Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = acoustic zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 213
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

23 pages, 8003 KiB  
Article
Study on Meso-Mechanical Evolution Characteristics and Numerical Simulation of Deep Soft Rock
by Anying Yuan, Hao Huang and Tang Li
Processes 2025, 13(8), 2358; https://doi.org/10.3390/pr13082358 - 24 Jul 2025
Viewed by 294
Abstract
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and [...] Read more.
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and particle flow code (PFC) numerical simulation to investigate the failure evolution characteristics and AE quantitative representation of soft rocks. Key findings include the following: Localized high-strain zones emerge on specimen surfaces before macroscopic crack visualization, with crack tip positions guiding both high-strain zones and crack propagation directions. Strong force chain evolution exhibits high consistency with the macroscopic stress response—as stress increases and damage progresses, force chains concentrate near macroscopic fracture surfaces, aligning with crack propagation directions, while numerous short force chains coalesce into longer chains. The spatial and temporal distribution characteristics of acoustic emissions were explored, and the damage types were quantitatively characterized, with ring-down counts demonstrating four distinct stages: sporadic, gradual increase, stepwise growth, and surge. Shear failures predominantly occurred along macroscopic fracture surfaces. At the same time, there is a phenomenon of acoustic emission silence in front of the stress peak in the surrounding rock of deep soft rock roadway, as a potential precursor indicator for engineering disaster early warning. These findings provide critical theoretical support for deep engineering disaster prediction. Full article
Show Figures

Figure 1

32 pages, 858 KiB  
Review
Designing Sustainable and Acoustically Optimized Dental Spaces: A Comprehensive Review of Soundscapes in Dental Office Environments
by Maria Antoniadou, Eleni Ioanna Tzaferi and Christina Antoniadou
Appl. Sci. 2025, 15(15), 8167; https://doi.org/10.3390/app15158167 - 23 Jul 2025
Viewed by 387
Abstract
The acoustic environment of dental clinics plays a critical role in shaping patient experience, staff performance, and overall clinical effectiveness. This comprehensive review, supported by systematic search procedures, investigates how soundscapes in dental settings influence psychological, physiological, and operational outcomes. A total of [...] Read more.
The acoustic environment of dental clinics plays a critical role in shaping patient experience, staff performance, and overall clinical effectiveness. This comprehensive review, supported by systematic search procedures, investigates how soundscapes in dental settings influence psychological, physiological, and operational outcomes. A total of 60 peer-reviewed studies were analyzed across dental, healthcare, architectural, and environmental psychology disciplines. Findings indicate that mechanical noise from dental instruments, ambient reverberation, and inadequate acoustic zoning contribute significantly to patient anxiety and professional fatigue. The review identifies emerging strategies for acoustic optimization, including biophilic and sustainable design principles, sound-masking systems, and adaptive sound environments informed by artificial intelligence. Special attention is given to the integration of lean management and circular economy practices for sustainable dental architecture. A design checklist and practical framework are proposed for use by dental professionals, architects, and healthcare planners. Although limited by the predominance of observational studies and geographic bias in the existing literature, this review offers a comprehensive, interdisciplinary synthesis. It highlights the need for future clinical trials, real-time acoustic assessments, and participatory co-design methods to enhance acoustic quality in dental settings. Overall, the study positions sound design as a foundational element in creating patient-centered, ecologically responsible dental environments. Full article
(This article belongs to the Special Issue Soundscapes in Architecture and Urban Planning)
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 251
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 302
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 11156 KiB  
Article
Echo Analysis in Iberian Bullfighting Arenas Through Objective Parameters and Acoustic Simulation
by Sara Girón, Manuel Martín-Castizo and Miguel Galindo
Appl. Sci. 2025, 15(14), 7825; https://doi.org/10.3390/app15147825 - 12 Jul 2025
Viewed by 345
Abstract
The existence of echoes in an acoustic event can ruin the capture of a spoken message and the perception of a piece of music. Likewise, in the performers’ area, clear hearing is essential for the coordination and execution of the ensemble. Bullrings are [...] Read more.
The existence of echoes in an acoustic event can ruin the capture of a spoken message and the perception of a piece of music. Likewise, in the performers’ area, clear hearing is essential for the coordination and execution of the ensemble. Bullrings are buildings with a circular plan in which echo-encouraging focalisations can occur. Since bullrings lack a roof, the density of reflections is lower than that in a closed area, and therefore strong isolated reflections perceived by the audience as an echo can be created. In this work, calculations of the echo parameter (Echo Criterion EK) and inspection of impulse responses and energy decay curves are obtained in an on-site measurement campaign in the audience zones and in arena areas where the EK parameter exceeds the thresholds. To this end, four bullrings very emblematic of the Iberian Peninsula together with a very prominent Roman amphitheatre in a relatively good state of conservation in the Roman province of Hispania comprise the study cases. Experimental results of the EK parameter and from acoustic simulation in two of the bullrings present good concordance and show that there is no echo for music in any of the venues in the spectator zones and that the most critical area is when source and receiver are both in the arena, where even double and triple echoes appear. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

21 pages, 2223 KiB  
Article
Optimized Deployment of Generalized OCDM in Deep-Sea Shadow-Zone Underwater Acoustic Channels
by Haodong Yu, Cheng Chi, Yongxing Fan, Zhanqing Pu, Wei Wang, Li Yin, Yu Li and Haining Huang
J. Mar. Sci. Eng. 2025, 13(7), 1312; https://doi.org/10.3390/jmse13071312 - 8 Jul 2025
Viewed by 340
Abstract
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its [...] Read more.
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its robustness against multipath interference. However, its high peak-to-average power ratio (PAPR) limits its reliability and efficiency in deep-sea shadow-zone environments. This study applies a recently proposed generalized orthogonal chirp division multiplexing (GOCDM) modulation scheme to deep-sea shadow-zone communication. GOCDM follows the same principles as orthogonal signal division multiplexing (OSDM) while offering the advantage of a reduced PAPR. By segmenting the data signal into multiple vector blocks, GOCDM enables flexible resource allocation, optimizing the PAPR without compromising performance. Theoretical analysis and practical simulations confirm that GOCDM preserves the full frequency diversity benefits of traditional OCDM, while mitigating PARR-related limitations. Additionally, deep-sea experiments were carried out to evaluate the practical performance of GOCDM in shadow-zone environments. The experimental results demonstrate that GOCDM achieves superior performance under low signal-to-noise ratio (SNR) conditions, where the system attains a 0 bit error rate (BER) at 4.2 dB and 6.8 dB, making it a promising solution for enhancing underwater acoustic communication in challenging deep-sea environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 8098 KiB  
Article
A Comparative Study on the Flexural Behavior of UHPC Beams Reinforced with NPR and Conventional Steel Rebars
by Jin-Ben Gu, Yu-Han Chen, Yi Tao, Jun-Yan Wang and Shao-Xiong Zhang
Buildings 2025, 15(13), 2358; https://doi.org/10.3390/buildings15132358 - 5 Jul 2025
Viewed by 278
Abstract
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior [...] Read more.
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior of UHPC beams reinforced with various types of longitudinal reinforcement was conducted. The types of longitudinal reinforcement mainly encompassed HRB 400, HRB 600, and NPR steel rebars. The test results revealed that the UHPC beams reinforced with the three types of longitudinal steel rebar exhibited distinctly different failure modes. Compared to the single dominant crack failure typical of UHPC beams reinforced with HRB 400 steel rebars, the beams using HRB 600 rebars exhibited a tendency under balanced failure conditions to develop fewer main cracks (typically two or three). Conversely, the UHPC beams incorporating NPR steel rebars exhibited significantly more cracking within the pure bending zone, characterized by six to eight uniformly distributed main cracks. Meanwhile, the HRB 600 and NPR steel rebars effectively upgraded the flexural load-bearing capacity and deformation ability compared to the HRB 400 steel rebars. By integrating the findings from the direct tensile tests on reinforced UHPC, aided by acoustic emission source location, this research specifically highlights the damage mechanisms associated with each rebar type. Full article
(This article belongs to the Special Issue Key Technologies and Innovative Applications of 3D Concrete Printing)
Show Figures

Figure 1

26 pages, 6219 KiB  
Article
A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles
by Tao Deng, Xin Pang, Jiwei Sun, Chengliang Zhang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(13), 7304; https://doi.org/10.3390/app15137304 - 28 Jun 2025
Viewed by 268
Abstract
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability [...] Read more.
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability assessment methods. In this study, a typical open-pit slope with weak interlayers was investigated. Acoustic testing and ground-penetrating radar were employed to identify rock mass structural features and delineate loose zones, enabling detailed rock mass zoning and the development of numerical simulation models for stability analysis. The results indicate that (1) the slope exhibits poor overall integrity, dominated by blocky to fragmented structures with well-developed joints and significant weak interlayers, posing a severe threat to stability; (2) in the absence of support, the slope’s dissipated energy, displacement, and plastic zone volume all exceeded the failure threshold (Δ < 0), and the safety factor was only 0.962, indicating a near-failure state; after implementing support measures, the safety factor increased to 1.31, demonstrating a significant improvement in stability; (3) prior to excavation, the energy damage index (ds) in the 1195–1240 m platform zone reached 0.82, which dropped to 0.48 after reinforcement, confirming the effectiveness of support in reducing energy damage and enhancing slope stability; (4) field monitoring data of displacement and anchor rod forces further validated the stabilizing effect of the support system, providing strong assurance for safe mine operation. By integrating cusp catastrophe theory with energy-based analysis, this study establishes a comprehensive evaluation framework for slope stability under complex geological conditions, offering substantial practical value for deep open-pit mining projects. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

29 pages, 2186 KiB  
Article
WiPIHT: A WiFi-Based Position-Independent Passive Indoor Human Tracking System
by Xu Xu, Xilong Che, Xianqiu Meng, Long Li, Ziqi Liu and Shuai Shao
Sensors 2025, 25(13), 3936; https://doi.org/10.3390/s25133936 - 24 Jun 2025
Viewed by 442
Abstract
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and [...] Read more.
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and important method for human activity recognition. However, most WiFi-based activity recognition methods have limitations, such as using WiFi fingerprints to identify human activities. They either require extensive sample collection and training, are constrained by a fixed environmental layout, or rely on the precise positioning of transmitters (TXs) and receivers (RXs) within the space. If the positions are uncertain, or change, the sensing performance becomes unstable. To address the dependency of current WiFi indoor human activity trajectory reconstruction on the TX-RX position, we propose WiPIHT, a stable system for tracking indoor human activity trajectories using a small number of commercial WiFi devices. This system does not require additional hardware to be carried or locators to be attached, enabling passive, real-time, and accurate tracking and trajectory reconstruction of indoor human activities. WiPIHT is based on an innovative CSI channel analysis method, analyzing its autocorrelation function to extract location-independent real-time movement speed features of the human body. It also incorporates Fresnel zone and motion velocity direction decomposition to extract movement direction change patterns independent of the relative position between the TX-RX and the human body. By combining real-time speed and direction curve features, the system derives the shape of the human movement trajectory. Experiments demonstrate that, compared to existing methods, our system can accurately reconstruct activity trajectory shapes even without knowing the initial positions of the TX or the human body. Additionally, our system shows significant advantages in tracking accuracy, real-time performance, equipment, and cost. Full article
(This article belongs to the Special Issue Recent Advances in Smart Mobile Sensing Technology)
Show Figures

Figure 1

35 pages, 14579 KiB  
Article
Reframing Sustainable Informal Learning Environments: Integrating Multi-Domain Environmental Elements, Spatial Usage Patterns, and Student Experience
by Jiachen Yin, Wenyi Fan and Lei Peng
Buildings 2025, 15(13), 2203; https://doi.org/10.3390/buildings15132203 - 23 Jun 2025
Viewed by 361
Abstract
Sustainable informal learning environments are increasingly recognized as critical components of educational architecture, yet their environmental and behavioral dynamics remain underexplored. Informal learning spaces (ILS) support flexible, student-driven learning beyond formal classrooms. While prior research often isolates individual environmental factors, integrated multi-domain interactions [...] Read more.
Sustainable informal learning environments are increasingly recognized as critical components of educational architecture, yet their environmental and behavioral dynamics remain underexplored. Informal learning spaces (ILS) support flexible, student-driven learning beyond formal classrooms. While prior research often isolates individual environmental factors, integrated multi-domain interactions and reciprocal occupant–space dynamics receive less attention. This study adopts a dual-perspective analytical framework, combining spatial analysis and student surveys (n = 1048) across 130 ILS in five academic buildings in China. The findings highlight several environmental dimensions influencing student experience. One extracted factor combines acoustic and thermal comfort with learning atmosphere—domains seldom grouped together—indicating their collective relevance to student experience. Additionally, spatial openness and natural connectivity further enhance student experience. Importantly, the results show that frequently used spaces receive lower physical quality ratings, group collaboration areas outperform individual study zones, and spontaneously formed spaces—informally appropriated, unplanned areas such as corridors or leftover corners—score lowest. These patterns may reflect mismatches between spatial supply and use intensity, institutional investment priorities, and differing levels of student autonomy and environmental control. This research extends conventional post-occupancy evaluations by introducing a comprehensive dual-perspective framework that links spatial characteristics with user-driven dynamics, and by identifying the combined effects of multi-domain physical environmental and supportive elements on student experience. The insights offer empirical grounding and actionable strategies for campus planners and architects, including prioritizing sensory comfort, enhancing spatial diversity, and supporting student-led adaptations to promote sustainable learning environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

40 pages, 10369 KiB  
Article
Thermoacoustic, Physical, and Mechanical Properties of Bio-Bricks from Agricultural Waste
by Haidee Yulady Jaramillo, Robin Zuluaga-Gallego, Alejandro Arango-Correa and Ricardo Andrés García-León
Buildings 2025, 15(13), 2183; https://doi.org/10.3390/buildings15132183 - 23 Jun 2025
Cited by 1 | Viewed by 622
Abstract
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of [...] Read more.
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of lignin (extracted from coffee husks), and 315 g of bovine excreta. Experimental evaluations included compressive and flexural strength, water absorption, density, thermal conductivity, transmittance, admittance, and acoustic transmission loss. The optimal mixture achieved a compressive strength of 1.70 MPa and a flexural strength of 0.56 MPa, meeting Colombian technical standards for non-structural masonry. Its thermal conductivity (~0.19 W/(m×K)) and transmittance (~0.20 W/(m2×K)) suggest good insulation performance. Field tests in three Colombian climate zones confirmed improved thermal comfort compared to traditional clay brick walls, with up to 8 °C internal temperature reduction. Acoustic analysis revealed higher sound attenuation in bio-bricks, especially at low frequencies. Chemical and morphological analyses (SEM-EDS, FTIR, and TGA) confirmed favorable thermal stability and the synergistic interaction of organic and inorganic components. The findings support bio-bricks’ potential as eco-efficient, low-carbon alternatives for sustainable building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 4567 KiB  
Article
Validation of Taylor’s Frozen Hypothesis for DAS-Based Flow
by Shu Dai, Lei Liang, Ke Jiang, Hui Wang and Chengyi Zhong
Sensors 2025, 25(13), 3840; https://doi.org/10.3390/s25133840 - 20 Jun 2025
Viewed by 392
Abstract
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage [...] Read more.
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage in non-intrusive velocity detection, current research focuses on planar flow fields, and its applicability in turbulent circular pipes remains controversial. Moreover, there is no precedent for combining it with distributed acoustic sensing (DAS) technology. This paper constructs a circular pipe turbulence model through large eddy simulation (LES), revealing the spatiotemporal distribution characteristics of turbulent kinetic energy and the energy propagation rules of FK spectra. It proposes a dispersion feature enhancement algorithm based on cross-correlation, which combines a rotatable elliptical template with normalized cross-correlation coefficients to suppress interference from non-target directions. An experimental circulating pipeline DAS measurement system was set up to complete signal denoising and compare two principles of flow velocity verification. The results show that the vortex structure of turbulent flow in circular pipes remains stable in the convection direction, conforming to theoretical premises; the relative error of average flow velocity by this method is ≤3%, with significant improvements in accuracy and stability in high-flow zones. This study provides innovative methods and experimental basis for non-intrusive flow detection using DAS. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 1973 KiB  
Article
Characterizing the Cracking Behavior of Large-Scale Multi-Layered Reinforced Concrete Beams by Acoustic Emission Analysis
by Yara A. Zaki, Ahmed A. Abouhussien and Assem A. A. Hassan
Sensors 2025, 25(12), 3741; https://doi.org/10.3390/s25123741 - 15 Jun 2025
Viewed by 333
Abstract
In this study, acoustic emission (AE) analysis was carried out to evaluate and quantify the cracking behavior of large-scale multi-layered reinforced concrete beams under flexural tests. Four normal concrete beams were repaired by adding a layer of crumb rubberized engineered cementitious composites (CRECCs) [...] Read more.
In this study, acoustic emission (AE) analysis was carried out to evaluate and quantify the cracking behavior of large-scale multi-layered reinforced concrete beams under flexural tests. Four normal concrete beams were repaired by adding a layer of crumb rubberized engineered cementitious composites (CRECCs) or powder rubberized engineered cementitious composites (PRECCs), in either the tension or compression zone of the beam. Additional three unrepaired control beams, fully cast with either normal concrete, CRECCs, or PRECCs, were tested for comparison. Flexural tests were performed on all the tested beams in conjunction with AE monitoring until failure. AE raw data obtained from the flexural testing was filtered and then analyzed to detect and assess the cracking behavior of all the tested beams. A variety of AE parameters, including number of hits and cumulative signal strength, were utilized to study the crack propagation throughout the testing. Furthermore, b-value and intensity analyses were implemented and yielded additional parameters called b-value, historic index [H (t)], and severity (Sr). The analysis of the changes in the AE parameters allowed the identification of the first crack in all tested beams. Moreover, varying the rubber particle size (crumb rubber or powder rubber), repair layer location, or AE sensor location showed a significant impact on the number of hits and signal amplitude. Finally, by using the results of the study, it was possible to develop a damage quantification chart that can identify different damage stages (first crack and ultimate load) related to the intensity analysis parameters (H (t) and Sr). Full article
Show Figures

Figure 1

24 pages, 7343 KiB  
Article
Impact of Mesoscale Eddies on Acoustic Propagation Under a Rough Sea Surface
by Shaoze Zhang, Jian Shi and Xuhui Cao
Remote Sens. 2025, 17(12), 2036; https://doi.org/10.3390/rs17122036 - 13 Jun 2025
Viewed by 396
Abstract
This study investigates the combined effects of mesoscale eddies and rough sea surfaces on acoustic propagation in the eastern Arabian Sea and Gulf of Aden during summer monsoon conditions. Utilizing three-dimensional sound speed fields derived from CMEMS data, sea surface spectra from the [...] Read more.
This study investigates the combined effects of mesoscale eddies and rough sea surfaces on acoustic propagation in the eastern Arabian Sea and Gulf of Aden during summer monsoon conditions. Utilizing three-dimensional sound speed fields derived from CMEMS data, sea surface spectra from the SWAN wave model validated by Jason-3 altimetry, and the BELLHOP ray-tracing model, we quantify their synergistic impacts on underwater sound. A Monte Carlo-based dynamic sea surface roughness model is integrated with BELLHOP to analyze multiphysics interactions. The results reveal that sea surface roughness significantly influences surface duct propagation, increasing transmission loss by approximately 20 dB compared to a smooth sea surface, while mesoscale eddies deepen the surface duct and widen convergence zones by up to 5 km. In deeper waters, eddies shift convergence zones and reduce peak sound intensity in the deep sound channel. These findings enhance sonar performance and underwater communication in dynamic, monsoon-influenced marine environments. Full article
(This article belongs to the Topic Advances in Underwater Acoustics and Aeroacoustics)
Show Figures

Figure 1

Back to TopTop