Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Vernier Machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13859 KB  
Article
Micromanufacturing Process of Complex 3D FeCo Core Microwindings for Magnetic Flux Modulation in Micromotors
by Efren Diez-Jimenez, Diego Lopez-Pascual, Gabriel Villalba-Alumbreros, Ignacio Valiente-Blanco, Miguel Fernandez-Munoz, Jesús del Olmo-Anguix, Oscar Manzano-Narro, Alexander Kanitz, Jan Hoppius and Jan Philipp
Micromachines 2026, 17(1), 115; https://doi.org/10.3390/mi17010115 - 15 Jan 2026
Viewed by 217
Abstract
This work presents the design, fabrication, and characterization of a three-dimensional FeCo-based flux-modulator microwinding intended for integration into high-torque axial-flux Vernier micromotors. The proposed micromotor architecture modulates the stator magnetic flux using 12 magnetically isolated FeCo teeth interacting with an 11-pole permanent-magnet rotor. [...] Read more.
This work presents the design, fabrication, and characterization of a three-dimensional FeCo-based flux-modulator microwinding intended for integration into high-torque axial-flux Vernier micromotors. The proposed micromotor architecture modulates the stator magnetic flux using 12 magnetically isolated FeCo teeth interacting with an 11-pole permanent-magnet rotor. The design requires the manufacturing of complex three-dimensional micrometric parts, including three teeth and a cylindrical core. Such a complex design cannot be manufactured using conventional micromanufacturing lithography or 2D planar methods. The flux-modulator envelope dimensions are 250 μm outer diameter and 355 μm height. It is manufactured using a femtosecond laser-machining process that preserves factory-finished surfaces and minimizes heat-affected zones. In addition, this micrometric part has been wound using 20 μm diameter enamelled copper wire. A dedicated magnetic clamping fixture is developed to enable multilayer microwinding of the integrated core, producing a 17-turn inductor with a 60.6% fill factor—the highest reported for a manually wound ferromagnetic-core microcoil of this scale. Geometric and magnetic characterization validates the simulation model and demonstrates the field distribution inside the isolated core. The results establish a viable micromanufacturing workflow for complex 3D FeCo microwindings, supporting the development of next-generation high-performance MEMS micromotors. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

29 pages, 4333 KB  
Article
Design and Sensorless Control in Dual Three-Phase PM Vernier Motors for 5 MW Ship Propulsion
by Vahid Teymoori, Nima Arish, Hossein Dastres, Maarten J. Kamper and Rong-Jie Wang
World Electr. Veh. J. 2025, 16(12), 670; https://doi.org/10.3390/wevj16120670 - 11 Dec 2025
Viewed by 421
Abstract
Advancements in ship propulsion technologies are essential for improving the efficiency and reliability of maritime transportation. This study introduces a comprehensive approach that integrates motor design with sensorless control strategies, specifically focusing on Dual Three-Phase Permanent Magnet Vernier Motors (DTP-PMVM) for ship propulsion. [...] Read more.
Advancements in ship propulsion technologies are essential for improving the efficiency and reliability of maritime transportation. This study introduces a comprehensive approach that integrates motor design with sensorless control strategies, specifically focusing on Dual Three-Phase Permanent Magnet Vernier Motors (DTP-PMVM) for ship propulsion. The initial section of the paper explores the design of a 5-MW DTP-PMVM using finite element method (FEM) analysis in dual three-phase configurations. The subsequent section presents a novel sensorless control technique employing a Prescribed-time Sliding Mode Observer (PTSMO) for accurate speed and position estimation of the DTP-PMSM, eliminating the need for physical sensors. The proposed observer convergence time is entirely independent of the initial estimation guess and observer gains, allowing for pre-adjustment of the estimation error settling time. Initially, the observer is designed for a DTP-PMVM with fully known model parameters. It is then adapted to accommodate variations and unknown parameters over time, achieving prescribed-time observation. This is accomplished by using an adaptive observer to estimate the unknown parameters of the DTP-PMVM model and a Neural Network (NN) to compensate for the nonlinear effects caused by the model’s unknown terms. The adaptation laws are innovatively modified to ensure the prescribed time convergence of the entire adaptive observer. MATLAB (R2023b) Simulink simulations demonstrate the superior speed-tracking accuracy and robustness of the speed and position observer against model parameter variations, strongly supporting the application of these strategies in real-world maritime propulsion systems. By integrating these advancements, this research not only proposes a more efficient, reliable, and robust propulsion motor design but also demonstrates an effective control strategy that significantly enhances overall system performance, particularly for maritime propulsion applications. Full article
Show Figures

Graphical abstract

16 pages, 3727 KB  
Article
MW-Level Performance Comparison of Contra Rotating Generators for Wind Power Applications
by Mehroz Fatima, Wasiq Ullah, Faisal Khan and U. B. Akuru
Wind 2025, 5(4), 30; https://doi.org/10.3390/wind5040030 - 6 Nov 2025
Viewed by 995
Abstract
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching [...] Read more.
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching machines at the MW power level for contra-rotating wind turbine applications. The analysis evaluates both machines across various slot/pole combinations while maintaining constant key design parameters. The electromagnetic performance analysis reveals that the permanent-magnet vernier machine (PMVM) exhibits superior torque and power, with minimal cogging torque compared to the wound-field flux-switching machine (WFFSM). Conversely, the WFFSM outperforms the PMVM in terms of power factor and efficiency. This study provides valuable perspectives on the strengths and weaknesses of each machine, highlighting their potential for contra-rotating turbine and wind power generation. Finally, to justify the findings of the finite element analysis and the proof of concept, an experimental prototype is tested to validate the study. Full article
Show Figures

Figure 1

24 pages, 8037 KB  
Article
Design, Analysis and Multi-Objective Optimization of a New Asymmetric Permanent Magnet Vernier Motor for Low-Speed High-Torque Applications
by Yujun Shi, Qingqing Liu, Wenlei Zhao, Jiwei Wang, Yaogang Liu and Haifeng Lu
Machines 2025, 13(9), 827; https://doi.org/10.3390/machines13090827 - 8 Sep 2025
Viewed by 907
Abstract
This paper proposes a new Asymmetric Permanent Magnet Vernier Motor (A-PMVM) for low-speed high-torque applications. Unlike conventional symmetric V-shaped PMVMs (SV-PMVMs), the A-PMVM features irregular U-shaped magnet arrays composed of asymmetric V-shaped magnets. Finite element analysis confirms its superior performance: 10.6% higher torque [...] Read more.
This paper proposes a new Asymmetric Permanent Magnet Vernier Motor (A-PMVM) for low-speed high-torque applications. Unlike conventional symmetric V-shaped PMVMs (SV-PMVMs), the A-PMVM features irregular U-shaped magnet arrays composed of asymmetric V-shaped magnets. Finite element analysis confirms its superior performance: 10.6% higher torque (19.67 N·m vs. 17.78 N·m), 22% reduced PM volume (37,500 mm3 vs. 48,000 mm3), and 53% lower cogging torque (0.32 N·m vs. 0.68 N·m peak-peak). While exhibiting higher initial torque ripple ratio (8.65%), multi-objective optimization suppresses torque ripple ratio by 5.32% (from 8.65% to 8.19%), reduces cogging torque 12.5% (from 0.32 N·m to 0.28 N·m), and enhances torque by 0.76% (from 19.67 N·m to 19.82 N·m). The optimized A-PMVM achieves a significant reduction in cogging torque and torque ripple ratio, demonstrating significant potential for applications like wind turbines and electric vehicles. Additionally, this paper confirms that the proposed motor maintains consistent performance during both clockwise and counterclockwise operation. Full article
Show Figures

Figure 1

20 pages, 4150 KB  
Article
Testing and EDEM Simulation Analysis of Material Properties of Small Vegetable Seeds for Sustainable Seeding Process
by Jiaoyang Duan, Xingrui Shi and Baolong Wang
Sustainability 2025, 17(16), 7292; https://doi.org/10.3390/su17167292 - 12 Aug 2025
Cited by 1 | Viewed by 1033
Abstract
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural [...] Read more.
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural materials is of great significance. The basic physical parameters of agricultural materials include their shape, size, density, porosity, and moisture content. This study focuses on the triaxial dimensions, 1000-grain weight, moisture content, and tribological properties (sliding friction angle, natural repose angle) of the seeds of 16 varieties of small-seeded vegetables commonly grown in Hainan, including flowering Chinese cabbage, Chinese cabbage, lettuce, and leaf lettuce. Measurements were conducted using instruments such as a digital vernier caliper (Deli, Ningbo, China; accuracy 0.01 mm), an electronic balance (LICHEN, Shanghai, China; accuracy 0.001 g), a constant-temperature oven (Shangyi, Shanghai, China), and self-developed sliding friction angle and natural repose angle testers. Discrete element simulations were performed via EDEM 2021 software to validate the tribological properties by establishing particle models (spherical for flowering Chinese cabbage and Chinese cabbage; long–flat for lettuce and leaf lettuce) and instrument geometric models. Additionally, seed germinability (germination potential, germination rate, and germination speed) was tested using a constant-temperature incubation method. The results showed distinct differences between near-spherical and long–flat seeds in geometric characteristics, 1000-grain weight (2.27–3.06 g vs. 1.00–1.29 g), and tribological behavior (e.g., smaller natural repose angles for near-spherical seeds indicating better flowability). Plastic plates were identified as optimal for seed box guides due to lower sliding friction coefficients. EDEM 2021 simulations effectively verified the experimental data. High-germination-rate seeds (e.g., Hong Kong flowering Chinese cabbage, and Lifeng No.3 Chinese cabbage) were recommended for subsequent trials. These findings provide data support for the selection, design, and optimization of seed rope braiding machine components and sustainable seeding process. Full article
(This article belongs to the Special Issue Agricultural Engineering for Sustainable Development)
Show Figures

Figure 1

23 pages, 3072 KB  
Article
Zone-Wise Uncertainty Propagation and Dimensional Stability Assessment in CNC-Turned Components Using Manual and Automated Metrology Systems
by Mohammad S. Alsoufi, Saleh A. Bawazeer, Mohammed W. Alhazmi, Hani Alhazmi and Hasan H. Hijji
Machines 2025, 13(7), 585; https://doi.org/10.3390/machines13070585 - 6 Jul 2025
Viewed by 979
Abstract
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic [...] Read more.
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic experimental comparison was conducted between a manual Digital Vernier Caliper (DVC) and an automated Coordinate Measuring Machine (CMM) using five engineering materials: Aluminum Alloy 6061, Brass C26000, Bronze C51000, Carbon Steel 1020 Annealed, and Stainless Steel 304 Annealed. Dimensional measurements were taken from five consecutive machining zones to capture localized metrological behaviors. The results indicated that the CMM consistently achieved lower expanded uncertainty (as low as 0.00166 mm) and minimal propagated uncertainties (≤0.0038 mm), regardless of material hardness or cutting position. In contrast, the DVC demonstrated significantly higher uncertainty (up to 0.03333 mm) and propagated errors exceeding 0.035 mm, particularly in harder materials and unsupported zones affected by surface degradation and fixture variability. Root-sum-square (RSS) modeling confirmed that manual measurements are more prone to operator-induced error amplification. While the DVC sometimes recorded lower absolute errors, its substantial uncertainty margins hampered measurement reliability. To statistically validate these findings, a two-way ANOVA was performed, confirming that both the measurement system and machining zone significantly impacted uncertainty, as well as their interaction. These results emphasize the importance of material-informed and zone-sensitive metrology, highlighting the advantages of automated systems in sustaining measurement repeatability and dimensional stability in high-precision applications. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

26 pages, 2927 KB  
Article
Dimensional Accuracy and Measurement Variability in CNC-Turned Parts Using Digital Vernier Calipers and Coordinate Measuring Machines Across Five Materials
by Mohammad S. Alsoufi, Saleh A. Bawazeer, Mohammed W. Alhazmi, Hasan H. Hijji, Hani Alhazmi and Hazzaa F. Alqurashi
Materials 2025, 18(12), 2728; https://doi.org/10.3390/ma18122728 - 10 Jun 2025
Cited by 1 | Viewed by 3907
Abstract
Attaining dimensional accuracy in CNC-machined parts is essential for high-precision manufacturing, especially when working with materials that exhibit varying mechanical and thermal characteristics. This research provides a thorough experimental comparison of manual and automated metrological systems, specifically the Digital Vernier Caliper (DVC) and [...] Read more.
Attaining dimensional accuracy in CNC-machined parts is essential for high-precision manufacturing, especially when working with materials that exhibit varying mechanical and thermal characteristics. This research provides a thorough experimental comparison of manual and automated metrological systems, specifically the Digital Vernier Caliper (DVC) and Coordinate Measuring Machine (CMM), as applied to five different engineering alloys through five progressively machined axial zones. The study assesses absolute error, relative error, standard deviation, and measurement repeatability, factoring in material hardness, thermal conductivity, and surface changes due to machining. The results indicate that DVC performance is significantly affected by operator input and surface irregularities, with standard deviations reaching 0.03333 mm for Bronze C51000 and relative errors surpassing 1.02% in the initial zones. Although DVC occasionally showed lower absolute errors (e.g., 0.206 mm for Aluminum 6061), these advantages were countered by greater uncertainty and poor repeatability. In comparison, CMM demonstrated enhanced precision and consistency across all materials, with standard deviations below 0.0035 mm and relative errors being neatly within the 0.005–0.015% range, even with challenging alloys like Stainless Steel 304. Furthermore, a Principal Component Analysis (PCA) was conducted to identify underlying measurement–property relationships. The PCA highlighted clear groupings based on sensitivity to error in manual versus automated methods, facilitating predictive classification of materials according to their metrological reliability. The introduction of multivariate modeling also establishes a new framework for intelligent metrology selection based on material characteristics and machining responses. These results advocate for using CMM in applications requiring precise tolerances in the aerospace, biomedical, and high-end tooling sectors, while suggesting that DVC can serve as an auxiliary tool for less critical evaluations. This study provides practical recommendations for aligning measurement techniques with Industry 4.0’s needs for accuracy, reliability, and data-driven quality assurance. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

19 pages, 15746 KB  
Review
Review on the Development and Applications of Permanent Magnet Vernier Motors
by Gan Zhang, Xiaoye Guo, Junjie Zhou and Wei Hua
Energies 2025, 18(9), 2353; https://doi.org/10.3390/en18092353 - 5 May 2025
Cited by 3 | Viewed by 3793
Abstract
The permanent magnet vernier motor (PMVM) is characterized by high torque density and torque transmission capability. It is widely used in applications such as electric transportation and renewable energy generation, where low-speed, high-torque operation is preferred. This paper reviews the basic working principles [...] Read more.
The permanent magnet vernier motor (PMVM) is characterized by high torque density and torque transmission capability. It is widely used in applications such as electric transportation and renewable energy generation, where low-speed, high-torque operation is preferred. This paper reviews the basic working principles and development of topologies, as well as the applications of PMVM. The methods to improve the torque density, power factor, and torque ripple of PMVM are discussed. Furthermore, the paper explores the future development trends of PMVM, providing theoretical foundations and technical support for their further research and engineering applications. In addition to these areas, PMVMs have gained significant attention in precise motion control systems, such as in robotics and CNC machines, where high torque and low vibration are critical. Vernier motors are also being explored in applications like actuators for aerospace systems and advanced medical equipment, where reliability and efficiency are paramount. The ability to precisely control the torque ripple and improve the power factor of PMVMs makes them ideal for use in these demanding environments. Full article
Show Figures

Figure 1

11 pages, 3808 KB  
Article
Design of Dual Winding Flux Modulation Machine for Performance Improvement in Variable Speed Application
by Min-Gu Lyeo, Kyu-Yun Hwang and Sung-Hyun Lee
Machines 2024, 12(8), 535; https://doi.org/10.3390/machines12080535 - 6 Aug 2024
Cited by 2 | Viewed by 1665
Abstract
In this paper, a Dual Winding Flux Modulation Machine (DWFMM) is proposed for variable speed application. The DWFMM is configured by adding windings to the Single Winding Flux Modulation Machine (SWFMM), consisting of a master winding that drives the motor and a slave [...] Read more.
In this paper, a Dual Winding Flux Modulation Machine (DWFMM) is proposed for variable speed application. The DWFMM is configured by adding windings to the Single Winding Flux Modulation Machine (SWFMM), consisting of a master winding that drives the motor and a slave winding that enables pole changing and performance enhancement. Through pole changing, the DWFMM can operate as two different machines: a Vernier Machine (VM) for varying speeds and torque operations and a Permanent Magnet Synchronous Machine (PMSM). In the VM mode, flux enhancement is applied to improve torque, and in the PMSM mode, Flux Weakening is applied to increase speed. The characteristics of the two different operating modes were analyzed using the Finite Element Method (FEM) to validate the machine’s performance. Finally, the DWFMM and SWFMM were designed and compared as variable speed application machines to confirm their suitability and superiority. Full article
Show Figures

Figure 1

16 pages, 6954 KB  
Article
Torque Ripple Reduction in Brushless Wound Rotor Vernier Machine Using Third-Harmonic Multi-Layer Winding
by Muhammad Zulqarnain, Sheikh Yasir Hammad, Junaid Ikram, Syed Sabir Hussain Bukhari and Laiq Khan
World Electr. Veh. J. 2024, 15(4), 163; https://doi.org/10.3390/wevj15040163 - 11 Apr 2024
Cited by 8 | Viewed by 1870
Abstract
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings [...] Read more.
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings serially with a three-phase diode rectifier to develop a pulsating field in the airgap of a machine. However, in the proposed model, the ABC winding is supplied by a three-phase current source inverter, whereas the auxiliary winding (X) carries no current due to an open circuit. The fundamental MMF component developed in the machine airgap creates a four-pole stator field, while the third-harmonic MMF induces the harmonic current in the specialized rotor harmonic winding. The rotor on the other side contains the harmonic and the field windings connected through a full-bridge rectifier. The electromagnetic interaction of the stator and rotor fields generates torque. Due to the open-circuited winding pattern, the proposed machine results in a low torque ripple. A 2D model is designed using JMAG-Designer, and 2D field element analysis (FEA) is carried out to determine the output torque and machine’s efficiency. A comparative performance analysis of both the conventional and proposed topologies is discussed graphically. The quantitative analysis of the proposed topology shows better performance as compared to the recently developed third-harmonic-based brushless WRVM topology in terms of output torque and torque ripples. Full article
Show Figures

Figure 1

19 pages, 6646 KB  
Article
Comparative Analysis and Design Optimization of Ferrite-Based Surface PM Vernier Machines
by Gwan-Hui Jang, Abdur Rehman and Gilsu Choi
Energies 2024, 17(7), 1687; https://doi.org/10.3390/en17071687 - 1 Apr 2024
Cited by 3 | Viewed by 2109
Abstract
This paper presents the results of a comprehensive investigation into the comparative analysis and design optimization of ferrite-based surface permanent magnet vernier machines (SPMVMs). While SPMVMs boast a simple mechanical structure and enhanced torque density attributed to the flux modulation effect, they suffer [...] Read more.
This paper presents the results of a comprehensive investigation into the comparative analysis and design optimization of ferrite-based surface permanent magnet vernier machines (SPMVMs). While SPMVMs boast a simple mechanical structure and enhanced torque density attributed to the flux modulation effect, they suffer from a persistent challenge of low power factor. Several factors hinder the adoption of low-cost ferrite magnets in SPMVMs. First, ferrite magnets are prone to irreversible demagnetization, constraining the allowable range of magnet thickness. Second, the reduced residual magnetic flux density of ferrite magnets exacerbates the decrease in power factor and machine efficiency. Thus, achieving optimal performance in ferrite-based SPMVMs necessitates the careful selection of various design parameters. To address these issues, this study employs a surrogate-based metaheuristic optimization algorithm with adaptive sampling to identify the optimal solution. Additionally, the integration of a Halbach array is explored to further enhance the performance of the three-slot/two-pole SPMVM topology. Subsequently, two ferrite-based SPMVM baseline models—one with a conventional SPM structure and another with a Halbach magnet array—are thoroughly designed, optimized, and subjected to detailed performance analysis using the 2D finite element method. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 3064 KB  
Article
Design and Optimisation of a 5 MW Permanent Magnet Vernier Motor for Podded Ship Propulsion
by Nima Arish, Maarten J. Kamper and Rong-Jie Wang
World Electr. Veh. J. 2024, 15(3), 119; https://doi.org/10.3390/wevj15030119 - 20 Mar 2024
Cited by 7 | Viewed by 3799
Abstract
The evolution of electric propulsion systems in the maritime sector has been influenced significantly by technological advancements in power electronics and machine design. Traditionally, these systems have employed surface-mounted permanent magnet synchronous motors (PMSMs) in podded configurations. However, the advent of permanent magnet [...] Read more.
The evolution of electric propulsion systems in the maritime sector has been influenced significantly by technological advancements in power electronics and machine design. Traditionally, these systems have employed surface-mounted permanent magnet synchronous motors (PMSMs) in podded configurations. However, the advent of permanent magnet Vernier motors (PMVMs), which leverage magnetic gearing effects, presents a novel approach with promising potential. This study conducts a comparative analysis between PMVMs and conventional PMSMs at a power level of 5 MW for podded ship propulsion, with a particular focus on the impact of gear ratios (Gr). An objective function was developed that integrates motor dimension constraints and the power factor (PF), a critical yet frequently neglected parameter in existing research. The findings indicate that PMVMs with lower Gr have lower mass and cost compared to those with higher Gr and traditional PMSMs, at a PF level of 0.7, which is high for Vernier machines. Moreover, PMVMs with lower Gr achieve efficiencies exceeding 99%, outperforming both their higher Gr counterparts and conventional PMSMs. The superior performance of PMVMs is attributed to lower current density and reduced copper loss, which contribute to their enhanced thermal performance. These details are elaborated on further in the paper. Consequently, these findings suggest that PMVMs with lower Gr are particularly well suited for high-power maritime propulsion applications, offering advantages in terms of compactness, efficiency (EF), cost-effectiveness, and thermal performance. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

26 pages, 6864 KB  
Article
Subdomain Analytical Modeling of a Double-Stator Spoke-Type Permanent Magnet Vernier Machine
by Xiangdong Su, Hang Zhao, Zhijun Ou, Jincheng Yu and Chunhua Liu
Energies 2024, 17(5), 1114; https://doi.org/10.3390/en17051114 - 26 Feb 2024
Cited by 3 | Viewed by 1674
Abstract
This paper proposes an analytical model of the double-stator spoke-type permanent magnet vernier machine (DSSTVM) using the subdomain method (SDM), which can be used to calculate the magnetic field distribution and corresponding electromagnetic parameters of the DSSTVM. The whole field domain is divided [...] Read more.
This paper proposes an analytical model of the double-stator spoke-type permanent magnet vernier machine (DSSTVM) using the subdomain method (SDM), which can be used to calculate the magnetic field distribution and corresponding electromagnetic parameters of the DSSTVM. The whole field domain is divided into several subdomains according to the magnetic characteristics of each region, within which Laplace’s and Poisson’s equations are solved accordingly in terms of magnetic vector potential (MVP). Then, the corresponding magnetic flux density distribution, back electromotive force (EMF), and electromagnetic torque of the DSSTVM can be obtained. Ultimately, finite element analysis (FEA) is adopted to validate the proposed analytical model’s effectiveness for quickly predicting the no-load and on-load performances of the DSSTVM. Full article
(This article belongs to the Special Issue Artificial Intelligence for Motor Drive Systems and Its Applications)
Show Figures

Figure 1

14 pages, 6242 KB  
Article
Highly Sensitive Temperature Sensor Based on Vernier Effect Using a Sturdy Double-cavity Fiber Fabry-Perot Interferometer
by Miguel Á. Ramírez-Hernández, Monserrat Alonso-Murias and David Monzón-Hernández
Polymers 2023, 15(23), 4567; https://doi.org/10.3390/polym15234567 - 29 Nov 2023
Cited by 8 | Viewed by 2196
Abstract
Temperature measuring is a daily procedure carried out worldwide in practically all environments of human activity, but it takes particular relevance in industrial, scientific, medical, and food processing and production areas. The characteristics and performance of the temperature sensors required for such a [...] Read more.
Temperature measuring is a daily procedure carried out worldwide in practically all environments of human activity, but it takes particular relevance in industrial, scientific, medical, and food processing and production areas. The characteristics and performance of the temperature sensors required for such a large universe of applications have opened the opportunity for a comprehensive range of technologies and architectures capable of fulfilling the sensitivity, resolution, dynamic range, and response time demanded. In this work, a highly sensitive fiber optic temperature sensor based on a double-cavity Fabry-Perot interferometer (DCFPI) is proposed and demonstrated. Taking advantage of the Vernier effect, we demonstrate that it is possible to improve the temperature sensitivity exhibited by the polymer-capped fiber Fabry-Perot interferometer (PCFPI) up to 39.8 nm/°C. The DCFPI is sturdy, reconfigured, and simple to fabricate, consisting of a semi-spherical polymer cap added to the surface of the ferrule of a commercial single-mode fiber connector (SMF FC/PC) placed in front of a mirror at a proper distance. The length of the air cavity (Lair) was adjusted to equal the thickness of the polymer cap (Lpol) plus a distance δ to generate the most convenient Vernier effect spectrum. The DCFPI was packaged in a machined, movable mount that allows the adjustment of the air cavity length easily but also protects the polymer cap and simplifies the manipulation of the sensor head. Full article
(This article belongs to the Special Issue New Studies on Polymer-Based Sensors)
Show Figures

Graphical abstract

16 pages, 19882 KB  
Article
The Analysis of Permanent Magnet Vernier Synchronous Machine Vibration and Noise
by Fan Yang, Daolu Li, Yi Zhang, Lijing Wang, Bitian Ye and Fang Zhang
Electronics 2023, 12(20), 4341; https://doi.org/10.3390/electronics12204341 - 19 Oct 2023
Viewed by 2220
Abstract
The permanent magnet vernier synchronous machine (PMVSM) has the characteristics of high torque density and high power density and has advantages in the field of low-speed and high-torque applications. The PMVSM utilizes rich harmonics for torque enhancement, but it can also cause an [...] Read more.
The permanent magnet vernier synchronous machine (PMVSM) has the characteristics of high torque density and high power density and has advantages in the field of low-speed and high-torque applications. The PMVSM utilizes rich harmonics for torque enhancement, but it can also cause an increase in radial electromagnetic force and vibration noise. In this paper, we take a 12-slot 10-pole PMVSM as an example to analyze the source of radial electromagnetic force, vibration and noise. The electromagnetic finite-element model and structural finite-element model of the PMVSM are established for calculation. Through the analysis and calculation of two-dimensional electromagnetic fields, the radial electromagnetic force distribution of the PMVSM is obtained. We derive the radial electromagnetic force formula of the PMVSM and verify the correctness of the formula through harmonic analysis of the radial electromagnetic force. The sources of radial electromagnetic forces at various orders and frequencies within the PMVSM are analyzed and summarized by coupling the radial electromagnetic force obtained from the electromagnetic finite-element model to the structural finite-element model and conducting electromagnetic vibration harmonic response analysis on the PMVSM. The measured acceleration spectrum of the prototype is compared with the finite-element method (FEM) results, verifying the correctness of the finite-element simulation results for electromagnetic vibration. Full article
Show Figures

Figure 1

Back to TopTop