Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = UV-vis absorption spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2530 KB  
Article
Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution
by Kymbat Kopbalina, Aigerim Adekenova, Zhanar Shaimerdenova, Zhanargul Kairatova, Kuanysh Shakarimova, Dmitrii Pankin, Mikhail Smirnov, Anarkul Kishkentayeva, Makpal Artykbayeva and Roza Jalmakhanbetova
Molecules 2025, 30(20), 4139; https://doi.org/10.3390/molecules30204139 - 20 Oct 2025
Viewed by 395
Abstract
Cytisine and coumarin derivatives are promising for the creation of new drugs with antiarrhythmic, antiepileptic, antidiabetic, anti-inflammatory, and antimicrobial effects. In this study, the molecular structure of the cytisine and coumarin derivative in solution, a recently synthesized substance N-(2-oxo-2H-chromen-3-carbonyl)cytisine, was studied by NMR [...] Read more.
Cytisine and coumarin derivatives are promising for the creation of new drugs with antiarrhythmic, antiepileptic, antidiabetic, anti-inflammatory, and antimicrobial effects. In this study, the molecular structure of the cytisine and coumarin derivative in solution, a recently synthesized substance N-(2-oxo-2H-chromen-3-carbonyl)cytisine, was studied by NMR and UV-Vis absorption spectroscopies accompanied by a theoretical study based on density functional theory. The existence of four stable conformers associated with the rotation of the cytisine part relative to the coumarin part due to a sufficiently flexible intermediate part has been demonstrated. Their energy and concentrations were estimated. In the 1H and 13C NMR spectra, peaks were found that correspond to individual conformers and groups of conformers. The UV-visible absorption spectrum also revealed spectral features associated with different conformers. It was shown that the obtained results are consistent with earlier studies about conformational state identification in cytisine derivatives functionalized with flexible parts. The obtained theoretical and experimental results provide useful spectroscopic information for such conformer identification in this and structurally similar substances. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

25 pages, 16820 KB  
Article
A Dual-Sensitizer Strategy for Enhanced Photocatalysis by Coupling Perylene Tetracarboxylic Acid and Copper Phthalocyanine Tetracarboxylic Acids on TiO2
by Alina Raditoiu, Florentina Monica Raduly, Maria Grapin, Radu Claudiu Fierascu, Cristian-Andi Nicolae, Bogdan Trica and Valentin Raditoiu
Materials 2025, 18(20), 4715; https://doi.org/10.3390/ma18204715 - 14 Oct 2025
Viewed by 536
Abstract
Titanium dioxide (TiO2) is a widely used photocatalyst, yet its activity is limited to ultraviolet light due to its large band gap. To extend absorption into the visible spectrum, this study developed a dual-sensitizer strategy by coupling perylene tetracarboxylic acid (PTCA) [...] Read more.
Titanium dioxide (TiO2) is a widely used photocatalyst, yet its activity is limited to ultraviolet light due to its large band gap. To extend absorption into the visible spectrum, this study developed a dual-sensitizer strategy by coupling perylene tetracarboxylic acid (PTCA) and copper phthalocyanine tetracarboxylic acid (CuPcTC) onto TiO2. Both dyes were selected for their strong visible light absorption, photostability, and efficient charge transfer properties. Hybrid photocatalysts were prepared via an ultrasonication–coprecipitation method and incorporated into coatings. Optical, morpho-structural, thermal, and electrochemical methods were used to characterize the hybrid photocatalysts, while photocatalytic performances were evaluated by UV–Vis spectroscopy, hydroxyl radical generation, and Methylene Blue degradation under simulated solar light. The dual-sensitized TiO2 composites exhibited broadened absorption across 400–750 nm, effective charge separation, and stable radical generation. Among the tested samples, the PTCA–CuPcTC hybrid (P3) demonstrated the highest activity, achieving efficient degradation of Methylene Blue with sustained performance over repeated cycles. Characterization confirmed uniform distribution of sensitizers, high crystallinity, and adequate thermal stability. These findings indicate that combining PTCA and CuPcTC provides synergistic benefits in light harvesting, charge transfer, and durability. The dual-sensitizer approach offers a promising route for visible-light-responsive photocatalysts in environmental remediation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

28 pages, 8209 KB  
Article
Photocatalytic Enhancement of Anatase Supported on Mesoporous Modified Silica for the Removal of Carbamazepine
by Guillermo Cruz-Quesada, Beatriz Rosales-Reina, Inmaculada Velo-Gala, María del Pilar Fernández-Poyatos, Miguel A. Álvarez, Cristian García-Ruiz, María Victoria López-Ramón and Julián J. Garrido
Nanomaterials 2025, 15(19), 1533; https://doi.org/10.3390/nano15191533 - 8 Oct 2025
Viewed by 497
Abstract
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 [...] Read more.
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 presents two main drawbacks: its limited absorption of the visible spectrum; and its relatively low specific surface area and pore volume. Regarding the latter, several works in the literature have addressed the issue by developing new synthesis approaches in which anatase is dispersed and supported on the surface of porous materials. In the present work, two series of materials have been prepared where anatase has been supported on mesoporous silica (MSTiR%) in situ through a hydrothermal synthesis approach, where, in addition to using tetraethoxysilane (TEOS) as a silicon precursor, three organotriethoxysilanes [RTEOS, where R = methyl (M), propyl (P) or phenyl (Ph)] were used at a RTEOS:TEOS molar percentage of 10 and 30%. The materials were thoroughly characterized by several techniques to determine their morphological, textural, chemical, and UV-vis light absorption properties and then the most promising materials were used as photocatalysts in the photodegradation of the emerging contaminant and antiepileptic carbamazepine (CBZ) under UV irradiation. The materials synthesized using 10% molar percentage of RTEOS (MSTiR10) were able to almost completely degrade (~95%), 1 mg L−1 of CBZ after 1 h of irradiation using a 275 nm LED and 0.5 g L−1 of catalyst dose. Therefore, this new synthesis approach has proven useful to develop photoactive TiO2 composites with enhanced textural properties. Full article
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Viewed by 407
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

8 pages, 707 KB  
Proceeding Paper
Study of the Kapton-H Fundamental Absorption Edge and Tailing Behaviour
by Gianfranco Carotenuto
Eng. Proc. 2025, 105(1), 7; https://doi.org/10.3390/engproc2025105007 - 28 Sep 2025
Viewed by 526
Abstract
Kapton-H type is an optical plastic with a UV-Vis-NIR spectrum characterized by abrupt absorbance change at a wavelength of ca. 550 nm. Such sharp optical discontinuity, known as the fundamental absorption edge, has been investigated using the Tauc plot method, and a band [...] Read more.
Kapton-H type is an optical plastic with a UV-Vis-NIR spectrum characterized by abrupt absorbance change at a wavelength of ca. 550 nm. Such sharp optical discontinuity, known as the fundamental absorption edge, has been investigated using the Tauc plot method, and a band gap energy (Eg) of (2.22 ± 0.05) eV for an indirect allowed electron transition model has been found. The Cody plot has also been applied, and a slightly lower band gap energy value (i.e., Eg = 2.33 ± 0.05 eV) has been found. The Urbach rule applied to the spectrum tail has provided an Urbach energy value (EU) of ca. (185 ± 2) meV, which is quite a high value that is fully compatible with the highly disordered structure of this sterically rigid semi-crystalline polymer. The cut-on wavelength (550 nm), visible transparency (T% of ca. 80), and other relevant optical characteristics of the Kapton-H type have been also evaluated and compared with corresponding values of polyetherimide. Full article
Show Figures

Figure 1

23 pages, 5279 KB  
Article
Green Synthesis of Zinc Oxide Nanoparticles: Physicochemical Characterization, Photocatalytic Performance, and Evaluation of Their Impact on Seed Germination Parameters in Crops
by Hanan F. Al-Harbi, Manal A. Awad, Khalid M. O. Ortashi, Latifah A. AL-Humaid, Abdullah A. Ibrahim and Asma A. Al-Huqail
Catalysts 2025, 15(10), 924; https://doi.org/10.3390/catal15100924 - 28 Sep 2025
Viewed by 1460
Abstract
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and [...] Read more.
This study reports on green-synthesized zinc oxide nanoparticles (ZnONPs), focusing on their physicochemical characterization, photocatalytic properties, and agricultural applications. Dynamic light scattering (DLS) analysis revealed a mean hydrodynamic diameter of 337.3 nm and a polydispersity index (PDI) of 0.400, indicating moderate polydispersity and nanoparticle aggregation, typical of biologically synthesized systems. High-resolution transmission electron microscopy (HR-TEM) showed predominantly spherical particles with an average diameter of ~28 nm, exhibiting slight agglomeration. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of zinc and oxygen, while X-ray diffraction (XRD) analysis identified a hexagonal wurtzite crystal structure with a dominant (002) plane and an average crystallite size of ~29 nm. Photoluminescence (PL) spectroscopy displayed a distinct near-band-edge emission at ~462 nm and a broad blue–green emission band (430–600 nm) with relatively low intensity. The ultraviolet–visible spectroscopy (UV–Vis) absorption spectrum of the synthesized ZnONPs exhibited a strong absorption peak at 372 nm, and the optical band gap was calculated as 2.67 eV using the Tauc method. Fourier-transform infrared spectroscopy (FTIR) analysis revealed both similarities and distinct differences to the pigeon extract, confirming the successful formation of nanoparticles. A prominent absorption band observed at 455 cm−1 was assigned to Zn–O stretching vibrations. X-ray photoelectron spectroscopy (XPS) analysis showed that raw pigeon droppings contained no Zn signals, while their extract provided organic biomolecules for reduction and stabilization, and it confirmed Zn2+ species and Zn–O bonding in the synthesized ZnONPs. Photocatalytic degradation assays demonstrated the efficient removal of pollutants from sewage water, leading to significant reductions in total dissolved solids (TDS), chemical oxygen demand (COD), and total suspended solids (TSS). These results are consistent with reported values for ZnO-based photocatalytic systems, which achieve biochemical oxygen demand (BOD) levels below 2 mg/L and COD values around 11.8 mg/L. Subsequent reuse of treated water for irrigation yielded promising agronomic outcomes. Wheat and barley seeds exhibited 100% germination rates with ZnO NP-treated water, which were markedly higher than those obtained using chlorine-treated effluent (65–68%) and even the control (89–91%). After 21 days, root and shoot lengths under ZnO NP irrigation exceeded those of the control group by 30–50%, indicating enhanced seedling vigor. These findings demonstrate that biosynthesized ZnONPs represent a sustainable and multifunctional solution for wastewater remediation and agricultural enhancement, positioning them as a promising candidate for integration into green technologies that support sustainable urban development. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

25 pages, 12500 KB  
Article
Gemmological, Spectroscopic, and Origin Description Studies of Tourmaline from Yunnan, China
by Qishen Zhou, Fangmin Zhan, Haochi Yu, Zhuo Lu and Xin Wan
Molecules 2025, 30(18), 3680; https://doi.org/10.3390/molecules30183680 - 10 Sep 2025
Viewed by 560
Abstract
The Nujiang region of Yunnan is by far the richest tourmaline-producing mining area in China. Since the discovery of the tourmaline-bearing deposit in Yunnan Province in 1980, there have been few comprehensive gemmological studies of this deposit. Therefore, the results of tests on [...] Read more.
The Nujiang region of Yunnan is by far the richest tourmaline-producing mining area in China. Since the discovery of the tourmaline-bearing deposit in Yunnan Province in 1980, there have been few comprehensive gemmological studies of this deposit. Therefore, the results of tests on 32 tourmaline samples from the Fugong and Gongshan regions of Yunnan are reported in this paper. The chemical composition of the Yunnan tourmalines was analyzed, and the contents of major trace elements were compared with those of tourmaline samples from different localities reported in the literature to highlight their specific provenance characteristics. Microscopic observation revealed the presence of liquid, gas, and solid inclusions; Raman spectra indicated the presence of constitutional water and CH4-C2H6 dihydrate in the Yunnan tourmalines and also pointed to the influence pattern of the Fe content. The infrared spectrum in the range of 4000–4800 cm−1 showed the frequency of metal cations and hydroxyl groups. Based on the characteristic peaks at 4343 cm−1 and 4600 cm−1, a quick distinction between elbaite and dravite could be made. UV–Vis absorption spectroscopy analysis showed that in yellow tourmalines, Mn2+-Ti4+ IVCT is the main cause of color, while green coloration occurs due to Fe2+–Fe3+ interactions or Cr3+ and V3+, and the pink color is caused by Mn3+ d-d transitions. The three-dimensional fluorescence spectra revealed the presence of the main fluorescence peaks at λex280/λem320 nm and λex265/λem510 nm in the tourmaline samples analyzed and the fluorescence intensity with Ti and Fe contents. Full article
Show Figures

Figure 1

26 pages, 4876 KB  
Article
Photocatalytic Degradation of Methylene Blue Dye with g-C3N4/ZnO Nanocomposite Materials Using Visible Light
by Juan C. Pantoja-Espinoza, Gema A. DelaCruz-Alderete and Francisco Paraguay-Delgado
Catalysts 2025, 15(9), 851; https://doi.org/10.3390/catal15090851 - 4 Sep 2025
Viewed by 1913
Abstract
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, [...] Read more.
The g-C3N4/ZnO nanocomposite materials were applied to degrade methylene blue (MB). The samples were characterized and evaluated to study the adsorption and photocatalytic degradation under visible light. The g-C3N4 was incorporated at percentages of 5%, 10%, 20%, and 40% relative to the ZnO weight. These composite materials were prepared using a solvothermal microwave technique. The structural, textural, morphological, and optical properties were investigated using XRD, FTIR, SEM, EDS, STEM, BET, UV-Vis, and XPS techniques. The XRD patterns of the samples showed the coexistence of crystalline phases of g-C3N4 and ZnO, while images and elemental composition analysis confirmed the formation of nanocomposite samples. The UV-Vis spectrum revealed a redshift in the absorption edge of the nanocomposites, indicating improved light-harvesting capability. The synthesized material g-C3N4/ZnO (20/80), with a surface area of 25 m2/g, exhibited higher photocatalytic performance, achieving 85% degradation of MB after 100 min under visible light, which corresponds to nearly three times the degradation efficiency of commercial P25-TiO2 (31%) under the same conditions. The reusability and stability tests were conducted up to the fifth cycle, and this material showed 77% degradation, indicating good stability. This nanocomposite material has good potential as a photocatalyst for solar-driven MB. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

23 pages, 5631 KB  
Article
Obtention and Characterization of TiO2-Folic Acid-ZnPc Semiconductor Nanoparticles for Photodynamic Therapy Against Glioma Cells
by Citlali Ekaterina Rodríguez-Pérez, Sonia Rodríguez-García, Ma. Elena Manríquez-Ramírez, A. Martin Ortiz-Torres, Francisco Tzompantzi-Morales and Emma Ortiz-Islas
Pharmaceutics 2025, 17(8), 1071; https://doi.org/10.3390/pharmaceutics17081071 - 19 Aug 2025
Viewed by 814
Abstract
Background/Objectives: This study reports the synthesis of TiO2 nanoparticles, their functionalization with folic acid (FA), and the subsequent loading with zinc phthalocyanine (ZnPc) to develop photosensitizers for photodynamic therapy (PDT) targeting glioma cells. Methods: TiO2, TiO2-FA, and TiO [...] Read more.
Background/Objectives: This study reports the synthesis of TiO2 nanoparticles, their functionalization with folic acid (FA), and the subsequent loading with zinc phthalocyanine (ZnPc) to develop photosensitizers for photodynamic therapy (PDT) targeting glioma cells. Methods: TiO2, TiO2-FA, and TiO2-FA-ZnPc nanoparticles were synthesized via a sol–gel process involving the hydrolysis and condensation of titanium (IV) isopropoxide. FA and ZnPc were incorporated in vitro during the synthesis. The resulting materials were characterized by transmission and scanning electron microscopy (TEM and SEM), X-ray diffraction (XRD), Raman and UV–Vis spectroscopy, thermogravimetric analysis (TGA), and nitrogen adsorption–desorption measurements. Reactive oxygen species (ROS) generation was evaluated in vitro using the 1,3-diphenylisobenzofuran (DPBF) probe. A 40 ppm solution of each TiO2 system was irradiated with UV light, and the degradation of DPBF was monitored. Biological assays were conducted to assess the viability of human glioblastoma cells (LN18 and U251) incubated with the TiO2-based materials, with and without UV exposure. Human fibroblast cells (BJ) were used to evaluate biocompatibility. Results: All TiO2-based materials retained key characteristics, including high surface area (~600–700 m2/g), mesoporous structure (pore diameter ~4–5 nm), mixed anatase–amorphous morphology, and a bandgap of approximately 3.46 eV. The UV–Vis spectrum of TiO2-FA-ZnPc displayed additional absorption bands in the visible region (600–700 nm), consistent with ZnPc incorporation. Upon UV irradiation, the DPBF absorbance at 410 nm decreased over time, indicating ROS generation and resulting in complete degradation within 10 min (TiO2), 12 min (TiO2-FA), and 14 min (TiO2-FA-ZnPc). BJ cells exhibited good biocompatibility at all concentrations. LN18 and U251 cells showed no cytotoxicity below 100 μg/mL unless exposed to UV light. Conclusions: The synthesized TiO2-based systems demonstrate good biocompatibility and significant phototoxicity under UV irradiation, highlighting their strong potential for application in photodynamic therapy. Full article
Show Figures

Graphical abstract

18 pages, 11678 KB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 591
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

12 pages, 7037 KB  
Article
Microwave-Assisted Reduction Technology for Recycling of Hematite Nanoparticles from Ferrous Sulfate Residue
by Genkuan Ren
Materials 2025, 18(14), 3214; https://doi.org/10.3390/ma18143214 - 8 Jul 2025
Viewed by 571
Abstract
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite [...] Read more.
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite (HM) nanoparticles from FSR via microwave-assisted reduction technology. Physicochemical properties of HM nanoparticles were investigated by multiple analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet visible (UV-Vis) spectrum, vibrating sample magnetometer (VSM), and the Brunauer–Emmett–Teller (BET) method. Analytic results indicated that the special surface area, pore volume, and pore size of HM nanoparticles with the average particle size of 45 nm were evaluated to be ca. 20.999 m2/g, 0.111 cm3/g, and 0.892 nm, respectively. Magnetization curve indicated that saturation magnetization Ms for as-synthesized HM nanoparticles was calculated to be approximately 1.71 emu/g and revealed weakly ferromagnetic features at room temperature. In addition, HM nanoparticles exhibited noticeable light absorption performance for potential applications in many fields such as electronics, optics, and catalysis. Hence, synthesis of HM nanoparticles via microwave-assisted reduction technology provides an effective way for utilizing FSR and easing environmental burden. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 2460 KB  
Article
Extracellular Synthesis of Bioactive Silver Nanoparticles Using Brevibacillus sp. MAHUQ-41 and Their Potential Application Against Drug-Resistant Bacterial Pathogens Listeria monocytogenes and Yersinia enterocolitica
by Md. Amdadul Huq
J. Funct. Biomater. 2025, 16(7), 241; https://doi.org/10.3390/jfb16070241 - 30 Jun 2025
Cited by 1 | Viewed by 1085
Abstract
The purpose of current study was the green synthesis of bioactive silver nanoparticles (AgNPs) using Brevibacillus sp. MAHUQ-41 and the exploration of their role in controlling drug-resistant bacterial pathogens Listeria monocytogenes and Yersinia enterocolitica. The culture supernatant of strain MAHUQ-41 was employed [...] Read more.
The purpose of current study was the green synthesis of bioactive silver nanoparticles (AgNPs) using Brevibacillus sp. MAHUQ-41 and the exploration of their role in controlling drug-resistant bacterial pathogens Listeria monocytogenes and Yersinia enterocolitica. The culture supernatant of strain MAHUQ-41 was employed for a simple and eco-friendly synthesis of biofunctional silver nanoparticles (AgNPs). The resulting nanoparticles were analyzed using several techniques, including UV–Visible spectroscopy, XRD, FE-TEM, FTIR, and DLS. The UV–Vis spectral analysis of the AgNPs synthesized via Brevibacillus sp. MAHUQ-41 revealed a prominent absorption peak at 400 nm. FE-TEM results confirmed spherical-shaped 15–60 nm sized nanoparticles. XRD results indicated that the synthesized AgNPs were crystalline in nature. The FTIR spectrum determined various functional groups on the surface of synthesized nanoparticles. Potent antibacterial properties were observed in green-synthesized AgNPs against tested pathogens. The MIC value of extracellular synthesized AgNPs for both pathogenic bacteria was 6.2 µg/mL, and the MBCs were 25.0 µg/mL and 12.5 µg/mL for L. monocytogenes and Y. enterocolitica, respectively. Treatment by synthesized AgNPs resulted in morphological alterations and structural damages in both L. monocytogenes and Y. enterocolitica. These alterations can interfere with regular cellular activities, potentially resulting in cell death. This study is the first to report the antimicrobial properties of silver nanoparticles synthesized using Brevibacillus sp. MAHUQ-41. The findings obtained in the present study supported the role of Brevibacillus sp. MAHUQ-41-mediated synthesized AgNPs in controlling drug-resistant bacterial pathogens L. monocytogenes and Y. enterocolitica. Full article
(This article belongs to the Special Issue Antimicrobial Biomaterials for Medical Applications)
Show Figures

Figure 1

19 pages, 6018 KB  
Article
Spectroscopic Studies of Baltic Amber—Critical Analysis
by Mirosław Kwaśny and Aneta Bombalska
Molecules 2025, 30(12), 2617; https://doi.org/10.3390/molecules30122617 - 17 Jun 2025
Viewed by 1255
Abstract
Using optical spectroscopy methods including absorption in the UV-VIS, FTIR, Raman, and fluorescence, the spectra of 25 different Baltic amber samples were measured, and the ability of each method to distinguish between thermally modified and naturally aged material was analyzed. The natural ambers [...] Read more.
Using optical spectroscopy methods including absorption in the UV-VIS, FTIR, Raman, and fluorescence, the spectra of 25 different Baltic amber samples were measured, and the ability of each method to distinguish between thermally modified and naturally aged material was analyzed. The natural ambers studied are characterized by a wide range of spectral properties: the position of the transmission edge in the UV-VIS spectra, the absorbance ratios of the C-H and C=O groups in the IR spectra, a difference of approximately 20% in the fluorescence intensity level, and differences in the band ratios in the C=C and C-H bonds in the Raman spectrum. Spectral studies were carried out on samples of natural and thermally modified amber at temperatures of 100, 150, and 200 °C for 2–8 h. Drastic changes occur at temperatures above 150 °C: the color changes to dark brown, the UV-VIS transmission edge shifts, the absorbance of the C=O group increases, the absorbance intensity of the C=C bond decreases, and fluorescence disappears. In some special cases, fluorescence methods allow for the unambiguous distinction of amber from different geographical regions (e.g., Baltic and Dominican). Spectroscopic methods can distinguish natural amber from thermally modified amber only for large changes in the spectrum at temperatures of 150–200; for smaller changes, the differences between individual samples of natural amber may be greater than in the case of thermal modification. Full article
Show Figures

Figure 1

19 pages, 7264 KB  
Article
Selective and Sensitive Dual Chromogenic Cyanide and Fluorescent Azide Probe
by Yousef M. Hijji, Rajeesha Rajan, Amjad M. Shraim, Bassam Attili, Sisay Uota and Fasil Abebe
Photochem 2025, 5(2), 12; https://doi.org/10.3390/photochem5020012 - 6 May 2025
Cited by 1 | Viewed by 988
Abstract
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the [...] Read more.
IR-780 is a heptamethine cyanine dye that exhibits strong absorbance in the near-infrared region. Herein, we report IR-780 dye as a dual sensor for chromogenic cyanide detection and azide’s fluorogenic sensing in acetonitrile. Cyanide and hydroxide cause instant, dramatic color changes in the dye solution from green to yellow and dramatic spectral changes in the UV-Vis spectrum. The interaction of cyanide and hydroxide with the dye caused a dramatic decrease in the intensity of the strong absorption band at 780 nm and a concomitant band appearance at 435 nm. Other monovalent ions, including fluoride, chloride, bromide, iodide, dihydrogen phosphate, thiocyanate, acetate, and dihydrogen arsenate, caused no significant color or spectral changes. UV-Vis studies showed that the IR-780 dye is sensitive and selective to both ions. The detection limits for cyanide and azide are 0.39 µM and 0.50 µM, respectively. Interestingly, the IR-780 dye exhibited strong fluorescence at 535nm upon interaction with azide, while its initial emission at 809 nm was quenched. Both UV-Vis and fluorescence spectroscopy accomplished the detection of cyanide and azide using IR-780. Furthermore, the sensor’s effectiveness in fluorescence imaging of intracellular CN⁻ ions is demonstrated in live HeLa cells. Full article
Show Figures

Figure 1

15 pages, 5164 KB  
Article
Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials
by Lu Wang, Enwang Du, Zhi Liu and Zhiqiang Liu
Materials 2025, 18(9), 2043; https://doi.org/10.3390/ma18092043 - 29 Apr 2025
Viewed by 692
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess [...] Read more.
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet–visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l’Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop