Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry
Abstract
1. Introduction
2. Materials and Methods
2.1. Leachate Sampling
2.2. Bio-Based Coagulant Preparation
2.3. Preparation of MOS Stock Solution
2.4. Coagulation–Flocculation Pretreatment
- Ci: The initial values of the leachate parameters (turbidity and COD) before treatment.
- Cf: The final value of the leachate parameter (turbidity and COD) after treatment.
2.5. Experimental Design and Pretreatment Optimization
2.6. Adsorption Tertiary Treatment
3. Results and Discussion
3.1. Sample Characterization
3.2. Characterization of the Bio-Based Coagulant
3.3. Coagulation Pretreatment Efficiency
3.3.1. Optimization of AS-Based Coagulation
Statistical Analysis
3.3.2. Evaluation of MOS-Based Coagulation
3.3.3. MOS and AS Comparisons
3.4. Adsorption Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AS | Aluminum sulfate |
| MSW | Municipal solid waste |
| BOD5 | Biological oxygen demand |
| COD | Chemical oxygen demand |
| MOS | Moringa oleifera seeds |
| PAM | Polyacrylamide |
| RSM | Response Surface Methodology |
| BBD | Box–Behnken Design |
| R2 | Coefficient of determination |
| LOF | Lack Of Fit |
| TSS | Total suspended solids |
References
- Alibardi, L.; Cossu, R. Leachate generation modeling. In Solid Waste Landfilling (Concepts, Processes, Technologies); Cossu, R., Stegmann, R., Eds.; Elsevier Inc.: Oxford, UK, 2018; pp. 229–245. [Google Scholar] [CrossRef]
- Almi, M.; Sahraoui, N.; Tassalit, D.; Korichi, B.; Khelifi, F.; Ladjere, S. Seasonal changes in pollutant composition in leachates from a waste management landfill site: Magtaa Kheira case study. Desalination Water Treat. 2022, 279, 102–108. [Google Scholar] [CrossRef]
- Joshi, S.M.; Gogate, P.R. Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Sep. Purif. Technol. 2019, 211, 10–18. [Google Scholar] [CrossRef]
- El Mrabet, I.; Nawdali, M.; Rafqah, S.; Valdés, H.; Benzina, M.; Zaitan, H. Low-cost biomass for the treatment of landfill leachate from Fez City: Application of a combined coagulation–adsorption process. Euro-Mediterr. J. Environ. Integr. 2020, 5, 63. [Google Scholar] [CrossRef]
- Jones, A.N.; Bridgeman, J. Disinfection ability of hibiscus seeds in water treatment. Proc. Inst. Civ. Eng. Water Manag. 2018, 171, 216–222. [Google Scholar] [CrossRef]
- Boya, X.; Bethany, P.; Ziyuhan, W.; Rose, M.; Emma, C.; Taylor, C.; Adam, U. Manish Kumar, and Stephanie Butler Ve legol. Environ. Sci. Technol. Lett. 2018, 5, 38–42. [Google Scholar] [CrossRef]
- Ajibade, F.O.; Adewumi, J.R.; et Oguntuase, A.M. Sustainable approach to wastewater management in the Federal University of Technology, Akure, Nigeria. Niger. J. Technol. Res. 2014, 9, 27–36. [Google Scholar] [CrossRef]
- Haddaji, C.; Ennaciri, K.; Driouich, A.; Digua, K.; Souabi, S. Optimization of the coagulation-flocculation process for vegetable oil refinery wastewater using a full factorial design. Proc. Saf. Environ. Prot. 2022, 160, 803–816. [Google Scholar] [CrossRef]
- Badawi, A.K.; Salama, R.S.; Mokhtar, M.M.; Mostafa, M. Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: A review of recent developments. RSC Adv. 2023, 13, 19335–19355. [Google Scholar] [CrossRef]
- Aal-Hamad, K.K. Optimization of the Performance of Date Seed as a Natural Coagulant for Industrial Wastewater Treatment. Doctoral Dissertation, Karabuk University, Karabuk, Turkey, 2023. [Google Scholar]
- Pagano, C.; Navarra, G.; Coppola, L.; Savarese, B.; Avilia, G.; Giarra, A.; Pagano, G.; Marano, A.; Trifuoggi, M.; Bifulco, M.; et al. Impacts of environmental pollution on brain tumorigenesis. Int. J. Mol. Sci. 2023, 24, 5045. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.; Nur, S.; Norelyza, H.; Mika, S.; Dedy, D.; Achmad, S. Recent advances on coagulation-based treatment of wastewater: Transition from chemical to natural coagulant. Curr. Pollut. Rep. 2021, 7, 379–391. [Google Scholar] [CrossRef]
- Grehs, B.W.; Lopes, A.R.; Moreira, N.F.; Fernandes, T.; Linton, M.A.; Silva, A.M.; Manaia, C.M.; Carissimi, E.; Nunes, O.C. Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. Water Res. 2019, 166, 115056. [Google Scholar] [CrossRef]
- Kingue, B.; Njila, R.; Ndongo, B. Assessment of groundnut (Arachis hypogaea) as a natural coagulant for water treatment. Water Pract. Technol. 2023, 18, 2057–2067. [Google Scholar] [CrossRef]
- Sethu, V.; Selvarajoo, A.; Lee, C.W.; Ganesan, P.; Lim, G.S.; Mok, X.Y. Opuntia cactus as a novel bio-coagulant for the treatment of Palm Oil Mill Effluent (POME). Prog. Energy Environ. 2019, 9, 11–26. [Google Scholar]
- Abu-Gharbia, M.A.; Farghaly, M.M.; Haridi, A.M. Moringa oleifera seed extracts as a natural coagulant for raw water treatment and improving its quality. Sohag J. Sci. 2024, 9, 114–120. [Google Scholar] [CrossRef]
- Farouk, A.R.; Alkaradaghi, K.; Al-Ansari, N. The potential of Moringa oleifera seed in water coagulation-flocculation technique to reduce water turbidity. Water Air Soil Pollut. 2023, 234, 250. [Google Scholar] [CrossRef]
- Chales, G.G.; Tihameri, B.S.; Milhan, N.V.M.; Koga-Ito, C.Y.; Antunes, M.L.P.; Reis, A.G.d. Impact of Moringa oleifera Seed-Derived Coagulants Processing Steps on Physicochemical, Residual Organic, and Cytotoxicity Properties of Treated Water. Water 2022, 14, 2058. [Google Scholar] [CrossRef]
- Villaseñor-Basulto, D.L.; Astudillo-Sánchez, P.D.; del Real-Olvera, J.; Bandala, E.R. Wastewater treatment using Moringa oleifera Lam seeds: A review. J. Water Process Eng. 2018, 23, 151–164. [Google Scholar] [CrossRef]
- Skaf, D.W.; Punzi, V.L.; Rolle, J.T.; Cullen, E. Impact of Moringa oleifera extraction conditions on zeta potential and coagulation effectiveness. J. Environ. Chem. Eng. 2021, 9, 104687. [Google Scholar] [CrossRef]
- Garcia-Fayos, B.; Arnal, J.M.; Sancho, M.; Rodrigo, I. Moringa oleifera for drinking water treatment: Influence of the solvent and method used in oil-extraction on the coagulant efficiency of the seed extract. Desalin. Water Treat. 2016, 57, 23397–23404. [Google Scholar] [CrossRef]
- Ndabigengesere, A.; Subba Narasiah, K. Quality of water treated by coagulation using Moringa oleifera seeds. Water Res. 1998, 32, 781–791. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Levida, R.M.; Don, M.J.; Shen, C.C. Cytotoxic isothiocyanates from Moringa oleifera Lam seeds. Philipp. Sci. Lett. 2012, 5, 46–52. [Google Scholar]
- Hoa, N.T.; Hue, C.T. Enhanced water treatment by Moringa oleifera seeds extract as the bio-coagulant: Role of the extraction method. J. Water Supply Res. Technol.-Aqua 2018, 67, 634–647. [Google Scholar] [CrossRef]
- Oladoja, N.A. Headway on natural polymeric coagulants in water and wastewater treatment operations. J. Water Process Eng. 2015, 6, 174–192. [Google Scholar] [CrossRef]
- San-Pedro, L.; Méndez-Novelo, R.; Hernández-Núñez, E.; Flota-Bañuelos, M.; Medina, J.; Giacomán-Vallejos, G. Selection of the activated carbon type for the treatment of landfill leachate by fenton-adsorption process. Molecules 2020, 25, 3023. [Google Scholar] [CrossRef]
- Babaei, S.; Sabour, M.R.; Moftakhari Anasori Movahed, S. Combined landfill leachate treatment methods: An overview. Environ. Sci. Pollut. Res. 2021, 28, 59594–59607. [Google Scholar] [CrossRef] [PubMed]
- Gandhimathi, R.; Durai, N.J.; Nidheesh, P.V.; Ramesh, S.T.; Kanmani, S. Use of combined coagulation-adsorption process as pretreatment of landfill leachate. Iran. J. Environ. Health Sci. Eng. 2013, 10, 24. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Bouchareb, R.; Derbal, K.; Benalia, A. Optimization of active coagulant agent extraction method from Moringa oleifera seeds for municipal wastewater treatment. Water Sci. Technol. 2021, 84, 393–403. [Google Scholar] [CrossRef]
- Hassouna, M.E.K.M.; El-sharqawy, M.E.M.; Hassanien, M.M. Moringa oleifera seeds powder as an alternative coagulant for beet sugar juice samples instead of lead acetate. Adv. Environ. Technol. 2020, 6, 139–148. [Google Scholar] [CrossRef]
- Katayon, S.; Noor, M.M.M.; Asma, M.; Ghani, L.A.; Thamer, A.M.; Azni, I.; Suleyman, A.M. Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation. Bioresour. Technol. 2006, 97, 1455–1460. [Google Scholar] [CrossRef]
- Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.; Demeestere, K.; Van Hulle, S.W. A comparative study on the efficiency of ozonation and coagulation–flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [Google Scholar] [CrossRef] [PubMed]
- EL Bada, N.; Assobhei, O.; Kebbabi, A.; Mhamdi, R.; Mountadar, M. Caractérisation et prétraitement du lixiviat de la décharge de la ville d’Azemmour. Environ. Ingénierie Développement 2010, 58, 16–21. [Google Scholar] [CrossRef]
- Seterik, U.Z.; Kanakaraju, D.; Sim, S.F.; Bilung, L.M. Characterisation and optimisation of M. oleifera for the removal of humic substances from peat water. Int. J. Environ. Sci. Technol. 2023, 21, 255–274. [Google Scholar] [CrossRef]
- Baptista, A.T.A.; Silva, M.O.; Gomes, R.G.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep. Purif. Technol. 2017, 180, 114–124. [Google Scholar] [CrossRef]
- Araujo, C.S.; Alves, V.N.; Rezende, H.C.; Almeida, I.L.; de Assuncao, R.M.; Tarley, C.R.; Coelho, N.M.M. Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents. Water Sci. Technol. 2010, 62, 2198–2203. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Bharti, D.; Dhal, S.; Sahu, D.; Behera, H.; Sahoo, M.; Pal, K. Role of stearic acid as the crystal habit modifier in candelilla wax-groundnut oil oleogels. ChemEngineering 2023, 7, 96. [Google Scholar] [CrossRef]
- Synytsya, A.; Bleha, R.; Skrynnikova, A.; Babayeva, T.; Čopíková, J.; Kvasnička, F.; Jablonsky, I.; Klouček, P. Mid-infrared spectroscopic study of cultivating medicinal fungi ganoderma: Composition, development, and strain variability of basidiocarps. J. Fungi 2023, 10, 23. [Google Scholar] [CrossRef]
- Kwaambwa, H.M.; Maikokera, R. Infrared and circular dichroism spectroscopic characterization of secondary structure components of a water treatment coagulant protein extracted from Moringa oleifera seeds. Colloids Surf. B Biointerfaces 2008, 64, 118–125. [Google Scholar] [CrossRef]
- Vunain, E.; Masoamphambe, E.F.; Mpeketula, P.M.G.; Monjerezi, M.; Etale, A. Evaluation of coagulating efficiency and water borne pathogens reduction capacity of Moringa oleifera seed powder for treatment of domestic wastewater from Zomba, Malawi. J. Environ. Chem. Eng. 2019, 7, 103118. [Google Scholar] [CrossRef]
- Alani, A.H.; Johari, M.A.M.; Bunnori, N.M.; Majid, T.A. Application of response surface methodology for optimizing the compressive strength of green ultra high strength concrete using silica fume. J. Build Rehabil. 2024, 9, 5. [Google Scholar] [CrossRef]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.I.; Turin, T.C. Variable selection strategies and its importance in clinical prediction modelling. Fam. Med. Commun. Health 2020, 8, 000262. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.J.; Mtei, K.M. Optimization of divalent mercury removal from synthetic wastewater using desirability function in central composite design of response surface methodology. J. Environ. Health Sci. Eng. 2023, 22, 209–227. [Google Scholar] [CrossRef]
- Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Endrini, S.; Fatmawati, S. Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia hirta L. (Ara Tanah) using response surface methodology and liquid chromatography-mass spectrometry (LC-MS) analysis. Evid.-Based Complement. Altern. Med. 2020, 2020, 4501261. [Google Scholar] [CrossRef]
- Ounis, M.; Sanz-Santos, E.; Fakhfakh, F.; Mohamed, K.Y.; Bilel, H.; Silvia, A.T.; Marcos, L.; Juan, G. Optimisation of adsorption removal of bisphenol a using sludge-based activated carbons: Application of response surface methodology with a box-behnken design. Arab. J. Sci. Eng. 2023, 49, 497–514. [Google Scholar] [CrossRef]
- Khan, M.; Thejasree, P.; Natarajan, M.; Narasimhamu, K.L. Application of a hybrid Taguchi grey approach for determining the optimal parameters on wire electrical discharge machining of Ti6Al4V. Int. J. Interact. Des. Manuf. 2023, 18, 3059–3076. [Google Scholar] [CrossRef]
- Chen, J.; Lan, X.; Jia, R.; Hu, L.; Wang, Y. Response surface methodology (RSM) mediated optimization of medium components for mycelial growth and metabolites production of Streptomyces alfalfae XN-04. Microorganisms 2022, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, X.; Zhao, Y.; Li, R.; Chen, X.; Jin, H.; Liu, X. Optimizing the UV-fenton degradation of m-cresol wastewater: An experimental and artificial intelligence modeling approach. Ind. Eng. Chem. Res. 2024, 63, 921–929. [Google Scholar] [CrossRef]
- Tong, C.Y.; Yusuf, F.H.B.C.; Derek, C.J.C. Fish farm wastewater treatment using moringa oleifera seed powder as natural coagulant. IOP Conf. Series: Earth Environ. Sci. 2021, 945, 012070. [Google Scholar] [CrossRef]
- Effendi, H.; Sari, R.D.; Hasibuan, S. Moringa oleifera as coagulant for batik effluent treatment. In Proceedings of the 35th Annual Conference of the International Association for Impact Assessment, Firenze Fiera Congress and Exhibition Center, Florence, Italy, 20–23 April 2015. [Google Scholar]
- Jammeli, L.; Louhichi, G.; Khouni, I. Effectiveness of using Moringa oleifera seeds as a green coagulant for soya oil refinery wastewater ecological treatment: Box–Behnken design optimization. Euro-Mediterr. J. Environ. Integr. 2025, 10, 2171–2195. [Google Scholar] [CrossRef]
- Shan, T.C.; Matar, M.A.; Makky, E.A.; Ali, E.N. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci. 2017, 7, 1369–1376. [Google Scholar] [CrossRef]
- Andrade, P.V.; Palanca, C.F.; de Oliveira, M.A.C.; Ito, C.Y.K.; dos Reis, A.G. Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: Physicochemical, cytotoxicity and bacterial load evaluation. J. Water Process Eng. 2021, 40, 101859. [Google Scholar] [CrossRef]
- Baptista, A.T.A.; Coldebella, P.F.; Cardines, P.H.F.; Gomes, R.G.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S. Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chem. Eng. J. 2015, 276, 166–173. [Google Scholar] [CrossRef]
- Gidde, M.R.; Bhalerao, A.R.; Malusare, C.N. Comparative study of different forms of Moringa oleifera extracts for turbidity removal. Int. J. Eng. Res. Dev. 2012, 2, 14–21. [Google Scholar]
- Katalo, R.; Okuda, T.; Nghiem, L.D.; Fujioka, T. Moringa oleifera coagulation as pretreatment prior to microfiltration for membrane fouling mitigation. Environ. Sci. Water Res. Technol. 2018, 4, 1604–1611. [Google Scholar] [CrossRef]
- Ugwu, S.N.; Umuokoro, A.F.; Echiegu, E.A.; Ugwuishiwu, B.O.; Enweremadu, C.C. Comparative study of the use of natural and artificial coagulants for the treatment of sullage (domestic wastewater). Cogent Eng. 2017, 4, 1365676. [Google Scholar] [CrossRef]
- Batool, F.; Kurniawan, T.A.; Mohyuddin, A.; Othman, M.H.D.; Anouzla, A.; Meidiana, C.; Goh, H.H.; Chew, K.W. Fixed-Bed Studies of Landfill Leachate Treatment Using Chitosan-Coated Carbon Composite. Water 2023, 15, 2263. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Suja, F. A comparative study of coagulation, granular-and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment. Environ. Technol. 2015, 36, 2610–2617. [Google Scholar] [CrossRef]
- Matsui, Y.; Knappe, D.R.; Takagi, R. Pesticide adsorption by granular activated carbon adsorbers. 1. Effect of natural organic matter preloading on removal rates and model simplification. Environ. Sci. Technol. 2002, 36, 3426–3431. [Google Scholar] [CrossRef]
- Li, W.; Hua, T.; Zhou, Q.; Zhang, S.; Li, F. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination 2010, 264, 56–62. [Google Scholar] [CrossRef]









| Coded Factor | Independent Variables | Coded Levels | ||
|---|---|---|---|---|
| −1 | 0 | +1 | ||
| X1 | AS concentration (g·L−1) | 0.8 | 1.2 | 1.6 |
| X2 | PAM concentration (mg·L−1) | 4 | 12 | 20 |
| X3 | initial pH | 4 | 6 | 8 |
| Form | Raw Material | Purity | Iodine Number | Specific Surface Area | Total Ash | Diameter | Bulk Density |
|---|---|---|---|---|---|---|---|
| Granules (GAC) | Coconut shell | ≥99% | ≥850 mg·g−1 | ~900 m2·g−1 | ≤15% | 0.5–1.5 mm | ~510 kg·m−3 |
| Parameter | Unit | Value |
|---|---|---|
| Color | - | Blackish |
| Odor | - | Nauseating |
| pH | - | 8.7 |
| Turbidity | NTU | 290 |
| Electrical conductivity | mS·cm−1 | 26.4 |
| Total Coliform | MPN/10 mL | 520 |
| NH4-N | mg·L−1 | 1528 |
| COD | mg·L−1 | 7780 |
| BOD5 | mg·L−1 | 2580 |
| BOD5/COD | - | 0.33 |
| Run No. | Experimental Design | Response (Removal (%)) | |||
|---|---|---|---|---|---|
| X1 | X2 | X3 | Y1 | Y2 | |
| 1 | 0 | 1 | 1 | 82 | 81 |
| 2 | 0 | 0 | 0 | 78 | 83 |
| 3 | 1 | 0 | 1 | 69 | 81 |
| 4 | 0 | 1 | −1 | 92 | 89 |
| 5 | 1 | 0 | −1 | 50 | 82 |
| 6 | 0 | 0 | 0 | 85 | 85 |
| 7 | 0 | 0 | 0 | 66 | 86 |
| 8 | 0 | −1 | −1 | 93 | 87 |
| 9 | −1 | −1 | 0 | 36 | 75 |
| 10 | 1 | −1 | 0 | 78 | 83 |
| 11 | −1 | 1 | 0 | 64 | 78 |
| 12 | 0 | 0 | 0 | 61 | 85 |
| 13 | −1 | 0 | −1 | 47 | 81 |
| 14 | 0 | −1 | 1 | 90 | 85 |
| 15 | 1 | 1 | 0 | 82 | 80 |
| 16 | −1 | 0 | 1 | 18 | 66 |
| Coagulant Concentration | Sludge Volume (mL·L−1) | Turbidity Removal (%) | Residual pH |
|---|---|---|---|
| MOS–6 g·L−1 | 17.5 | 83 | 6.96 |
| AS–1.44 g·L−1 | 4.8 | 91.4 | 5.7 |
| Treatment | Single Treatment | Combined Treatment | % Total Removal | |||
|---|---|---|---|---|---|---|
| Influent | Effluent | % Removal | Effluent | %Removal | ||
| COD (mg·L−1) | ||||||
| Coagulated leachate—AS | 879 | 128 | 85 | 61.7 | 51.4 | 93 |
| Bio-coagulated leachate—MOS | 795 | 1116 | −40 | 692 | 38 | 13 |
| Turbidity (NTU) | ||||||
| Coagulated leachate—AS | 31.63 | 3.48 | 89 | 1.8 | 48.5 | 94 |
| Bio-coagulated leachate—MOS | 16.15 | 3.6 | 77 | 2.1 | 41.6 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almi, M.; Chekir, N.; Merabti, L.; Tassalit, D.; Sahraoui, N.; Bouchareb, S.; Benkraouche, K.; Yanina, W.; Lebouachera, S.E.I. Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry. Appl. Sci. 2025, 15, 11948. https://doi.org/10.3390/app152211948
Almi M, Chekir N, Merabti L, Tassalit D, Sahraoui N, Bouchareb S, Benkraouche K, Yanina W, Lebouachera SEI. Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry. Applied Sciences. 2025; 15(22):11948. https://doi.org/10.3390/app152211948
Chicago/Turabian StyleAlmi, Maroua, Nadia Chekir, Leila Merabti, Djilali Tassalit, Naima Sahraoui, Soumeya Bouchareb, Khadidja Benkraouche, Wissam Yanina, and Seif El Islam Lebouachera. 2025. "Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry" Applied Sciences 15, no. 22: 11948. https://doi.org/10.3390/app152211948
APA StyleAlmi, M., Chekir, N., Merabti, L., Tassalit, D., Sahraoui, N., Bouchareb, S., Benkraouche, K., Yanina, W., & Lebouachera, S. E. I. (2025). Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry. Applied Sciences, 15(22), 11948. https://doi.org/10.3390/app152211948

