Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,735)

Search Parameters:
Keywords = Zn-complexation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7303 KiB  
Article
Effect of AF Surface Nanostructure on AFRP Interface Properties Under Temperature: A MD Simulation Study
by Zhaohua Zhang, Guowei Xia, Chunying Qiao, Longyin Qiao, Fei Gao, Qing Xie and Jun Xie
Polymers 2025, 17(15), 2024; https://doi.org/10.3390/polym17152024 - 24 Jul 2025
Abstract
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface [...] Read more.
The insulating rod of aramid fiber-reinforced epoxy resin composites (AFRP) is an important component of gas-insulated switchgear (GIS). Under complex working conditions, the high temperature caused by voltage, current, and external climate change becomes one of the important factors that aggravate the interface degradation between aramid fiber (AF) and epoxy resin (EP). In this paper, molecular dynamics (MD) simulation software is used to study the effect of temperature on the interfacial properties of AF/EP. At the same time, the mechanism of improving the interfacial properties of three nanoparticles with different properties (insulator Al2O3, semiconductor ZnO, and conductor carbon nanotube (CNT)) is explored. The results show that the increase in temperature will greatly reduce the interfacial van der Waals force, thereby reducing the interfacial binding energy between AF and EP, making the interfacial wettability worse. Furthermore, the addition of the three fillers can improve the interfacial adhesion of the composite material. Among them, Al2O3 and CNT maintain a large dipole moment at high temperature, making the van der Waals force more stable and the adhesion performance attenuation less. The Mulliken charge and energy gap of Al2O3 and ZnO decrease slightly with temperature but are still higher than AF, which is conducive to maintaining good interfacial insulation performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
32 pages, 1567 KiB  
Article
Development of Innovative Mediterranean-Style Semi-Hard Goat’s Cheese Supplemented with Seaweeds (Palmaria palmata and Ulva sp.) and Its Characterization
by Bruno M. Campos, Bruno S. Moreira-Leite, Abigail Salgado, Edgar Ramalho, Isa Marmelo, Manuel Malfeito-Ferreira, Paulo H. M. de Sousa, Adolfo Henriques, João P. Noronha, Mário S. Diniz and Paulina Mata
Appl. Sci. 2025, 15(15), 8232; https://doi.org/10.3390/app15158232 - 24 Jul 2025
Abstract
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. [...] Read more.
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. The impact of seaweed addition was evaluated through physicochemical, microbiological, and organoleptic properties of the semi-hard goat cheeses. Carbohydrate content was relatively low, whereas the total lipid content was relatively high (particularly in semi-hard goat cheese supplemented with seaweeds). Crude protein content presented higher values in semi-hard goat cheese supplemented with Ulva sp. The semi-hard goat cheese supplemented with Ulva sp. shows increased levels of Ca, Fe, Mn, and Zn. Instrumental color and the textural parameters of semi-hard goat’s cheese varied significantly with seaweed addition. Most of the microbiological load complies with the Portuguese (INSA) and the United Kingdom’s (HPA) guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Additionally, the Flash Profile scores of semi-hard goat cheeses supplemented with seaweeds highlighted aroma and flavor complexity. Overall, this study confirms the potential of using seaweeds as a viable alternative to produce semi-hard goat cheeses with less pungency or goat milk flavor, making this product more pleasant and appealing to consumers sensitive to these sensory characteristics. Full article
17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

35 pages, 3950 KiB  
Article
Macrozoobenthos Response to Sediment Contamination near the S/s Stuttgart Wreck: A Biological and Chemical Assessment in the Gulf of Gdańsk, Southern Baltic Sea
by Anna Tarała, Diana Dziaduch, Katarzyna Galer-Tatarowicz, Aleksandra Bojke, Maria Kubacka and Marcin Kalarus
Water 2025, 17(15), 2199; https://doi.org/10.3390/w17152199 - 23 Jul 2025
Abstract
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased [...] Read more.
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased species richness and distinct benthic assemblages, shaped primarily by depth and distance from the wreck. Among macrozoobenthos, there dominated opportunistic species, characterized by a high degree of resistance to the unfavorable state of the environment, suggesting adaptation to local conditions. Elevated concentrations of heavy metals were detected in sediments, with maximum values of Cd—0.85 mg·kg−1, Cu—34 mg·kg−1, Zn—119 mg·kg−1, and Ni—32.3 mg·kg−1. However, no significant correlations between sediment contamination and macrozoobenthos composition were found. In Mytilus trossulus, contaminant levels were mostly within regulatory limits; however, mercury concentrations reached 0.069 mg·kg−1 wet weight near the wreck and 0.493 mg·kg−1 at the reference station, both exceeding the threshold defined in national legislation (0.02 mg·kg−1) (Journal of Laws of 2021, item 568). Condition indices for Macoma balthica were lower in the wreck area, suggesting sublethal stress. Ecotoxicological tests showed no acute toxicity in most sediment samples, emphasizing the complexity of pollutant effects. The data presented here not only enrich the existing literature on marine pollution but also contribute to the development of more effective environmental protection strategies for marine ecosystems under international protection. Full article
Show Figures

Figure 1

12 pages, 1897 KiB  
Article
Enhanced Extraction of Valuable Metals from Copper Slags by Disrupting Fayalite and Spinel Structures Using Sodium Sulfate
by Shafiq Alam, Behzod Tolibov, Madat Akhmedov, Umidjon Khujamov and Sardor Yarlakabov
Minerals 2025, 15(8), 771; https://doi.org/10.3390/min15080771 - 22 Jul 2025
Abstract
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition [...] Read more.
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition rate of 89%, highlighting its effectiveness in liberating valuable metals from the slag matrix. The optimal temperature for maximizing fayalite decomposition is determined to be 900 °C, which significantly enhances reaction kinetics and efficiency. Furthermore, extending the reaction time to 90 min resulted in the highest observed decomposition efficiency. Subsequent leaching experiments in sulfuric acid confirmed that the liberated metal transitioned into the solution phase was very effective, ensuring high metal recovery rates. The treated samples demonstrated metal recovery rates of 97% for copper (Cu), 96% for iron (Fe), and 93% for zinc (Zn). In contrast, the untreated samples exhibited considerably lower recovery rates, with copper at 61%, iron at 59%, and zinc at 65%. Additionally, this approach mitigates filtration challenges by preventing the formation of silica gel. These findings provide key operational parameters for optimizing metal recovery from copper slag and establish a solid foundation for advancing sustainable and efficient resource extraction research. Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Figure 1

28 pages, 3926 KiB  
Article
Could the Presence of Ferrihydrite in a Riverbed Impacted by Mining Leachates Be Linked to a Reduction in Contamination and Health Indexes?
by Asunción Guadalupe Morales-Mendoza, Ana Karen Ivanna Flores-Trujillo, Luz María Del-Razo, Betsy Anaid Peña-Ocaña, Fanis Missirlis and Refugio Rodríguez-Vázquez
Water 2025, 17(15), 2167; https://doi.org/10.3390/w17152167 - 22 Jul 2025
Viewed by 63
Abstract
Taxco de Alarcón (Mexico) has been affected by mining activities and the presence of potentially toxic elements (PTEs). In this study, water samples from the Acamixtla, Taxco, and San Juan rivers were analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to determine [...] Read more.
Taxco de Alarcón (Mexico) has been affected by mining activities and the presence of potentially toxic elements (PTEs). In this study, water samples from the Acamixtla, Taxco, and San Juan rivers were analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to determine PTE concentrations. Statistical analyses included principal component analysis, Pearson’s correlation, the Pollution Index, and a Health Risk Assessment. Additionally, solid samples from the San Juan River with leachate from the “La Guadalupana” Mine (RSJMG S2.3) were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Identified PTEs included As, Cr, Ni, Zn, Fe, Mn, Cu, Cd, Pb, Se, and Li. Principal component analysis explained 94.8% of the data variance, and Pearson’s correlation revealed significant associations (p < 0.05) among Fe, As, Cu, Cd, Pb, and Zn. The RSJMG S2.3 site exhibited the highest Pollution Index value (8491.56) and the highest health exposure risks. Lower contamination levels at other sites may be attributed to the complexation of PTEs with ferrihydrite, which was identified in the RSJMG S2.3 site through microscopy and infrared analyses. These findings suggest that the in situ formation of ferrihydrite may enhance the adsorption of PTEs, thereby mitigating environmental contamination and potential health risks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 238
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

19 pages, 4875 KiB  
Article
Synthesis, Characterization, and Biological Evaluation of Some 3d Metal Complexes with 2-Benzoylpyridine 4-Allylthiosemicarbazone
by Vasilii Graur, Ianina Graur, Pavlina Bourosh, Victor Kravtsov, Carolina Lozan-Tirsu, Greta Balan, Olga Garbuz, Victor Tsapkov and Aurelian Gulea
Inorganics 2025, 13(7), 249; https://doi.org/10.3390/inorganics13070249 - 21 Jul 2025
Viewed by 112
Abstract
The eight new copper(II), nickel(II), zinc(II), and iron(III) coordination compounds [Cu(L)Cl]2 (1), [Cu(L)Br]2 (2), [Cu(L)(NO3)]2 (3), [Cu(phen)(L)]NO3 (4), [Ni(HL)2](NO3)2·H2O (5 [...] Read more.
The eight new copper(II), nickel(II), zinc(II), and iron(III) coordination compounds [Cu(L)Cl]2 (1), [Cu(L)Br]2 (2), [Cu(L)(NO3)]2 (3), [Cu(phen)(L)]NO3 (4), [Ni(HL)2](NO3)2·H2O (5), [Ni(HL)2]Cl2 (6), [Zn(L)2]·0.125H2O (7), and [Fe(L)2]Cl (8), where HL stands for 2-benzoylpyridine 4-allylthiosemicarbazone, were synthesized and characterized. 1H, 13C NMR, and FTIR spectroscopies were used for characterization of the HL thiosemicarbazone. The elemental analysis, the FTIR spectroscopy, and the study of molar electrical conductivity were used for characterization of the coordination compounds 18. Also, the crystal structures of HL, its salts ([H2L]Cl; [H2L]NO3), and complexes 1, 3, 5, 7, and 8 were determined using single-crystal X-ray diffraction analysis. Complexes 5, 7, 8 have mononuclear structures, while copper(II) complexes 1 and 3 have a dimeric structure with the sulfur atoms of the thiosemicarbazone ligand bridging two copper atoms together. Thiosemicarbazone HL and the complexes manifest antibacterial and antifungal activities. The studied substances are more active towards Gram-negative bacteria than towards Gram-positive bacteria and fungi. Complex 1 is the most active one towards Gram-positive bacteria and C. albicans, while the introduction of 1,10-phenanthroline into the inner sphere enhances the activity towards Gram-negative bacteria. Thiosemicarbazone and complexes 6 and 7 manifest antiradical activity that exceeds the activity of Trolox. HL and complex 1 manifest antiproliferative activity towards HL-60 cancer cells which exceeds the activity of their analogs with 2-formyl-/2-acetylpyridine 4-allylthiosemicarbazone. Full article
Show Figures

Figure 1

22 pages, 9633 KiB  
Article
Mouse PrimPol Outperforms Its Human Counterpart as a Robust DNA Primase
by Gustavo Carvalho, Susana Guerra, María I. Martínez-Jiménez and Luis Blanco
Int. J. Mol. Sci. 2025, 26(14), 6947; https://doi.org/10.3390/ijms26146947 - 19 Jul 2025
Viewed by 189
Abstract
The human PrimPol counteracts DNA replication stress by repriming DNA synthesis when fork progression is hindered by UV light or hydroxyurea treatment, or by encountering complex DNA structures, such as G-quadruplexes, R-loops, or interstrand crosslinks. The Mus musculus PrimPol (MmPrimPol) shares [...] Read more.
The human PrimPol counteracts DNA replication stress by repriming DNA synthesis when fork progression is hindered by UV light or hydroxyurea treatment, or by encountering complex DNA structures, such as G-quadruplexes, R-loops, or interstrand crosslinks. The Mus musculus PrimPol (MmPrimPol) shares a high degree of amino acid similarity with its human ortholog; however, as shown here, MmPrimPol exhibits a more powerful primase activity compared to the human enzyme. Such a robust primase activity relies on an enhanced ability to bind the 5′ site nucleotide, and consequently to form initial dimers and further mature primers. Additionally, a shorter linker between the AEP core and the Zn finger domain (ZnFD) in the murine homolog likely promotes a constitutive closing of these domains into a primase-ready configuration. Consequently, a reinforced close configuration of the ZnFD would explain why MmPrimPol has a more robust primase, but a very limited DNA polymerization on an existing primer. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2186 KiB  
Article
Impact of Interactions Between Zn(II) and Selenites in an Aquatic Environment on the Accumulation of Se and Zn in a Fungal Cell
by Małgorzata Kałucka, Piotr Podsadni, Agnieszka Szczepańska, Eliza Malinowska, Anna Błażewicz and Jadwiga Turło
Molecules 2025, 30(14), 3015; https://doi.org/10.3390/molecules30143015 - 18 Jul 2025
Viewed by 196
Abstract
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if [...] Read more.
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if Zn2+ and SeO32− concentrations in the liquid medium are not high enough to precipitate ZnSeO3, the accumulation of selenium in the presence of zinc, and zinc in the presence of selenites, significantly dropped. This effect was more dependent on the molar ratio of ions in the medium than on the concentration values. We hypothesized that the formation of zinc–selenite soluble complexes with charges depending on the ion concentration ratio in the aquatic environment affects the first stage of ion transport into the fungal cell—biosorption. To verify this, we found the zinc–selenite molar ratio at which the complexes of the highest stability are formed, examined the influence of the molar ratio of ions in the medium on the concentration of Zn and Se in the mushroom cell wall, and investigated the correlation between the concentration of selenites not bound in complex compounds and the Se concentration in the cell wall. The results indicate that the molar fraction of Zn(II) in a liquid medium in the range of 0.5–0.6 promotes the formation of the most stable complexes. At the same time, it significantly reduces the percentage of free selenites in the medium and most strongly inhibits the biosorption process of both zinc and selenium. Full article
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 136
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

33 pages, 3914 KiB  
Article
Ecological Status of the Small Rivers of the East Kazakhstan Region
by Natalya Seraya, Gulzhan Daumova, Olga Petrova, Ricardo Garcia-Mira and Arina Polyakova
Sustainability 2025, 17(14), 6525; https://doi.org/10.3390/su17146525 - 16 Jul 2025
Viewed by 360
Abstract
The article presents a long-term assessment of the surface water quality of six small rivers in the East Kazakhstan region (Breksa, Tikhaya, Ulba, Glubochanka, Krasnoyarka, and Oba) based on hydrochemical monitoring data from the Kazhydromet State Enterprise for the period 2017–2024. A unified [...] Read more.
The article presents a long-term assessment of the surface water quality of six small rivers in the East Kazakhstan region (Breksa, Tikhaya, Ulba, Glubochanka, Krasnoyarka, and Oba) based on hydrochemical monitoring data from the Kazhydromet State Enterprise for the period 2017–2024. A unified water quality classification system was applied, along with statistical methods, including multiple linear regression. The Glubochanka and Krasnoyarka rivers were identified as the most polluted (reaching classes 4–5), with multiple exceedances of Zn (up to 2.96 mg/dm3), Cd (up to 0.8 mg/dm3), and Cu (up to 0.051 mg/dm3). The most stable and highest water quality was recorded in the Oba River, where from 2021 to 2024, water consistently corresponded to Class 2. Regression models of water quality class as a function of time and annual precipitation were constructed to assess the influence of climatic factors. Statistical analysis revealed no consistent linear correlation between average annual precipitation and water quality (correlation coefficients ranging from −0.49 to +0.37), indicating a complex interplay between climatic and anthropogenic factors. Significant relationships were found for the Breksa (R2 = 0.903), Glubochanka (R2 = 0.602), and Tikhaya (R2 = 0.555) rivers, suggesting an influence of temporal and climatic factors on water quality. In contrast, the Oba (R2 = 0.130), Ulba (R2 = 0.100), and Krasnoyarka (R2 = 0.018) rivers exhibited low coefficients, indicating the predominance of other, likely local, sources of pollution. It was found that summer periods are characterized by the highest pollution due to low water flow, while episodes of acid runoff occur in spring. A decrease in pH below 7.0 was first recorded in 2023–2024 in the Ulba and Tikhaya rivers. Forecasts to 2030 suggest relative stability in water quality under current climatic conditions; however, by 2050, the risk of water quality deterioration is expected to rise due to increased precipitation and extreme weather events. This study presents, for the first time, a systematic long-term analysis of small rivers in the East Kazakhstan region, offering deeper insight into the dynamics of surface water quality and providing a scientific foundation for developing adaptive strategies for the protection and sustainable use of water resources under climate change and anthropogenic pressure. The results emphasize the importance of prioritizing rivers with high variability in water quality for regular monitoring and the development of adaptive conservation measures. The research holds strong applied significance for shaping a sustainable water use strategy in the region. Full article
Show Figures

Figure 1

21 pages, 5279 KiB  
Article
The Influence of Zn and Ca Addition on the Microstructure, Mechanical Properties, Cytocompatibility, and Electrochemical Behavior of WE43 Alloy Intended for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Maria Daniela Vlad, Bogdan Istrate, Fabian Cezar Lupu, Eusebiu Viorel Șindilar, Alexandru Vlasa, Cristinel Ionel Stan, Maria Larisa Ivănescu and Georgeta Zegan
Medicina 2025, 61(7), 1271; https://doi.org/10.3390/medicina61071271 - 14 Jul 2025
Viewed by 282
Abstract
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop [...] Read more.
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop a novel Mg-Zn-Ca alloy system based on WE43 alloy, evaluating the influence of Zn and Ca additions on microstructure, mechanical properties, cytocompatibility, and electrochemical behavior for potential use in biodegradable orthopedic applications. Materials and Methods: The WE43-Zn-Ca alloy system was developed by alloying standard WE43 (Mg–Y–Zr–RE) with 1.5% Zn and Ca concentrations of 0.2% (WE43_0.2Ca alloy) and 0.3% (WE43_0.3Ca alloy). Microstructural analysis was performed utilizing scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS), while the chemical composition was validated through optical emission spectroscopy and X-ray diffraction (XRD). Mechanical properties were assessed through tribological tests. Electrochemical corrosion behavior was evaluated using potentiodynamic polarization in a 3.5% NaCl solution. Cytocompatibility was assessed in vitro on MG63 cells using cell viability assays (MTT). Results: Alloys WE43_0.2Ca and WE43_0.3Ca exhibited refined, homogeneous microstructures with grain sizes between 70 and 100 µm, without significant structural defects. Mechanical testing indicated reduced stiffness and an elastic modulus similar to human bone (19.2–20.3 GPa), lowering the risk of stress shielding. Cytocompatibility tests confirmed non-cytotoxic behavior for alloys WE43_0.2Ca and WE43_0.3Ca, with increased cell viability and unaffected cellular morphology. Conclusions: The study validates the potential of Mg-Zn-Ca alloys (especially WE43_0.3Ca) as biodegradable biomaterials for orthopedic implants due to their favorable combination of mechanical properties, corrosion resistance, and cytocompatibility. The optimization of these alloys contributed to obtaining an improved microstructure with a reduced degradation rate and a non-cytotoxic in vitro outcome, which supports efficient bone tissue regeneration and its integration into the body for complex biomedical applications. Full article
Show Figures

Figure 1

14 pages, 1843 KiB  
Article
Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications
by Faruk Mert
Crystals 2025, 15(7), 641; https://doi.org/10.3390/cryst15070641 - 11 Jul 2025
Viewed by 188
Abstract
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought [...] Read more.
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought to advance the development of high-performance magnesium alloys by examining the microstructural evolution and associated strengthening mechanisms of Mg-Zn alloys modified with varying Nd contents. Comprehensive characterization techniques—including optical microscopy, XRD, and SEM/EDS—were employed to explain the influence of Nd additions on the microstructures. Mechanical performance was assessed through hardness testing, the RFDA method for elastic modulus, and tensile testing. The microstructural analysis of the as-cast Mg-Zn-Nd alloys revealed a complex phase composition comprising dendritic α-Mg, Mg41Nd5, and a Mg3Nd binary phase enriched with rare earth elements. Notably, increasing the Nd content from 0.5% to 5% by weight resulted in a significant enhancement of hardness, reaching 59 HV compared to 42 HV in the base alloy. The tensile strength increased significantly from 62.9 MPa in the Mg-2.5Zn-0.5Nd alloy to 186.8 MPa in the Mg-2.5Zn-5Nd alloy. The elastic modulus values across all investigated alloys remained consistently comparable, which is expected as the elastic modulus is primarily determined by atomic bonding and is not significantly affected by alloying additions. These findings underscore the potential of Nd-alloyed Mg-Zn systems as viable, mechanically robust alternatives for next-generation biodegradable orthopedic implants. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Performance of Magnesium Alloys)
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 319
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

Back to TopTop