Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution
Abstract
1. Introduction
2. Results and Discussions
2.1. Theoretically Predicted Structure
2.2. Theoretical and Experimental NMR Spectroscopy Analysis
Experimental Chemical Shifts for the Complex, ppm | Experimental Chemical Shifts for the Coumarin * and (-)-Cytisine ** Molecules, ppm | Theoretical Chemical Shift, ppm | Assignment | |||
---|---|---|---|---|---|---|
Conformer 1 | Conformer 2 | Conformer 3 | Conformer 4 | |||
163.49 | -- | -- | -- | 163.32039 | 164.4544 | 45-C |
163.32 | -- | 163.93938 | 163.89789 | -- | -- | 45-C |
162.15 | 163.4 | -- | -- | 161.12527 | 161.12232 | 19-C |
162.06 | 163.4 | 161.07417 | 161.09055 | -- | -- | 19-C |
157.27 | 160.63 | -- | -- | -- | 158.30027 | 31-C |
156.98 | 160.63 | 157.63224 | 157.70973 | 157.54976 | -- | 31-C |
153.49 | 153.99 | 154.75016 | -- | -- | -- | 44-C |
153.3 | 153.99 | -- | 154.81441 | 154.41463 | 154.69328 | 44-C |
149.49 | 150.9 | -- | 152.20028 | -- | 152.39242 | 24-C |
149.08 | 150.9 | 151.86926 | -- | 151.87505 | -- | 24-C |
141.87 | 143.48 | -- | -- | -- | 143.92684 | 33-C |
141.08 | 143.48 | 144.86694 | 145.03269 | -- | -- | 33-C |
139 | 138.6 | -- | -- | 140.57613 | -- | 33-C |
138.68 | 138.6 | 137.55998 | 137.76359 | 137.57685 | 137.46474 | 22-C |
132.75 | 131.79 | 132.39204 | 132.41392 | -- | 132.27445 | 40-C |
132.68 | 131.79 | -- | -- | 131.95049 | -- | 40-C |
128.91 | 127.95 | -- | 128.19128 | -- | -- | 36-C |
128.75 | 127.95 | 128.09928 | -- | 127.86085 | 127.99149 | 36-C |
124.94 | 116.56 | 124.14097 | 124.42785 | -- | 125.25192 | 32-C |
124.89 | 116.56 | -- | -- | -- | 123.28139 | 38-C |
124.77 | 124.43 | 123.17321 | 123.24363 | 123.14339 | -- | 38-C |
124.03 | 124.43 | -- | -- | 122.88544 | -- | 32-C |
118.24 | 118.81 | -- | 117.89503 | -- | 117.93348 | 35-C |
117.6 | 118.81 | 117.74929 | -- | 117.46083 | -- | 35-C |
116.39 | 116.70 | -- | 114.39789 | -- | 114.45547 | 42-C |
116.29 | 116.70 | 114.35817 | -- | 114.38426 | -- | 42-C |
116.22 | 116.4 | 113.57598 | -- | 113.87905 | 113.57324 | 20-C |
116.1 | 116.4 | -- | 113.45574 | -- | -- | 20-C |
104.87 | 104.7 | 102.26148 | 102.52149 | 102.16693 | 102.1685 | 25-C |
53.25 | 53.8 | 52.54109 | -- | 52.86819 | -- | 5-C |
51.89 | 53.8 | -- | 51.18896 | -- | 50.97495 | 10-C |
48.64 | 52.8 | 48.32414 | -- | 48.3112 | -- | 15-C |
48.42 | 52.8 | -- | 48.00117 | -- | 47.58756 | 15-C |
47.92 | 49.5 | -- | 46.41982 | -- | 46.84412 | 5-C |
47.28 | 49.5 | 45.20804 | -- | 45.15351 | -- | 10-C |
39.5 | -- | -- | -- | -- | -- | residual 13C in DMSO solvent |
34.16 | 35.4 | 36.39801 | -- | 36.28492 | -- | 2-C |
33.7 | 35.4 | -- | 35.84356 | -- | 35.53579 | 2-C |
27.05 | 27.5 | -- | 29.33625 | -- | -- | 13-C |
26.96 | 27.5 | 28.94628 | -- | 28.94226 | 28.94187 | 13-C |
25.06 | 26.1 | 24.85291 | -- | 24.80348 | -- | 27-C |
24.99 | 26.1 | -- | 24.72158 | -- | 24.69314 | 27-C |
2.3. Theoretical and Experimental UV-Vis Absorbance Spectroscopy Analysis
3. Materials and Methods
3.1. Materials
3.2. NMR Spectroscopy
3.3. UV-Vis Absorbance Spectroscopy
3.4. Theoretical Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NMR | Nuclear Magnetic Resonance |
DMSO | Dimethyl Sulfoxide |
NBO | Natural Bonding Orbitals |
UV-Vis | Ultraviolet-Visible |
AIST | Advanced Industrial Science and Technology |
SDBS | Spectral Database for Organic Compounds |
CAS | Chemical Abstracts Service |
TMS | Tetramethylsilane |
DFT | Density Functional Theory |
B3LYP | Becke, 3-parameter, Lee–Yang–Parr (exchange correlation functional) |
FWHM | Full Width at Half Maximum |
GIAO | Gauge-Independent Atomic Orbital |
References
- Bosquesi, P.L.; Melo, T.R.F.; Vizioli, E.O.; Santos, J.L.d.; Chung, M.C. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach. Pharmaceuticals 2011, 4, 1450–1474. [Google Scholar] [CrossRef] [PubMed]
- Rohman, N.; Ardiansah, B.; Wukirsari, T.; Judeh, Z. Recent Trends in the Synthesis and Bioactivity of Coumarin, Coumarin–Chalcone, and Coumarin–Triazole Molecular Hybrids. Molecules 2024, 29, 1026. [Google Scholar] [CrossRef] [PubMed]
- Kishkentayeva, A.; Kopbalina, K.; Shaimerdenova, Z.; Shults, E.; Gatilov, Y.; Pankin, D.; Smirnov, M.; Povolotckaia, A.; Turdybekov, D.; Mazhenov, N. Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties. Materials 2025, 18, 3153. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef]
- Rawat, A.; Vijaya Bhaskar Reddy, A. Recent Advances on Anticancer Activity of Coumarin Derivatives. Eur. J. Med. Chem. Rep. 2022, 5, 100038. [Google Scholar] [CrossRef]
- Gawad, S.A.A.; Sakr, M.A.S. Spectroscopic Investigation, DFT and TD-DFT Calculations of 7-(Diethylamino) Coumarin (C466). J. Mol. Struct. 2022, 1248, 131413. [Google Scholar] [CrossRef]
- Kenchappa, R.; Bodke, Y.D.; Chandrashekar, A.; Aruna Sindhe, M.; Peethambar, S.K. Synthesis of Coumarin Derivatives Containing Pyrazole and Indenone Rings as Potent Antioxidant and Antihyperglycemic Agents. Arab. J. Chem. 2017, 10, S3895–S3906. [Google Scholar] [CrossRef]
- Przybył, A.K.; Maj, E.; Wietrzyk, J.; Kubicki, M. Spectroscopic, Structural and Anticancer Activity Studies of (−)-Cytisine Halogenated N-Benzyl Derivatives. J. Mol. Struct. 2019, 1176, 871–880. [Google Scholar] [CrossRef]
- Etter, J.-F. Cytisine for Smoking Cessation. Arch. Intern. Med. 2006, 166, 1553. [Google Scholar] [CrossRef]
- Gotti, C.; Clementi, F. Cytisine and Cytisine Derivatives. More than Smoking Cessation Aids. Pharmacol. Res. 2021, 170, 105700. [Google Scholar] [CrossRef]
- Galasso, V.; Przybył, A.K.; Christov, V.; Kovač, B.; Asaro, F.; Zangrando, E. Theoretical and experimental studies on the molecular and electronic structures of cytisine and unsaturated keto-sparteines. Chem. Phys. 2006, 325, 365–377. [Google Scholar] [CrossRef]
- Pankin, D.; Khokhlova, A.; Kolesnikov, I.; Vasileva, A.; Pilip, A.; Egorova, A.; Erkhitueva, E.; Zigel, V.; Gureev, M.; Manshina, A. Laser-induced twisting of phosphorus functionalized thiazolotriazole as a way of cholinesterase activity change. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 118979. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Molecular design, synthesis and physical properties of novel Cytisine-derivatives–Experimental and theoretical study. J. Mol. Struct. 2013, 1034, 173–182. [Google Scholar] [CrossRef]
- Przybył, A.K.; Kubicki, M. A comparative study of dynamic NMR spectroscopy in analysis of selected N-alkyl-, N-acyl-, and halogenated cytisine derivatives. J. Mol. Struct. 2011, 985, 157–166. [Google Scholar] [CrossRef]
- Rouden, J.; Lasne, M.C.; Blanchet, J.; Baudoux, J. (−)-Cytisine and derivatives: Synthesis, reactivity, and applications. Chem. Rev. 2014, 114, 712–778. [Google Scholar] [CrossRef] [PubMed]
- Przybył, A.K.; Grzeskiewicz, A.M.; Kubicki, M. Weak Interactions in the Structures of Newly Synthesized (–)-Cytisine Amino Acid Derivatives. Crystals 2021, 11, 146. [Google Scholar] [CrossRef]
- Przybył, A.K.; Prukała, W.; Kikut-Ligaj, D. Electron ionization mass spectral study of selected N-amide and N-alkyl derivatives of cytisine. In Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry; Wiley: Hoboken, NJ, USA, 2007; Volume 21, pp. 1409–1413. [Google Scholar] [CrossRef]
- Krystkowiak, E.; Przybył, A.K.; Bayda-Smykaj, M.; Koput, J.; Maciejewski, A. Spectral and photophysical properties of cytisine in acetonitrile–Theory and experiment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 375–382. [Google Scholar] [CrossRef]
- Krystkowiak, E.; Przybył, A.K.; Bayda, M.; Józkowiak, J.; Maciejewski, A. Spectral and Photophysical Behaviour of Cytisine in n-Hexane. Experimental Evidence for the S1(n,p*) → S0 Fluorescence. J. Phys. Chem. A 2017, 121, 5597–5604. [Google Scholar] [CrossRef]
- Przybył, A.K.; Janczak, J.; Huczyński, A. Synthesis and Structural Analysis of New (−)-Cytisine Squarmides. Molecules 2025, 30, 1135. [Google Scholar] [CrossRef]
- Keeler, J. Understanding NMR Spectroscopy, 2nd ed.; John Wiley & Sons: Chichester, UK, 2011; p. 526. [Google Scholar]
- AIST Database SDBS #802. Available online: https://sdbs.db.aist.go.jp/ (accessed on 31 August 2025).
- Berger, S.; Sicker, D. Classics in Spectroscopy: Isolation and Structure Elucidation; John Wiley & Sons: Weinheim, Germany, 2009; p. 659. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01. Available online: https://gaussian.com/glossary/g09/ (accessed on 31 August 2025).
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Pankin, D.; Povolotckaia, A.; Borisov, E.; Belyakov, M.; Borzenko, S.; Gulyaev, A.; Moskovskiy, M. Theoretical Modelling of Structure, Vibrational and UV–Vis Absorbance Spectra of Rubrofusarin Molecule. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122469. [Google Scholar] [CrossRef]
- Pankin, D.; Smirnov, M.; Povolotckaia, A.; Povolotskiy, A.; Borisov, E.; Moskovskiy, M.; Gulyaev, A.; Gerasimenko, S.; Aksenov, A.; Litvinov, M.; et al. DFT Modelling of Molecular Structure, Vibrational and UV-Vis Absorption Spectra of T-2 Toxin and 3-Deacetylcalonectrin. Materials 2022, 15, 649. [Google Scholar] [CrossRef]
- Povolotckaia, A.; Pankin, D.; Novikov, V.; Borisov, E.; Kuznetsov, S.; Dorokhov, A.; Gulyaev, A.; Zavyalova, E.; Alieva, R.; Akulov, S.; et al. Investigation of Structural and Spectral Peculiarities of Fusarium sp. Indicator Pigment Bostrycoidin. Molecules 2024, 29, 4765. [Google Scholar] [CrossRef] [PubMed]
- Pankin, D.; Povolotckaia, A.; Smirnov, M.; Borisov, E.; Gulyaev, A.; Dorochov, A.; Novikov, V.; Kuznetsov, S.; Noy, O.; Belousov, S.; et al. Theoretical Investigation of Anhydrofusarubin: Structural and Optical Properties. Crystals 2023, 13, 1556. [Google Scholar] [CrossRef]
- Kopbalina, K.; Pankin, D.; Smirnov, M.; Ibrayev, N.; Turdybekov, D. Arrangement of Azidomethyl Group in Lupinine Azide: Structural and Spectroscopic Properties. Molecules 2025, 30, 582. [Google Scholar] [CrossRef] [PubMed]
- Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107, 3210–3221. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Shankar, U.; Gogoi, R.; Sethi, S.K.; Verma, A. Introduction to materials studio software for the atomistic-scale simulations. In Forcefields for Atomistic-Scale Simulations Materials and Applications; Springer Nature Singapore: Singapore, 2022; pp. 299–313. [Google Scholar]
- Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. [Google Scholar] [CrossRef]
- Wolinski, K.; Hilton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Bühl, M.; van Mourik, T. NMR spectroscopy: Quantum-chemical calculations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 634–647. [Google Scholar] [CrossRef]
- Jeong, K.; Ryu, T.I.; Hwang, S.R.; Cho, Y.; Lim, K.C.; Yoon, U.H.; Lee, J.Y.; Yoon, Y.W.; Jeong, H.J. Precisely predicting the 1H and 13C NMR chemical shifts in new types of nerve agents and building spectra database. Sci. Rep. 2022, 12, 20288. [Google Scholar] [CrossRef]
- Venianakis, T.; Siskos, M.; Gerothanassis, I. DFT Calculations of 1H and 13C NMR Chemical Shifts of Hydroxy Secondary Oxidation Products of Geometric Isomers of Conjugated Linoleic Acid Methyl Esters: Structures in Solution and Revision of NMR Assignments. Magn. Reson. Chem. 2025, 63, 227–240. [Google Scholar] [CrossRef]
NBO | Occupancy | |
---|---|---|
Conformer 1 | Conformer 2 | |
BD (1) C10–H11 | 1.97983 | 1.97658 |
BD (1) C10–H12 | 1.97714 | 1.97838 |
BD* (1) C10–H11 | 0.01446 | 0.01166 |
BD* (1) C10–H12 | 0.02008 | 0.02318 |
BD (1) C5–H6 | 1.97679 | 1.97558 |
BD (1) C5–H7 | 1.97707 | 1.98012 |
BD* (1) C5–H6 | 0.02349 | 0.02064 |
BD* (1) C5–H7 | 0.01115 | 0.01409 |
LP (1) O4 | 1.97772 | 1.97773 |
LP (2) O4 | 1.86858 | 1.86862 |
Solvent | Conformer Total Potential Energy, Ha (Relative Potential Energy with Respect to Conformer 2, kcal/mol) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
DMSO | −1221.865439 (0.04) | −1221.865501 (0) | −1221.864415 (0.69) | −1221.864816 (0.43) |
Ethanol | −1221.864674 (0.05) | −1221.864758 (0) | −1221.863311 (0.91) | −1221.863827 (0.58) |
Experimental Chemical Shifts for the Complex, ppm | Experimental Chemical Shifts for the Coumarin * and (-)-Cytisine ** Molecules, ppm | Theoretical Chemical Shift, ppm | Assignment | |||
---|---|---|---|---|---|---|
Conformer 1 | Conformer 2 | Conformer 3 | Conformer 4 | |||
7.67–7.69 | 7.532 | 7.71451 | 7.73565 | 7.69828 | 7.73507 | 41-H |
7.65–7.64 | 7.727 | -- | 7.65159 | -- | 7.71932 | 34-H |
7.53–7.52 | 7.498 | -- | 7.61335 | -- | 7.64381 | 37-H |
7.53–7.52 | 7.498 | 7.5168 | -- | 7.60374 | -- | 37-H |
7.45–7.43 | 7.727 | 7.45532 | -- | 7.42774 | -- | 34-H |
7.42–7.38 | 7.285 | 7.39892 | 7.4337 | 7.41468 | 7.44042 | 39-H |
7.37–7.36 | 7.320 | 7.35425 | 7.38086 | 7.3116 | 7.38547 | 43-H |
7.25–7.26 | 7.30 | -- | 7.33484 | -- | 7.3091 | 23-H |
7.25–7.24 | 7.30 | 7.17133 | -- | 7.24252 | -- | 23-H |
6.41–6.4 | 6.45 | -- | 6.18931 | 6.18421 | 6.17365 | 21-H |
6.32–6.3 | 6.45 | 6.1675 | -- | -- | -- | 21-H |
6.23–6.22 | 6.00 | -- | 6.11264 | -- | 6.08142 | 26-H |
5.98–5.97 | 6.00 | 5.8203 | -- | 5.88198 | -- | 26-H |
4.63–4.61 | 3.02 | 4.80551 | -- | 4.8375 | -- | 11-H |
4.46–4.44 | 3.08 | -- | 4.66794 | -- | 4.57591 | 7-H |
3.98–3.85 | 4.13 | 3.9746 | 3.7792 | 3.9355 | 4.04502 | 17-H |
3.34–3.72 | 3.13 | 2.96933 | 3.49704 | 2.96097 | 3.29203 | 12-H |
3.34–3.72 | 3.89 | 3.54296 | 3.44132 | 3.57197 | 3.56477 | 16-H |
3.34–3.72 | 3.02 | -- | 3.48042 | -- | 3.46063 | 11-H |
3.34–3.72 | 3.08 | 3.39088 | -- | 3.69225 | -- | 7-H |
3.34–3.72 | 3.02 | 3.52404 | -- | 3.49041 | -- | 6-H |
3.22–3.05 | 2.91 | 2.84501 | 2.99421 | 2.85068 | 3.00766 | 3-H |
3.22–3.05 | 3.02 | -- | 3.00641 | -- | 2.99382 | 6-H |
2.54 | 2.35 | 2.38887 | -- | 2.41395 | -- | 14-H |
2.5 | -- | -- | -- | -- | -- | Residual 1H in DMSO-d6 solvent |
2.33 | 2.35 | -- | 2.23651 | -- | 2.26686 | 14-H |
2.03 | 1.96 | 2.01074 | 2.00632 | 2.00363 | 1.95637 | 28-H |
1.95 | 1.96 | 1.98077 | 1.97923 | 1.97443 | 1.96155 | 29-H |
Conformer | Excited State No | Orbitals with > 14% Contribution (Percent) | Oscillator Strength | Wavelength, nm (Energy, eV) |
---|---|---|---|---|
1 | 2 | 94 (HOMO-1) -> 96 (LUMO) (79) | 0.2191 | 316.44 (3.9181) |
5 | 95 (HOMO) -> 97 (LUMO + 1) (94) | 0.1676 | 290.97 (4.2610) | |
7 | 90 (HOMO-5) -> 96 (LUMO) (75) | 0.1814 | 273.25 (4.5374) | |
19 | 95 (HOMO) -> 101(LUMO + 5) (64) 95 (HOMO) -> 100 (LUMO + 4) (21) | 0.0816 | 217.61 (5.6977) | |
26 | 91 (HOMO-4) -> 98 (LUMO + 2) (23) 92 (HOMO-3) -> 98 (LUMO + 2) (19) 93 (HOMO-2) -> 99 (LUMO + 3) (16) 87 (HOMO-8) -> 96 (LUMO) (15) | 0.4132 | 203.71 (6.0862) | |
2 | 2 | 94 (HOMO-1) -> 96 (LUMO) (79) | 0.2273 | 316.43 (3.9183) |
5 | 95(HOMO) -> 97(LUMO + 1) (94) | 0.1756 | 290.38 (4.2698) | |
7 | 90 (HOMO-5) -> 96 (LUMO)(75) | 0.1765 | 273.05 (4.5407) | |
19 | 95 (HOMO) -> 101 (LUMO + 5) (69) 95 (HOMO) -> 100 (LUMO + 4) (15) | 0.0885 | 217.23 (5.7076) | |
26 | 91(HOMO-4) -> 98 (LUMO + 2) (26) 93 (HOMO-2) -> 99 (LUMO + 3) (19) 87 (HOMO-8) -> 96 (LUMO) (15) | 0.3879 | 203.66 (6.0877) | |
3 | 2 | 94 (HOMO-1) -> 96 (LUMO) (90) | 0.3041 | 307.82 (4.0278) |
4 | 91(HOMO-4) -> 96 (LUMO) (63) 95(HOMO) -> 97(LUMO + 1) (22) | 0.1159 | 291.46 (4.2539) | |
5 | 95(HOMO) -> 97 (LUMO + 1)(74) 91 (HOMO-4) -> 96 (LUMO) (17) | 0.1031 | 289.59 (4.2813) | |
7 | 90(HOMO-5) -> 96 (LUMO) (70) 88 (HOMO-7) -> 96 (LUMO) (15) | 0.0965 | 269.80 (4.5955) | |
20 | 94 (HOMO-1) -> 99 (LUMO + 3) (41) 94 (HOMO-1) -> 98 (LUMO + 2) (20) | 0.0348 | 216.94 (5.7152) | |
25 | 91(HOMO-4) -> 98 (LUMO + 2) (33) 93(HOMO-2) -> 99 (LUMO + 3) (17) | 0.3287 | 203.47 (6.0934) | |
4 | 2 | 94 (HOMO-1) -> 96 (LUMO) (90) | 0.3324 | 311.68 (3.9779) |
5 | 95(HOMO) -> 97(LUMO + 1) (96) | 0.1665 | 289.44 (4.2836) | |
7 | 90 (HOMO-5) -> 96 (LUMO) (74) | 0.1539 | 271.78 (4.5619) | |
19 | 95(HOMO) -> 101 (LUMO + 5) (80) | 0.0925 | 217.15 (5.7097) | |
26 | 91 (HOMO-4) -> 98 (LUMO + 2) (41) 94 (HOMO-1) -> 98 (LUMO + 2) (14) | 0.5305 | 204.23 (6.0708) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopbalina, K.; Adekenova, A.; Shaimerdenova, Z.; Kairatova, Z.; Shakarimova, K.; Pankin, D.; Smirnov, M.; Kishkentayeva, A.; Artykbayeva, M.; Jalmakhanbetova, R. Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution. Molecules 2025, 30, 4139. https://doi.org/10.3390/molecules30204139
Kopbalina K, Adekenova A, Shaimerdenova Z, Kairatova Z, Shakarimova K, Pankin D, Smirnov M, Kishkentayeva A, Artykbayeva M, Jalmakhanbetova R. Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution. Molecules. 2025; 30(20):4139. https://doi.org/10.3390/molecules30204139
Chicago/Turabian StyleKopbalina, Kymbat, Aigerim Adekenova, Zhanar Shaimerdenova, Zhanargul Kairatova, Kuanysh Shakarimova, Dmitrii Pankin, Mikhail Smirnov, Anarkul Kishkentayeva, Makpal Artykbayeva, and Roza Jalmakhanbetova. 2025. "Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution" Molecules 30, no. 20: 4139. https://doi.org/10.3390/molecules30204139
APA StyleKopbalina, K., Adekenova, A., Shaimerdenova, Z., Kairatova, Z., Shakarimova, K., Pankin, D., Smirnov, M., Kishkentayeva, A., Artykbayeva, M., & Jalmakhanbetova, R. (2025). Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Molecular Structure in Solution. Molecules, 30(20), 4139. https://doi.org/10.3390/molecules30204139