Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = acoustic energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 278
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

62 pages, 4192 KiB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 601
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 3803 KiB  
Article
Advanced Self-Powered Sensor for Carbon Dioxide Monitoring Utilizing Surface Acoustic Wave (SAW) Technology
by Hicham Mastouri, Mohammed Remaidi, Amine Ennawaoui, Meryiem Derraz and Chouaib Ennawaoui
Energies 2025, 18(12), 3082; https://doi.org/10.3390/en18123082 - 11 Jun 2025
Viewed by 591
Abstract
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) [...] Read more.
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) layer, chosen for its high electromechanical coupling and strong CO2 affinity. Finite element simulations were conducted to analyze the resonance frequency response under varying gas concentrations, film thicknesses, pressures, and temperatures. Results demonstrate a linear and sensitive frequency shift, with detection capability starting from 10 ppm. The sensor’s autonomy is ensured by a piezoelectric energy harvester composed of a cantilever beam structure with an attached seismic mass, where mechanical vibrations induce stress in a piezoelectric layer (PZT-5H or PVDF), generating electrical energy via the direct piezoelectric effect. Analytical and numerical analyses were performed to evaluate the influence of excitation frequency, material properties, and optimal load on power output. This integrated configuration offers a compact and energy-independent solution for real-time CO2 monitoring in low-power or inaccessible environments. Full article
Show Figures

Figure 1

24 pages, 994 KiB  
Review
Acoustic Energy Harvested Wireless Sensing for Aquaculture Monitoring
by Zhencan Yang, Longgang Ma, Ruihua Zhang, Jiawei Zhang, Feng Liu and Xinqing Xiao
Inventions 2025, 10(3), 41; https://doi.org/10.3390/inventions10030041 - 5 Jun 2025
Viewed by 799
Abstract
As society develops, the aquaculture industry faces challenges such as environmental changes and water contamination. Water quality monitoring and preventive measures have become essential to prevent property losses. Traditional water quality monitoring methods rely on manual sampling and laboratory analysis, which are inefficient [...] Read more.
As society develops, the aquaculture industry faces challenges such as environmental changes and water contamination. Water quality monitoring and preventive measures have become essential to prevent property losses. Traditional water quality monitoring methods rely on manual sampling and laboratory analysis, which are inefficient and costly. Additionally, the operational lifespan of conventional water quality sensors is limited by battery capacity, making long-term and continuous monitoring difficult to ensure. This review focuses on water quality sensor systems and provides a comprehensive analysis of self-powered schemes utilizing acoustic energy harvesting technology. It comprehensively discusses the overall architecture of self-powered sensors, energy harvesting principles, piezoelectric transducer mechanisms, and wireless transmission technologies. It also covers acoustic energy enhancement devices and the types and development status of piezoelectric materials used for acoustic energy harvesting. Furthermore, the review systematically summarizes and analyses the current applications of these sensors in aquaculture monitoring and evaluates their advantages, disadvantages, and prospects. Full article
Show Figures

Figure 1

21 pages, 2131 KiB  
Article
From Sun to Snack: Different Drying Methods and Their Impact on Crispiness and Consumer Acceptance of Royal Gala Apple Snacks
by Lisete Fernandes, Pedro B. Tavares and Carla Gonçalves
Horticulturae 2025, 11(6), 610; https://doi.org/10.3390/horticulturae11060610 - 29 May 2025
Viewed by 482
Abstract
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven [...] Read more.
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven dried (ODA), with two industrially processed commercial products (CCA—commercial apples C and CFA—commercial apples F) included. The samples were analyzed using acoustic measurements, X-ray diffraction (XRD) and sensory evaluation to assess textural properties and consumer perception. Acoustic analysis revealed that crispier samples produced louder and higher-frequency sounds upon fracture, showing strong alignment with sensory assessments. X-ray diffraction indicated an increase in crystallinity during dehydration, with a shift in the amorphous peak toward lower angles, and reduced intensity, reflecting progressive water removal. Sensory evaluation showed varying degrees of crispiness among the samples, in the following order: CFA > SDA > CCA > ODA. Consumer testing highlighted greater acceptance and consensus for SDA and ODA samples in terms of texture and overall appeal, whereas CCA and CFA received more polarized opinions. These findings demonstrate how different drying methods influence the structural and textural properties of dried apples. Solar drying was shown to be a promising sustainable alternative; as it uses a renewable energy source, it has a low operating cost and simple maintenance. It allows farmers and small producers to process their own food, adding value and reducing post-harvest losses, preserving desirable textural attributes and achieving high consumer acceptance. Full article
Show Figures

Figure 1

24 pages, 2836 KiB  
Article
Response Prediction and Experimental Validation of Vibration Noise in the Conveyor Trough of a Combine Harvester
by Jianpeng Jing, Guangen Yan, Zhong Tang, Shuren Chen, Runzhi Liang, Yuxuan Chen and Xiaoying He
Agriculture 2025, 15(10), 1099; https://doi.org/10.3390/agriculture15101099 - 19 May 2025
Viewed by 538
Abstract
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 [...] Read more.
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 links using numerical simulation and experimental validation. A dynamic model of the conveyor chain system was developed, and the time domain reaction force at the bearing support was used as excitation for the trough shell’s finite element model. Modal and harmonic response analyses were performed to obtain the vibration response, which served as an acoustic boundary input for the LMS Virtual Lab. The indirect boundary element method was used to compute the radiated noise, achieving coupled modeling of chain system vibration and trough shell noise. Simulation results revealed that the maximum radiated noise occurred at approximately 112 Hz, closely matching experimental data. Comparative analysis of transmitted noise at 500 Hz and 700 Hz showed acoustic power levels of 98.4 dB and 109.52 dB, respectively. Results indicate that transmitted noise dominates over structural radiation in energy contribution, highlighting it as the primary noise path. This work offers a validated prediction model and supports noise control design for combine harvester conveying troughs. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 3129 KiB  
Article
Acoustic Bubbles as Small-Scale Energy Harvesters for Implantable Medical Devices
by Wenbo Li, Anthony Mercader and Sung Kwon Cho
Micromachines 2025, 16(4), 362; https://doi.org/10.3390/mi16040362 - 21 Mar 2025
Viewed by 601
Abstract
Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated [...] Read more.
Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated microbubbles as energy-harvesting resonators. A comparative study was conducted to determine the energy harvested by a freestanding diaphragm and a diaphragm coupled with an oscillating microbubble. The experimental results demonstrated that incorporating a microbubble enabled the flexible piezoelectric diaphragm to harvest seven times more energy than the freestanding diaphragm. These findings were further validated using Laser Doppler Vibrometer (LDV) measurements and stress calculations. Additional experiments with a phantom tissue tank confirmed the feasibility of this technology for biomedical applications. The results indicate that acoustically resonating microbubbles are a promising design for microscale acoustic energy-harvesting resonators in implantable biomedical devices. Full article
Show Figures

Figure 1

21 pages, 4703 KiB  
Article
Study on Dynamic Behaviors of Hypoid Gears Under Variable Tidal Current Energy Harvesting Conditions
by Dequan Huang, Yan Li, Xingyuan Zheng and Gang Li
Machines 2025, 13(3), 178; https://doi.org/10.3390/machines13030178 - 24 Feb 2025
Viewed by 618
Abstract
This study investigates dynamic behaviors of hypoid gear rotor systems under variable tidal current energy harvesting conditions through numerical simulations and experimental validation. The study examines dynamic responses of a hypoid gear rotor system induced by cyclical tidal current variations, which generate fluctuating [...] Read more.
This study investigates dynamic behaviors of hypoid gear rotor systems under variable tidal current energy harvesting conditions through numerical simulations and experimental validation. The study examines dynamic responses of a hypoid gear rotor system induced by cyclical tidal current variations, which generate fluctuating loads and bidirectional rotational speeds in tidal energy conversion systems. Two hypoid gear pairs, modified through precise manufacturing parameters, are evaluated to optimize tooth contact patterns for bidirectional tidal loading conditions. A coupled torsional vibration model is developed, incorporating variable transmission error and mesh stiffness. Experimental validation of dynamic performances of hypoid gear pairs was conducted on a bevel gear testing rig, which can measure both torsional and translational vibrations across diverse tidal speed profiles. The experimental results demonstrate that second-order primary resonances exhibit heightened vibration intensity during flow-reversal phases. This phenomenon has significant implications for system power efficiency and acoustic emissions. The findings extend the current understanding of hypoid gear optimization for tidal energy-harvesting applications. Full article
Show Figures

Figure 1

11 pages, 744 KiB  
Perspective
Sustainable Agriculture with Self-Powered Wireless Sensing
by Xinqing Xiao
Agriculture 2025, 15(3), 234; https://doi.org/10.3390/agriculture15030234 - 22 Jan 2025
Cited by 1 | Viewed by 1375
Abstract
Agricultural sustainability is becoming more and more important for human health. Wireless sensing technology could provide smart monitoring in real time for different parameters in planting, breeding, and the food supply chain with advanced sensors such as flexible sensors; wireless communication networks such [...] Read more.
Agricultural sustainability is becoming more and more important for human health. Wireless sensing technology could provide smart monitoring in real time for different parameters in planting, breeding, and the food supply chain with advanced sensors such as flexible sensors; wireless communication networks such as third-, fourth-, or fifth-generation (3G, 4G, or 5G) mobile communication technology networks; and artificial intelligence (AI) models. Many sustainable, natural, renewable, and recycled facility energies such as light, wind, water, heat, acoustic, radio frequency (RF), and microbe energies that exist in actual agricultural systems could be harvested by advanced self-powered technologies and devices using solar cells, electromagnetic generators (EMGs), thermoelectric generators (TEGs), piezoelectric generators (PZGs), triboelectric nanogenerators (TENGs), or microbial full cells (MFCs). Sustainable energy harvesting to the maximum extent possible could lead to the creation of sustainable self-powered wireless sensing devices, reduce carbon emissions, and result in the implementation of precision smart monitoring, management, and decision making for agricultural production. Therefore, this article suggests that proposing and developing a self-powered wireless sensing system for sustainable agriculture (SAS) would be an effective way to improve smart agriculture production efficiency while achieving green and sustainable agriculture and, finally, ensuring food quality and safety and human health. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 2927 KiB  
Review
MHD Generation for Sustainable Development, from Thermal to Wave Energy Conversion: Review
by José Carlos Domínguez-Lozoya, David Roberto Domínguez-Lozoya, Sergio Cuevas and Raúl Alejandro Ávalos-Zúñiga
Sustainability 2024, 16(22), 10041; https://doi.org/10.3390/su162210041 - 18 Nov 2024
Cited by 5 | Viewed by 3670
Abstract
Magnetohydrodynamic (MHD) generators are direct energy conversion devices that transform the motion of an electrically conducting fluid into electricity through interaction with a magnetic field. Developed as an alternative to conventional turbine-generator systems, MHD generators evolved through the 20th century from large units, [...] Read more.
Magnetohydrodynamic (MHD) generators are direct energy conversion devices that transform the motion of an electrically conducting fluid into electricity through interaction with a magnetic field. Developed as an alternative to conventional turbine-generator systems, MHD generators evolved through the 20th century from large units, which are intended to transform thermal energy into electricity using plasma as a working fluid, to smaller units that can harness heat from a variety of sources. In the last few decades, an effort has been made to develop energy conversion systems that incorporate MHD generators to harvest renewable sources such as solar and ocean energy, strengthening the sustainability of this technology. This review briefly synthesizes the main steps in the evolution of MHD technology for electricity generation, starting by outlining its physical principles and the proposals to convert thermal energy into electricity, either using a high-temperature plasma as a working fluid or a liquid metal in a one- or two-phase flow at lower temperatures. The use of wave energy in the form of acoustic waves, which were obtained from the conversion of thermal energy through thermoacoustic devices coupled to liquid metal and plasma MHD generators, as well as alternatives for the transformation of environmental energy resources employing MHD transducers, is also assessed. Finally, proposals for the conversion of ocean energy, mainly in the form of waves and tides, into electric energy, through MHD generators using either seawater or liquid metal as working fluids, are presented along with some of the challenges of MHD conversion technology. Full article
Show Figures

Figure 1

21 pages, 10339 KiB  
Article
The Integration of Bio-Active Elements into Building Façades as a Sustainable Concept
by Walaa Mohamed Metwally and Vitta Abdel Rehim Ibrahim
Buildings 2024, 14(10), 3086; https://doi.org/10.3390/buildings14103086 - 26 Sep 2024
Cited by 3 | Viewed by 3172
Abstract
Global warming and climate change are major concerns across multiple disciplines. Population growth, urbanization, and industrialization are significant contributing factors to such problems due to the escalating use of fossil fuels required to meet growing energy demands. The building sector uses the largest [...] Read more.
Global warming and climate change are major concerns across multiple disciplines. Population growth, urbanization, and industrialization are significant contributing factors to such problems due to the escalating use of fossil fuels required to meet growing energy demands. The building sector uses the largest share of total global energy production and produces tons of greenhouse gas emissions. Emerging eco-friendly technologies, such as solar and wind energy harvesting, are being extensively explored; however, they are insufficient. Nature-inspired technologies could offer solutions to our problems. For instance, algae are microorganisms that use water, light, and CO2 to produce energy and sustain life, and the exploitation of these characteristics in a built environment is termed algae building technology, which is a very efficient and green application suitable for a sustainable future. Algae-integrated façades show great versatility through biomass and energy production, wastewater treatment, shading, and thermal and acoustic insulation. In this paper, algae will be introduced as a robust tool toward a greener and more sustainable future. Algae building technology and its implementation will be demonstrated. Furthermore, steps for applying this sustainable strategy in Egypt will be discussed. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1416 KiB  
Article
A Novel Medium Access Policy Based on Reinforcement Learning in Energy-Harvesting Underwater Sensor Networks
by Çiğdem Eriş, Ömer Melih Gül and Pınar Sarısaray Bölük
Sensors 2024, 24(17), 5791; https://doi.org/10.3390/s24175791 - 6 Sep 2024
Cited by 7 | Viewed by 1586
Abstract
Underwater acoustic sensor networks (UASNs) are fundamental assets to enable discovery and utilization of sub-sea environments and have attracted both academia and industry to execute long-term underwater missions. Given the heightened significance of battery dependency in underwater wireless sensor networks, our objective is [...] Read more.
Underwater acoustic sensor networks (UASNs) are fundamental assets to enable discovery and utilization of sub-sea environments and have attracted both academia and industry to execute long-term underwater missions. Given the heightened significance of battery dependency in underwater wireless sensor networks, our objective is to maximize the amount of harvested energy underwater by adopting the TDMA time slot scheduling approach to prolong the operational lifetime of the sensors. In this study, we considered the spatial uncertainty of underwater ambient resources to improve the utilization of available energy and examine a stochastic model for piezoelectric energy harvesting. Considering a realistic channel and environment condition, a novel multi-agent reinforcement learning algorithm is proposed. Nodes observe and learn from their choice of transmission slots based on the available energy in the underwater medium and autonomously adapt their communication slots to their energy harvesting conditions instead of relying on the cluster head. In the numerical results, we present the impact of piezoelectric energy harvesting and harvesting awareness on three lifetime metrics. We observe that energy harvesting contributes to 4% improvement in first node dead (FND), 14% improvement in half node dead (HND), and 22% improvement in last node dead (LND). Additionally, the harvesting-aware TDMA-RL method further increases HND by 17% and LND by 38%. Our results show that the proposed method improves in-cluster communication time interval utilization and outperforms traditional time slot allocation methods in terms of throughput and energy harvesting efficiency. Full article
Show Figures

Figure 1

27 pages, 6323 KiB  
Review
Current Research Status and Future Trends of Vibration Energy Harvesters
by Guohao Qu, Hui Xia, Quanwei Liang, Yunping Liu, Shilin Ming, Junke Zhao, Yushu Xia and Jianbo Wu
Micromachines 2024, 15(9), 1109; https://doi.org/10.3390/mi15091109 - 30 Aug 2024
Cited by 4 | Viewed by 5546
Abstract
The continuous worsening of the natural surroundings requires accelerating the exploration of green energy technology. Utilising ambient vibration to power electronic equipment constitutes an important measure to address the power crisis. Vibration power is widely dispersed in the surroundings, such as mechanical vibration, [...] Read more.
The continuous worsening of the natural surroundings requires accelerating the exploration of green energy technology. Utilising ambient vibration to power electronic equipment constitutes an important measure to address the power crisis. Vibration power is widely dispersed in the surroundings, such as mechanical vibration, acoustic vibration, wind vibration, and water wave vibration. Collecting vibration energy is one of the research hotspots in the field of energy. Meanwhile, it is also an important way to solve the energy crisis. This paper illustrates the working principles and recent research progress of five known methods of vibrational energy harvesting, namely, electromagnetic, piezoelectric, friction electric, electrostatic, and magnetostrictive vibrational energy harvesters. The strengths and weaknesses of each method are summarised. At the end of the article, the future trends of micro-nano vibrational energy collectors are envisioned. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Figure 1

14 pages, 3300 KiB  
Article
Dual-Channel Underwater Acoustic Topological Rainbow Trapping Based on Synthetic Dimension
by Jialin Zhong, Li Luo, Jiebin Peng, Yingyi Huang, Quanquan Shi, Jiajun Lu, Haobin Zhang, Feiwan Xie, Fugen Wu, Xin Zhang and Degang Zhao
Crystals 2024, 14(4), 311; https://doi.org/10.3390/cryst14040311 - 27 Mar 2024
Cited by 3 | Viewed by 1656
Abstract
The concept of “rainbow trapping” has generated considerable interest in wave propagation and energy harvesting, offering new possibilities for diverse and efficient acoustic wave operations. In this work, we investigate a dual-channel topological rainbow trapping device implemented within an underwater two-dimensional phononic crystal [...] Read more.
The concept of “rainbow trapping” has generated considerable interest in wave propagation and energy harvesting, offering new possibilities for diverse and efficient acoustic wave operations. In this work, we investigate a dual-channel topological rainbow trapping device implemented within an underwater two-dimensional phononic crystal based on synthetic dimension. The topological edge states with different frequencies are separated and trapped at different spatial locations. Acoustic waves propagate simultaneously along two boundaries due to the degeneracy of the edge states. In particular, the propagation of a dual-channel topological rainbow is also realized by using a bend design. This work contributes to the advancement of multi-channel devices in synthetic space and provides a reference for the design of highly efficient underwater acoustic devices. Full article
(This article belongs to the Special Issue Crystalline Materials: From Structure to Applications)
Show Figures

Figure 1

32 pages, 4663 KiB  
Article
Influence of Homo- and Hetero-Junctions on the Propagation Characteristics of Radially Propagated Cylindrical Surface Acoustic Waves in a Piezoelectric Semiconductor Semi-Infinite Medium
by Xiao Guo, Yilin Wang, Chunyu Xu, Zibo Wei and Chenxi Ding
Mathematics 2024, 12(1), 145; https://doi.org/10.3390/math12010145 - 2 Jan 2024
Cited by 4 | Viewed by 1444
Abstract
This paper theoretically investigates the influence of homo- and hetero-junctions on the propagation characteristics of radially propagated cylindrical surface acoustic waves in a piezoelectric semiconductor semi-infinite medium. First, the basic equations of the piezoelectric semiconductor semi-infinite medium are mathematically derived. Then, based on [...] Read more.
This paper theoretically investigates the influence of homo- and hetero-junctions on the propagation characteristics of radially propagated cylindrical surface acoustic waves in a piezoelectric semiconductor semi-infinite medium. First, the basic equations of the piezoelectric semiconductor semi-infinite medium are mathematically derived. Then, based on these basic equations and the transfer matrix method, two equivalent mathematical models are established concerning the propagation of radially propagated cylindrical surface acoustic waves in this piezoelectric semiconductor semi-infinite medium. Based on the surface and interface effect theory, the homo- or hetero-junction is theoretically treated as a two-dimensional electrically imperfect interface in the first mathematical model. To legitimately confirm the interface characteristic lengths that appear in the electrically imperfect interface conditions, the homo- or hetero-junction is equivalently treated as a functional gradient thin layer in the second mathematical model. Finally, based on these two mathematical models, the dispersion and attenuation curves of radially propagated cylindrical surface acoustic waves are numerically calculated to discuss the influence of the homo- and hetero-junctions on the dispersion and attenuation characteristics of radially propagated cylindrical surface acoustic waves. The interface characteristic lengths are legitimately confirmed through the comparison of dispersion and attenuation curves calculated using the two equivalent mathematical models. As piezoelectric semiconductor energy harvesters usually work under elastic deformation, the establishment of mathematical models and the revelation of physical mechanisms are both fundamental to the analysis and optimization of micro-scale surface acoustic wave resonators, energy harvesters, and acoustic wave amplification based on the propagation of surface acoustic waves. Full article
(This article belongs to the Special Issue Advances in Applied Mathematics, Mechanics and Engineering)
Show Figures

Figure 1

Back to TopTop