PEI membrane, strongly adhered to the AC surface, shortened the ion diffusion resistance and effectively prolonged the electrode lifespan. A systematic comparison between AC, AEM-AC, PDAC, and PMAC revealed the mechanism for PMAC’s notable enhancement. These findings establish a framework for designing novel CDI electrodes and advancing sustainable water desalination. Full article
17 pages, 3812 KB  
Article
MnO2-Supported Pd Nanocatalyst for Efficient Electrochemical Reduction of 2,4-Dichlorobenzoic Acid
by Yaxuan Peng and Meiyan Wang
Clean Technol. 2025, 7(4), 102; https://doi.org/10.3390/cleantechnol7040102 - 11 Nov 2025
Abstract
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires [...] Read more.
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires adding precious metal catalysts such as palladium (Pd). To address the economic constraints and more effective utilization of Pd, a palladium/manganese dioxide (Pd/MnO2) composite catalyst was developed in this study by chemical deposition. This method utilized the excellent electrochemical activity of MnO2 as a carrier as well as the hydrogen storage and activation capacity of Pd. The test showed the optimal Pd loading was 7.5%, and the removal percent of 2,4-dichlorobenzoic acid (2,4-DCBA), a typical CBA, reached 97.3% using 0.5 g/L of Pd/MnO2 after 120 min of electrochemical reaction. Under these conditions, the dechlorination percent can also be as high as 89.6%. A higher current density enhanced the dechlorination efficiency but showed the lower current utilization efficiency. In practical applications, current density should be minimized on the premise of compliance with the water treatment requirement. Mechanistic studies showed that MnO2 synergistically promoted hydrolysis dissociation and hydrogen spillover and facilitated Pd-mediated adsorption of atomic hydrogen (H*) for dehydrogenation of 2,4-DCBA. The presence of MnO2 can effectively disperse the loaded Pd and reduce the amount of Pd via the above process. The catalyst exhibited excellent stability over multiple cycles, and the 2,4-DCBA removal could still reach more than 80% after the five cycles. This work establishes electrocatalytic strategies for effectively reducing Pd usage and maintaining high removal of typical CBAs to support CBA-related water treatment. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

18 pages, 2112 KB  
Article
Efficient Pb(II) Adsorption by Natural Mugaldzhar Diatomite: Isotherm, Kinetic, and Thermodynamic Analysis
by Araylim Nurgain, Meruyert Nazhipkyzy, Gamzenur Özsin, Aizhan A. Zhaparova and Esin Apaydın-Varol
J. Compos. Sci. 2025, 9(11), 625; https://doi.org/10.3390/jcs9110625 - 11 Nov 2025
Abstract
Heavy metal pollution remains one of the major environmental challenges due to the persistence and toxicity of metals such as Pb(II). This study investigates the potential of natural diatomite from Mugaldzhar, Kazakhstan, as a low-cost and sustainable sorbent for lead removal from aqueous [...] Read more.
Heavy metal pollution remains one of the major environmental challenges due to the persistence and toxicity of metals such as Pb(II). This study investigates the potential of natural diatomite from Mugaldzhar, Kazakhstan, as a low-cost and sustainable sorbent for lead removal from aqueous solutions. The effects of key parameters, including sorbent dosage, particle size, contact time, temperature, and initial Pb(II) concentration, were systematically examined. Adsorption experiments revealed a maximum adsorption capacity of 74.9 mg/g at 45 °C and an initial Pb(II) concentration of 800 mg/L. The adsorption behavior followed the pseudo-second-order kinetic model, indicating a chemisorption mechanism, while isotherm analysis showed a transition from Langmuir to Freundlich type with increasing temperature. Thermodynamic data confirmed the spontaneous and endothermic nature of the process. These results demonstrate that unmodified natural diatomite exhibits high efficiency for Pb(II) removal, emphasizing its suitability as an eco-friendly and cost-effective material for water purification and environmental remediation. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

24 pages, 991 KB  
Review
Biochar for Soil Fertility and Climate Mitigation: Review on Feedstocks, Pyrolysis Conditions, Functional Properties, and Applications with Emerging AI Integration
by Florian Marin, Oana Maria Tanislav, Marius Constantinescu, Antoaneta Roman, Felicia Bucura, Simona Oancea and Anca Maria Zaharioiu
Agriculture 2025, 15(22), 2345; https://doi.org/10.3390/agriculture15222345 - 11 Nov 2025
Abstract
Soil degradation, declining fertility, and rising greenhouse gas emissions highlight the urgent need for sustainable soil management strategies. Among them, biochar has gained recognition as a multifunctional material capable of enhancing soil fertility, sequestering carbon, and valorizing biomass residues within circular economy frameworks. [...] Read more.
Soil degradation, declining fertility, and rising greenhouse gas emissions highlight the urgent need for sustainable soil management strategies. Among them, biochar has gained recognition as a multifunctional material capable of enhancing soil fertility, sequestering carbon, and valorizing biomass residues within circular economy frameworks. This review synthesizes evidence from 186 peer-reviewed studies to evaluate how feedstock diversity, pyrolysis temperature, and elemental composition shape the agronomic and environmental performance of biochar. Crop residues dominated the literature (17.6%), while wood, manures, sewage sludge, and industrial by-products provided more targeted functionalities. Pyrolysis temperature emerged as the primary performance driver: 300–400 °C biochars improved pH, cation exchange capacity (CEC), water retention, and crop yield, whereas 450–550 °C biochars favored stability, nutrient concentration, and long-term carbon sequestration. Elemental composition averaged 60.7 wt.% C, 2.1 wt.% N, and 27.5 wt.% O, underscoring trade-offs between nutrient supply and structural persistence. Greenhouse gas (GHG) outcomes were context-dependent, with consistent Nitrous Oxide (N2O) reductions in loam and clay soils but variable CH4 responses in paddy systems. An emerging trend, present in 10.6% of studies, is the integration of artificial intelligence (AI) to improve predictive accuracy, adsorption modeling, and life-cycle assessment. Collectively, the evidence confirms that biochar cannot be universally optimized but must be tailored to specific objectives, ranging from soil fertility enhancement to climate mitigation. Full article
16 pages, 1052 KB  
Article
DGT-Based Assessment of Antibiotics and Hormones in a Typical Wastewater Treatment Plant and Its Receiving Water in Shanghai: Implications for Aquaculture Reuse
by Yin Huang, Zheng Zhang, Chaofeng Sun, Luting Wen, Qian Wang and Yanhao Yang
Toxics 2025, 13(11), 970; https://doi.org/10.3390/toxics13110970 - 11 Nov 2025
Abstract
Assessment of the environmental behavior of environmental hormones and antibiotics along the processes in typical wastewater treatment plants (WWTPs) based on bioavailable concentrations reflects the negative effects of pollutants from WWTPs on aquatic organisms more directly, as well as the potential for reusing [...] Read more.
Assessment of the environmental behavior of environmental hormones and antibiotics along the processes in typical wastewater treatment plants (WWTPs) based on bioavailable concentrations reflects the negative effects of pollutants from WWTPs on aquatic organisms more directly, as well as the potential for reusing the effluent and receiving waters for aquaculture. This study measured bioavailable concentrations in a typical WWTP and its receiving water body using the XAD-DGT samplers during dry and wet seasons. Firstly, the results confirmed the applicability of XAD-DGT in WWTP and the receiving water. Then, significant season and process-dependent variations were observed. The primary treatment occasionally led to concentration rebound due to desorption during the dry season, secondary treatment exhibited considerable variability depending on the physicochemical properties of the contaminants, and tertiary treatment consistently performed well (>80%). Based on XAD-DGT-measured bioavailable concentrations, the risks posed by environmental hormones and antibiotics in the effluent and receiving water body were determined to assess their potential for aquaculture reuse. The result indicated that the effluent water is applicable for fish aquaculture; however, further removal techniques, like adsorption or advanced oxidation, should be applied to crustacean cultivation, especially for contaminants like environmental hormones. For the water body, it was only feasible for crustacean aquaculture. Pre-treatments based on adsorption, sedimentation, or oxidation processes are necessary to remove environmental hormones and antibiotics if these areas are planned for aquaculture. This study provides an important scientific basis for a more accurate assessment of the environmental behavior of emerging contaminants, reuse directions of WWTP effluent, as well as the corresponding receiving waters. Full article
Show Figures

Graphical abstract

22 pages, 5100 KB  
Article
Fe-Doped g-C3N4 for Enhanced Photocatalytic Degradation of Brilliant Blue Dye
by Rongjun Su, Haoran Liang, Hao Jiang, Guangshan Zhang and Chunyan Yang
Water 2025, 17(22), 3220; https://doi.org/10.3390/w17223220 - 11 Nov 2025
Abstract
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H [...] Read more.
Brilliant blue, as a pigment food additive, has all the characteristics of printing and dyeing wastewater and belongs to persistent and refractory organic compounds. The photocatalysis–Fenton reaction system consists of two parts: photocatalytic reaction and Fenton reaction. Electrons promote the decomposition of H2O2 to produce •OH. In addition, the effective separation of e- and h+ by light strengthens the direct oxidation of h+, and h+ reacts directly with OH to produce •OH, which can further promote the removal of organic pollutants. In this paper, g-C3N4 and Fe/g-C3N4 photocatalysts were prepared by the thermal polycondensation method. Fe/g-C3N4 of 15 wt% can reach 98.59% under the best degradation environment, and the degradation rate of g-C3N4 is only 7.6% under the same conditions. The photocatalytic activity of the catalysts was further studied. Through active species capture experiments, it is known that •OH and •O2 are the main active species in the system, and the action intensity of •OH is greater than that of •O2. The degradation reaction mechanism is that H2O2 combines with Fe2+ in Fe/g-C3N4 to generate a large amount of •OH and Fe3+, and the combination of Fe-N bonds accelerates the cycle of Fe3+/Fe2+ and promotes the formation of •OH, thereby accelerating the degradation of target pollutants. •O2 can reduce Fe3+ to Fe2+, Fe2+ reacts with H2O2 to produce •OH, which promotes degradation, and •O2 itself also plays a role in degradation. In addition, under the optimal experimental conditions obtained by response surface experiments, the fitting degree of first-order reaction kinetics is 0.96642, and the fitting degree of second-order reaction kinetics is 0.57884. Therefore, this reaction is more in line with first-order reaction kinetics. The adsorption rate is only proportional to the concentration of Fe/g-C3N4. Full article
(This article belongs to the Special Issue Advanced Oxidation Technologies for Water and Wastewater Treatment)
Show Figures

Figure 1

28 pages, 4179 KB  
Article
Bifunctional N/S-Coordinated Thiadiazole–Triazine Porous Organic Polymer for Efficient Hg(II) Immobilization in Aqueous–Soil Systems
by Kai Li and Rongguo Sun
Processes 2025, 13(11), 3652; https://doi.org/10.3390/pr13113652 - 11 Nov 2025
Abstract
Mercury (Hg) contamination in water and soil poses severe ecological and human health risks, yet conventional sorbents often suffer from limited capacity, selectivity, and stability. Here, we report a bifunctional porous organic polymer (AMTD-TCT) rationally constructed by covalently crosslinking 2-amino-5-mercapto-1,3,4-thiadiazole with trichlorotriazine, thereby [...] Read more.
Mercury (Hg) contamination in water and soil poses severe ecological and human health risks, yet conventional sorbents often suffer from limited capacity, selectivity, and stability. Here, we report a bifunctional porous organic polymer (AMTD-TCT) rationally constructed by covalently crosslinking 2-amino-5-mercapto-1,3,4-thiadiazole with trichlorotriazine, thereby integrating abundant sulfur and nitrogen coordination sites within a stable mesoporous framework. AMTD-TCT exhibits an ultrahigh Hg(II) adsorption capacity of 1257.7 mg g−1, far exceeding most reported porous sorbents. Adsorption follows monolayer chemisorption, governed by strong S–Hg and N–Hg coordination and Na+/Hg2+ ion exchange, while hierarchical porosity ensures rapid diffusion and efficient utilization of active sites. The polymer maintains robust performance over a wide pH range and demonstrates strong retention with minimal desorption, underscoring its environmental durability. These findings highlight AMTD-TCT as a highly effective and scalable platform for Hg(II) remediation in complex aqueous–soil systems and illustrate a generalizable molecular design strategy for developing multifunctional porous polymers in advanced separation and purification technologies. Full article
(This article belongs to the Section Chemical Processes and Systems)
18 pages, 5613 KB  
Article
Preparation and Performance Study of Decanoic Acid–Stearic Acid Composite Phase-Change Ceramsite Aggregate
by Gui Yu, Qiang Yuan, Min Li, Jiaxing Tao, Jing Jiang and De Chen
Coatings 2025, 15(11), 1315; https://doi.org/10.3390/coatings15111315 - 11 Nov 2025
Abstract
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote [...] Read more.
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote the utilization of solid waste resources. Based on the theory of minimum melting, composite phase-change materials were screened through thermodynamic models. The capric acid–stearic acid (CA-SA) melt system, whose theoretical phase-transition temperature falls within the building indoor thermal environment control range (18–26 °C), was preferred as the experimental object of this study, and its characteristics were verified through step cooling curves and thermal property tests. Subsequently, the ceramsite adsorption process was optimized, and the encapsulation process was studied. Finally, the encapsulation performance was evaluated through thermal stability and stirring crushing rate tests. The results showed that the phase-transition temperature of the decanoic acid–stearic acid melt system was 24.83 °C, which accurately matched the indoor thermal environment control requirements. The ceramsite particles treated by a physical vibrating screen can reach equilibrium after 30 min of adsorption at room temperature and pressure, which is both efficient and economical. The encapsulation layer of sludge biochar cement slurry with a water–cement ratio of 0.5 and a biochar content of 3% has both thermal conductivity and encapsulation integrity. The thermal stability test showed that the percentage of leakage of sludge biochar cement slurry and epoxy resin encapsulated aggregates was 0%, and the thermal stability rating was “very stable”. However, the percentage of leakage of unencapsulated and spray-coated encapsulated aggregates was as high as 193% and 40%, respectively. The results of the mixing and crushing rate test show that although the mixing and crushing rate of sludge biochar cement slurry encapsulation is slightly higher, its production cost is much lower than that of epoxy resin, and it is also environmentally friendly. This study improves the thermal performance of buildings by using composite phase-change ceramsite aggregate, and simultaneously realizes the resource utilization of sludge biochar, providing a solution for building energy saving and efficiency that combines environmental and engineering value. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

0 pages, 1591 KB  
Proceeding Paper
Electrodeposition of Nickel-Based Thin Layered Double Hydroxides Electrocatalyst for 2,5-Diformylfuran Production
by Nadia Mumtazah, Nurfadlih Syahlani, Muhammad Ibadurrohman and Mohammad Nasikin
Eng. Proc. 2025, 105(1), 9; https://doi.org/10.3390/engproc2025105009 - 10 Nov 2025
Abstract
2,5-diformylfuran (DFF) is a significant biomass derivative that is employed in a variety of industries. One approach to synthesizing it is through the oxidation of 5-hydroxymethylfurfural (HMF). The challenges in DFF production arise from the need for extreme conditions, issues with overoxidation, and [...] Read more.
2,5-diformylfuran (DFF) is a significant biomass derivative that is employed in a variety of industries. One approach to synthesizing it is through the oxidation of 5-hydroxymethylfurfural (HMF). The challenges in DFF production arise from the need for extreme conditions, issues with overoxidation, and the limitations of noble materials used in neutral or acidic environments. By using a mildly alkaline electrolyte, DFF can be produced electrochemically alongside hydrogen gas generation, eliminating extreme conditions and allowing for the study of a wide range of transition metals. Moreover, the performance of bimetallic electrocatalysts has been studied, and it has been found to be more active in many kinds of processes, particularly Layered Double Hydroxides (LDH). Electrodeposition, once widely chosen among various LDH production methods, is preferred for producing controlled and uniform thin layers. This work examines the electrocatalytic properties of NiCo-LDH and NiFe-LDH in the production of DFF. Cobalt, which exhibits strong adsorption, will be compared to iron, which has a weak adsorption characteristic toward HMF. This study demonstrates that NiCo-LDH gives 1.49 V vs. RHE onset potential, 600 mV lower compared to NiFe-LDH (1.55 V vs. RHE) for HMF oxidation reaction. NiCo-LDH also converts twice the amount of HMF compared to NiFe-LDH for the same amount of charge passed at 0.25 mA/cm−2 in 0.1 M Na2B4O7. However, strong adsorption promotes reactant activation and reduces the energy barrier while reducing DFF selectivity in NiCo-LDH (23.4%) due to overoxidation, compared to NiFe-LDH (31.6%). In order to achieve optimal electrocatalyst performance, a careful balance of adsorption strength and reaction pathway management is required. Proper optimization of these parameters is essential to improve efficiency and selectivity in the electrocatalytic process. Full article
Show Figures

Figure 1

22 pages, 10322 KB  
Article
Biochars Derived from Diverse Local Tunisian Feedstocks for Environmental Remediation: Physicochemical Properties and Adsorption Behaviour
by Asma Hmaied, Aïda Ben Hassen Trabelsi, Fethi Lachaal, Sandrine Negro and Claude Hammecker
Land 2025, 14(11), 2224; https://doi.org/10.3390/land14112224 - 10 Nov 2025
Abstract
Water resource management and agricultural practices in the Mediterranean region, characterised by the excessive use of pesticides, pose significant environmental and human health challenges. As they can be easily and inexpensively produced from various biomass sources, biochars are frequently recommended as a low-cost [...] Read more.
Water resource management and agricultural practices in the Mediterranean region, characterised by the excessive use of pesticides, pose significant environmental and human health challenges. As they can be easily and inexpensively produced from various biomass sources, biochars are frequently recommended as a low-cost secondary decontamination strategy to address soil contamination problems. This study investigates the properties and sorption behaviours of biochars produced in a low-cost metallic kiln using local rosemary, giant reed, St. John’s wort, olive, cypress, and palm tree biomass residues to evaluate their potential for environmental remediation, with a special focus on the mobility and retention of contaminants. Analytical and experimental techniques were employed to characterise the biochars’ physicochemical attributes and sorptive capacities. The core analyses included measurement of basic physicochemical properties, including pH, electrical conductivity, functional group identification via Fourier transform infrared (FTIR) spectroscopy, and the molarity of ethanol droplet (MED) test to assess the surface hydrophobicity. Batch sorption experiments were conducted using methylene blue (MB) and two fluorescent tracers—uranine (UR) and sulforhodamine-B (SRB)—as proxies for organic contaminants to assess the adsorption efficiency and molecule–biochar interactions. Furthermore, the adsorption isotherms at 20 °C were fitted to different models to assess the biochars’ specific surface areas. Thermodynamic parameters were also evaluated to understand the nature and strength of the adsorption processes. The results highlight the influence of feedstock type on the resulting biochar’s properties, thus significantly affecting the mechanism of adsorption. Rosemary biochar was found to have the highest specific surface area (SSA) and cation exchange capacity (CEC), allowing it to adsorb a wide range of organic molecules. Giant reed and palm tree biochars showed similar properties. In contrast, wood-derived biochars generally showed very low SSA, moderate CEC, and low hydrophobicity. The contrasting properties of the three dyes—MB (cationic), UR (anionic), and SRB (zwitterionic)—enabled us to highlight the distinct interaction mechanisms between each dye and the surface functional groups of the different biochars. The reactivity and sorption efficiency of a biochar depend strongly on both the nature of the target molecule and the intrinsic properties of the biochar, particularly its pH. The findings of this study demonstrate the importance of matching biochar characteristics to specific contaminant types for optimised environmental applications, providing implications for the use of tailored biochars in pollutant mitigation strategies. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

19 pages, 2742 KB  
Article
Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry
by Maroua Almi, Nadia Chekir, Leila Merabti, Djilali Tassalit, Naima Sahraoui, Soumeya Bouchareb, Khadidja Benkraouche, Wissam Yanina and Seif El Islam Lebouachera
Appl. Sci. 2025, 15(22), 11948; https://doi.org/10.3390/app152211948 - 10 Nov 2025
Abstract
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based [...] Read more.
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based coagulant derived from Moringa oleifera seeds (MOS) were evaluated for their effectiveness in the pretreatment of leachate. Box–Behnken Design combined with Response Surface Methodology was used to optimize the coagulation process using aluminum sulfate (AS). The highest removal efficiencies were 91% for turbidity and 85% for chemical oxygen demand (COD) removal, achieved at an AS concentration of 1.44 g·L−1 and an initial pH of 8. In parallel, the performance of MOS extract was investigated as an eco-friendly alternative to AS. An FTIR analysis revealed the presence of protein-associated hydroxyl (3288 cm−1) and carboxyl and amine groups (1647 cm−1), which are integral to destabilization via hydrogen bonding, while SEM confirmed a surface morphology conducive to effective floc formation. MOS demonstrated comparable turbidity removal to AS, significantly reducing both sludge generation and chemical consumption. Following the coagulation stage, treated leachates were passed through a granular activated carbon (GAC) column, enhancing overall COD removal to over 94% to reach acceptable discharge and reuse levels. The coagulation–adsorption sequence, incorporating both chemical and bio-based coagulants, provides an efficient and sustainable approach for the treatment of complex leachate, addressing both performance and environmental considerations. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

19 pages, 6518 KB  
Article
Influence of Zeolite-A Doping and Solvent Mixing Ratio for Electrospun PVDF-Based Membranes
by Ionut Procop, Viorica Mușat, Elena Maria Anghel, Nicolae Țigău, Felicia Stan, Irina Atkinson, Daniela Cristina Culiță, Alina Cantaragiu Ceoromila, Emanuela Elena Herbei, Radu-Robert Piticescu, Gabriela Ioniță and Alexandru Petrică
Molecules 2025, 30(22), 4353; https://doi.org/10.3390/molecules30224353 - 10 Nov 2025
Abstract
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, [...] Read more.
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, Raman, XRD, DSC-TGA, UV-VIS spectroscopy, contact angle measurements, and mechanical testing. The membranes prepared with solvents low in acetone and increased zeolite content exhibited a higher crystallinity degree exceeding 50%. Zeolite-enriched membranes have a slightly higher content in the α crystalline phase of PVDF when compared to zeolite-free membranes. Electrospinning processing decreased the sample’s subcooling, improving its thermal stability. Zeolite-doping reduced the band gap energy to 1.3 eV from a maximum of 2.7 eV in PVDF membranes. Membranes doped with 3 or 4 wt.% zeolite exhibit improved load-elongation values at break, reaching up to 4.2 N and 47 mm, respectively, and increased flexibility due to their porous structures and the ratio of crystalline to amorphous phases. The membranes adsorbed an MB equilibrium quantity up to 18.5 mg/g and obeyed the pseudo-second-order (PSO) kinetic model within the first 24 h. Thus, the synergistic effect of zeolite content and solvent ratio can effectively adjust the sample’s structure, texture, and properties. Full article
Show Figures

Figure 1

14 pages, 2249 KB  
Article
Use Organic Polymers Polyvinyl Alcohol (PVA) and Polyethylene Oxide (PEO) in Diesel Heating Fuel to Reduce Humidity and Sulfur and Enhance Combustion Efficiency
by George Tzilantonis, Adamos Stimoniaris, Ioanna A. Vasiliadou, Athanasios Kanapitsas and Constantinos G. Tsanaktsidis
Appl. Sci. 2025, 15(22), 11945; https://doi.org/10.3390/app152211945 - 10 Nov 2025
Abstract
The use of conventional fuels for heat, energy, or motion production is largely determined by the concentration of water in the fuel. Therefore, the knowledge of the moisture content is of particular importance for combustion efficiency. Specifically, the presence of water in fuels [...] Read more.
The use of conventional fuels for heat, energy, or motion production is largely determined by the concentration of water in the fuel. Therefore, the knowledge of the moisture content is of particular importance for combustion efficiency. Specifically, the presence of water in fuels can cause corrosion, and during preheating the water vapor can cause extinguishing of the flame, while at low temperatures it can cause blockage of the network by ice that can be formed. In general, the presence of water can contribute to the development of organic and inorganic substrates that may contribute to fuel turbidity, a fact that is addressed by the addition of chemical additives. In the present work, the possibility of removing moisture from heating diesel fuel through the properties of ionic and non-ionic organic polymers, namely polyvinyl alcohol (PVA) and polyethylene oxide (PEO), was studied. The experimental data obtained by the addition of the polymers to the diesel showed that the fuel’s physicochemical properties were within the suitability limits, while the moisture content was decreased from 62 mg/kg to 50 mg/kg and 53 mg/kg, respectively, for PVA and PEO polymers. A mathematical expression of adsorption was used to simulate the experimental findings. In addition, the sulfur content was decreased from 941 mg/kg to 937 mg/kg when PVA was used. The methodology proposed for improving the physicochemical properties of heating diesel through organic polymers can optimize its combustion behavior to be more environmentally friendly. Full article
Show Figures

Figure 1

46 pages, 12233 KB  
Review
A State-of-the-Art Review on the Application of Geopolymerization/Geopolymer in Environmental Fields
by Yonglei Zhang, Pingping Li, Ting Yu, Yang Zhou, Yingxue Huang and Yuxuan Pei
Buildings 2025, 15(22), 4054; https://doi.org/10.3390/buildings15224054 - 10 Nov 2025
Abstract
Geopolymers, achieved through geopolymerization of aluminosilicate-containing precursors, are environmentally friendly inorganic binders with excellent mechanical strength, chemical resistance, and low carbon footprint. Beyond construction applications, geopolymers show great potential in environmental protection due to their ability to immobilize hazardous pollutants, adsorb ions and [...] Read more.
Geopolymers, achieved through geopolymerization of aluminosilicate-containing precursors, are environmentally friendly inorganic binders with excellent mechanical strength, chemical resistance, and low carbon footprint. Beyond construction applications, geopolymers show great potential in environmental protection due to their ability to immobilize hazardous pollutants, adsorb ions and gases, and utilize industrial solid wastes. This review provides a state-of-the-art summary of recent advances in geopolymer applications in environmental fields, including (1) immobilization of hazardous wastes, (2) adsorption of hazardous ions and CO2, and (3) resource utilization of solid wastes through geopolymerization. The mechanisms underlying immobilization and adsorption are discussed, and research gaps and future directions will be highlighted to guide further development of geopolymer-based environmental materials or application of geopolymerization in solid waste utilization. Full article
Back to TopTop