Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (342)

Search Parameters:
Keywords = UPLC–Q-TOFMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4307 KB  
Article
Cinnamomum migao H.W. Li Ethanol-Water Extract Suppresses IL-6 Production in Cardiac Fibroblasts: Mechanisms Elucidated via UPLC-Q-TOF-MS, Network Pharmacology, and Experimental Assays
by Yuxin Lu, Yaofeng Li, Can Zhu, Mengyue Guo, Xia Liu and Xiangyun Chen
Curr. Issues Mol. Biol. 2025, 47(10), 798; https://doi.org/10.3390/cimb47100798 - 26 Sep 2025
Abstract
This study aims to elucidate the active components and underlying molecular mechanisms by which the ethanol-water extract of Cinnamomum migao H.W. Li (MG-EWE) inhibits cardiac fibroblast (CF) transdifferentiation and IL-6 production, providing insights into its anti-myocardial fibrosis effects. The chemical composition of MG-EWE [...] Read more.
This study aims to elucidate the active components and underlying molecular mechanisms by which the ethanol-water extract of Cinnamomum migao H.W. Li (MG-EWE) inhibits cardiac fibroblast (CF) transdifferentiation and IL-6 production, providing insights into its anti-myocardial fibrosis effects. The chemical composition of MG-EWE was characterized using UPLC-Q-TOF-MS. Network pharmacology analysis identified active constituents and their mechanisms in inhibiting IL-6 production in CFs. An isoproterenol (ISO)-induced rat CF model was established to evaluate the effects of MG-EWE and its main monomers, Laurolitsine and Hecogenin, on cell proliferation, migration, collagen metabolism, IL-6 production, and key proteins in the ADRB2/JNK signaling pathway. A total of 173 compounds were identified in MG-EWE, with 14 core constituents regulating IL-6 synthesis via 16 key targets, including ADRB2 and MAPK9. Gene Ontology enrichment indicated that MG-EWE affects phosphorylation and the JNK signaling cascade. Molecular docking showed strong binding affinities between Laurolitsine, Hecogenin, and their targets ADRB2 and JNK. Experimentally, MG-EWE, Laurolitsine, and Hecogenin significantly inhibited ISO-induced CF proliferation, migration, and hydroxyproline synthesis, as well as the expression of p-ADRB2, p-JNK, p-c-Jun, and IL-6. MG-EWE inhibits CF transdifferentiation and IL-6 production via the ADRB2/JNK/c-Jun signaling axis, mediated by its constituents Laurolitsine and Hecogenin, highlighting its potential for drug development targeting myocardial fibrosis. Full article
Show Figures

Figure 1

22 pages, 9963 KB  
Article
Ampelopsis japonica Extract Exhibited Significant Uric Acid-Lowering Effect by Downregulating URAT1/GLUT9 and Alleviates Inflammation Through TLR4/NF-κB Pathway
by Fen Liu, Bai-Lin Li, Meilan Liu, Shaohua Chen, Yaodan Wu, Aikebaier Jumai, Liyun Zhao and Sheng-Xiang Qiu
Int. J. Mol. Sci. 2025, 26(18), 8999; https://doi.org/10.3390/ijms26188999 - 16 Sep 2025
Viewed by 248
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by abnormal purine metabolism within the body. Ampelopsis japonica (Thunb.) Makino has traditionally been utilized in the treatment of various kidney diseases; however, its specific anti-hyperuricemic effects and the underlying mechanisms warrant further investigation. This study [...] Read more.
Hyperuricemia (HUA) is a metabolic disorder characterized by abnormal purine metabolism within the body. Ampelopsis japonica (Thunb.) Makino has traditionally been utilized in the treatment of various kidney diseases; however, its specific anti-hyperuricemic effects and the underlying mechanisms warrant further investigation. This study investigates the mechanism of action by which A. japonica extract (AJE) addresses HUA using a combination of pharmacology techniques, including network pharmacology and metabolomics. A HUA mouse model was established using potassium oxonate and hypoxanthine. AJE intervention significantly reduced serum uric acid and creatinine levels in HUA mice and markedly decreased glomerular atrophy and renal tubular degeneration. Metabolic profiling revealed distinct metabolic profiles between AJE-intervention and control groups, further demonstrating that AJE corrected disruptions in arginine biosynthesis, purine metabolism, pyrimidine metabolism, and arachidonic acid metabolism. The results of the network pharmacology-based study indicate that AJE can alleviate HUA by modulating the TNF pathway and the Toll-like receptor pathway. The mechanisms of action of AJE in HUA involve the inhibition of xanthine oxidase (XOD) to reduce uric acid synthesis, downregulation of URAT1 and GLUT9 to decrease uric acid reabsorption, and suppression of the TLR4/NF-κB pathway to mitigate inflammation in the HUA mouse model. Therefore, AJE demonstrates significant potential as a therapeutic intervention for HUA and its associated renal complications. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

33 pages, 7255 KB  
Article
Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group
by Zhaoyu Wang, Mengting Pi, Ziang Gao, Maobo Du, Liwei Gu, Shuzhi Liu and Shuo Shen
Pharmaceutics 2025, 17(9), 1195; https://doi.org/10.3390/pharmaceutics17091195 - 14 Sep 2025
Viewed by 457
Abstract
Background: Psoriasis is a chronic inflammatory skin disorder for which topical medications are the preferred treatment option. However, current therapies are limited by adverse reactions, drug resistance, and economic burdens. Dictamni Cortex (DC; the root bark of Dictamnus dasycarpus Turcz.) has a long [...] Read more.
Background: Psoriasis is a chronic inflammatory skin disorder for which topical medications are the preferred treatment option. However, current therapies are limited by adverse reactions, drug resistance, and economic burdens. Dictamni Cortex (DC; the root bark of Dictamnus dasycarpus Turcz.) has a long history in the treatment of psoriasis, with its transdermal bioactive constituents serving as the pharmacodynamic foundation for topical anti-psoriatic therapy. Methods: Building on the separation of DC’s chemical constituents, this study integrated ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and network pharmacology, along with activity verification, to investigate the anti-psoriatic active components among the transdermal constituents of DC. Results: Forty-one chemical constituents were characterized in DC, including 26 transdermally permeable compounds, predominantly alkaloids and limonoids. Network pharmacological analysis revealed core targets, including MMP9 and TLR4, as well as multiple pathways related to inflammatory and immune responses. Molecular docking studies identified dictamnine, jangomolide, rutaevin, and other key transdermal constituents that exhibited high binding affinity to core targets. In vitro validation showed that these compounds significantly suppressed cellular proliferation (p < 0.05) and downregulated Ki67 mRNA expression (p < 0.05) in the psoriasis-like HaCaT cell model. Concurrently, they significantly reduced secretion of key pro-inflammatory cytokines, including IL-17A, IL-22, IL-1β, IL-6, and IL-8 (p < 0.05). Comprehensive comparative analyses confirmed that dictamnine exhibited ideal anti-psoriatic efficacy. Conclusions: These results provide a pharmacological substance basis for the development of external preparations of DC for treating psoriasis and provide novel research concepts for investigating the pharmacodynamic material basis of Traditional Chinese Medicine topical drugs. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

15 pages, 2867 KB  
Article
Phenolic-Rich Indian Almond (Terminalia catappa Linn) Leaf Extract Ameliorates Lipid Metabolism and Inflammation in High-Fat Diet (HFD)-Induced Obese Mice
by Opeyemi O. Deji-Oloruntoba, Ji Eun Kim, Hee Jin Song, Ayun Seol, Dae Youn Hwang and Miran Jang
Metabolites 2025, 15(9), 594; https://doi.org/10.3390/metabo15090594 - 8 Sep 2025
Viewed by 467
Abstract
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. [...] Read more.
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. leaf extract (TCE) on lipogenic and lipolytic pathways in high-fat diet (HFD)-induced obese mice. UPLC-QTOF-MS analysis was conducted to identify and quantify the major phenolic compounds in TCE. Mice were administered low and high doses of TCE, and various metabolic parameters, including lipid profiles, liver function markers, adipokine levels, and gene/protein expressions related to lipid metabolism and inflammation, were assessed. Results: UPLC-QTOF-MS analysis identified four major phenolic compounds in TCE—gallic acid, orientin, vitexin, and ellagic acid—with respective contents of 112.5, 163.3, 184.7, and 295.7 mg/g extract. TCE administration significantly reduced liver and adipose tissue weights, along with hepatic and adipose lipid accumulation. Both low and high doses of TCE markedly lowered serum lipid levels. Liver function was improved, as indicated by reduced levels of AST, ALT, and ALP, while BUN levels remained unchanged. On the molecular level, TCE downregulated adipogenic and lipogenic genes (PPARγ, PPARα, C/EBPα, aP2) and upregulated metabolic regulators, including leptin, adiponectin, p-HSL/HSL, and p-perilipin/perilipin, without affecting ATGL expression. TCE also suppressed pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, and TGFβ-1. Conclusions: These findings highlight the therapeutic potential of TCE in managing obesity by inhibiting lipogenesis, enhancing lipolysis, and reducing inflammation. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

25 pages, 5136 KB  
Article
Extraction Methods and Sedative–Hypnotic Effects of Total Flavonoids from Ziziphus jujuba Mesocarp
by Jie Li, Baojian Li, Xinbo Shi, Yuangui Yang and Zhongxing Song
Pharmaceuticals 2025, 18(9), 1272; https://doi.org/10.3390/ph18091272 - 26 Aug 2025
Viewed by 659
Abstract
Background/Objectives: As a non-medicinal part resource of Ziziphus jujuba, this study focuses on the total flavonoids from Ziziphus jujuba mesocarp (TFZJM), aiming to optimize the extraction process and explore its sedative and hypnotic effects. Methods: The extraction process of TFZJM [...] Read more.
Background/Objectives: As a non-medicinal part resource of Ziziphus jujuba, this study focuses on the total flavonoids from Ziziphus jujuba mesocarp (TFZJM), aiming to optimize the extraction process and explore its sedative and hypnotic effects. Methods: The extraction process of TFZJM was optimized by using single-factor experiments and the Box-Behnken response surface design method. The material basis of TFZJM was analyzed using Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). The mouse insomnia model was induced by intraperitoneal injection of PCPA, and the effects of TFZJM on this model and its potential mechanism were evaluated using multiple methods, such as sleep enhancement induced by pentobarbital sodium, HE staining of tissue sections, ELISA, RT-PCR, WB, and serum metabolomics. Results: The results showed that by optimizing the extraction conditions, a solid-liquid ratio (SLR) of 1:25 g·mL−1, ethanol concentration of 60%, extraction time of 60 min, and extraction rate of 1.98% were achieved. The common chemical basis of the 10 flavonoid components was identified using UPLC-Q-TOF-MS analysis. Compared with the model group, the high-dose TFZJM (TFZJM-H) group had the most significant effect, followed by the medium-dose (TFZJM-M) and low-dose (TFZJM-L) groups. Conclusions: Metabolomic analysis revealed that TFZJM regulates pathways related to the metabolism of phenylalanine, tyrosine, cytochrome P450, and alanine. This lays the foundation for further exploration of the active substances and mechanisms of action of TFZJM in sedation and hypnosis. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 1384 KB  
Article
Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant
by Hema Sekhar Reddy Rajula, Cristina Piras, Karolina Krystyna Kopeć, Antonio Noto, Martina Spada, Katia Lilliu, Mirko Manchia, Michele Mussap, Luigi Atzori and Vassilios Fanos
Metabolites 2025, 15(8), 551; https://doi.org/10.3390/metabo15080551 - 15 Aug 2025
Viewed by 542
Abstract
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment [...] Read more.
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment approaches. Results: Key metabolites, including tryptophan, 2-aminobutyric acid, palmitic acid, and 5-hydroxytryptophan, were strongly linked to metabolic networks in genotypes AA-AC and AA. Enrichment analysis was conducted to identify metabolite sets differentially distributed across these genotypes, with a particular focus on genotype AA. Conclusions: The findings suggest that NOS1AP-rs12742393 contributes to complex metabolic alterations involving amino acids, organic compounds, fatty acids, and cholic acids. Moreover, serum metabolome analysis demonstrates sufficient sensitivity and specificity to provide insights into NOS1AP-rs12742393 genotype-associated metabolic profiles, supporting a network-based approach to understanding schizophrenia susceptibility. Full article
Show Figures

Figure 1

17 pages, 1195 KB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 - 2 Aug 2025
Viewed by 558
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

33 pages, 2605 KB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Viewed by 845
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

17 pages, 7377 KB  
Article
Comparative Untargeted Metabolomic Analysis of Fruiting Bodies from Three Sanghuangporus Species
by Zixuan Jiang, Shimao Chen, Jia Song, Tao Xie, Yu Xue and Qingshan Yang
J. Fungi 2025, 11(8), 558; https://doi.org/10.3390/jof11080558 - 28 Jul 2025
Viewed by 710
Abstract
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus [...] Read more.
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus. sanghuang (SS), Sanghuangporus. vaninii (SV), and Sanghuangporus. baumii (SB). A total of 788 metabolites were identified and classified into 16 categories, among which 97 were common differential metabolites, including bioactive compounds such as flavonoids, polysaccharides, and terpenoids. Multivariate statistical analyses (PCA and OPLS-DA) revealed distinct metabolic patterns among the species. KEGG pathway enrichment analysis showed that the differential metabolites were mainly involved in flavonoid and isoflavonoid biosynthesis. Notably, SV and SB exhibited significantly higher levels of several key bioactive compounds, including Apigenin and D-glucuronolactone, compared to SS. These findings highlight substantial interspecies differences in metabolic composition and pharmacological potential, providing a scientific basis for species authentication, quality control, and medicinal development of Sanghuangporus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

19 pages, 4707 KB  
Article
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells
by Liwen Zhong, Mengkai Lu, Huiqi Fang, Chao Li, Hua Qu and Gang Ding
Pharmaceuticals 2025, 18(8), 1125; https://doi.org/10.3390/ph18081125 - 27 Jul 2025
Viewed by 512
Abstract
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in [...] Read more.
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (37), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (37). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis. Full article
Show Figures

Graphical abstract

13 pages, 2684 KB  
Article
Comprehensive Analysis of Liver Transcriptome and Metabolome Response to Oncogenic Marek’s Disease Virus Infection in Wenchang Chickens
by Lifeng Zhi, Xiangdong Xu, Yang Zeng, Wenquan Qin, Ganghua Li, Junming Zhao, Runfeng Zhang and Guang Rong
Biology 2025, 14(8), 938; https://doi.org/10.3390/biology14080938 - 25 Jul 2025
Viewed by 536
Abstract
Marek’s disease (MD), induced by the highly contagious Marek’s disease virus (MDV), remains a significant challenge to global poultry health despite extensive vaccination efforts. This study employed integrated transcriptomic and metabolomic analyses to investigate liver responses in naturally MDV-infected Wenchang chickens during late [...] Read more.
Marek’s disease (MD), induced by the highly contagious Marek’s disease virus (MDV), remains a significant challenge to global poultry health despite extensive vaccination efforts. This study employed integrated transcriptomic and metabolomic analyses to investigate liver responses in naturally MDV-infected Wenchang chickens during late infection stages. RNA sequencing identified 959 differentially expressed genes (DEGs) between the infected and uninfected groups. Functional enrichment analysis demonstrated that these DEGs were primarily associated with canonical pathways related to metabolism and cellular processes, including lipid, carbohydrate, and amino acid metabolism, as well as the p53 signaling pathway, cell cycle, and apoptosis. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) detected 561 differentially expressed metabolites (DEMs), showing near-significant enrichment (p = 0.069) in phenylalanine metabolism. Integrated analysis of transcriptomics and metabolomics data highlighted that critical gene–metabolite pairs such as SGPL1-palmitaldehyde–sphinganine-1-phosphate and ME1-NADP+–malic acid potentially mediate functional crosstalk between sphingolipid metabolism and cellular redox homeostasis during viral oncogenesis. This comprehensive mapping of regulatory networks provides insights into host–virus interactions during MDV pathogenesis, offering potential applications in immunomodulation approaches, targeted therapeutic strategies, and vaccine adjuvant development. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

16 pages, 1213 KB  
Article
Elucidating Volatile Flavor Profiles and Metabolic Pathways in Northern Pike (Esox lucius) During Superchilled Storage: A Combined UPLC-Q-TOF/MS and GC-MS Approach
by Shijie Bi, Na Li, Gao Gong, Peng Gao, Jinfang Zhu and Batuer Abulikemu
Foods 2025, 14(15), 2556; https://doi.org/10.3390/foods14152556 - 22 Jul 2025
Viewed by 555
Abstract
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during [...] Read more.
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during superchilled storage (−3 °C) based on analysis using gas chromatography-ion mobility spectrometry (GC-IMS) and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The results indicate that GC-MS analysis identified 25 key volatile flavor compounds. These comprised seven ketones, thirteen alcohols, aldehydes including 2-methylbutanal, esters such as 2-heptyl acetate and methyl butyrate, as well as nitrogen-containing compounds, exemplified by pyrazines and indole. Non-targeted metabolomics further revealed four pivotal metabolic pathways, glycerophospholipid metabolism, purine metabolism, the pentose phosphate pathway, and arginine biosynthesis. These metabolic pathways were found to regulate flavor changes through modulation of lipid oxidation, nucleotide degradation, and amino acid metabolism. Notably, the arginine biosynthesis pathway exhibited significant correlations with the development of characteristic cold-storage off-flavors, mediated by glutamate accumulation and fumarate depletion. This investigation provided a theoretical foundation for optimizing preservation strategies in cold-water fish species at the molecular level. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

22 pages, 12756 KB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Cited by 1 | Viewed by 1315
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

12 pages, 1407 KB  
Article
Glucosinolate and Sugar Profiles in Space-Grown Radish
by Karl H. Hasenstein, Syed G. A. Moinuddin, Anna Berim, Laurence B. Davin and Norman G. Lewis
Plants 2025, 14(13), 2063; https://doi.org/10.3390/plants14132063 - 6 Jul 2025
Viewed by 839
Abstract
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, [...] Read more.
The quest to establish permanent outposts in space, the Moon, and Mars requires growing plants for nutrition, water purification, and carbon/nutrient recycling, as well as the psychological well-being of crews and personnel on extra-terrestrial platforms/outposts. To achieve these essential goals, the safety, quality, and sustainability of plant material grown in space should be comparable to Earth-grown crops. In this study, radish plants were grown at 2500 ppm CO2 in two successive grow-outs on the International Space Station and at similar CO2 partial pressure at the Kennedy Space Center. An additional control experiment was performed at the University of Louisiana Lafayette laboratory, at ambient CO2. Subsequent analyses of glucosinolate and sugar species and content showed that regardless of growth condition, glucoraphasatin, glucoraphenin, glucoerucin, glucobrassicin, 4-hydroxyglucobrassicin, 4-methoxyglucobrassicin, and three aliphatic GSLs tentatively assigned to 3-methylpentyl GSL, 4-methylpentyl GSL, and n-hexyl GSL were present in all examined plants. The most common sugars were fructose, glucose, and sucrose, but some plants also contained galactose, maltose, rhamnose, and trehalose. The variability of individual secondary metabolite abundances was not related to gravity conditions but appeared more sensitive to CO2 concentration. No indication was found that radish cultivation in space resulted in stress(es) that increased glucosinolate secondary metabolism. Flavor and nutrient components in space-grown plants were comparable to cultivation on Earth. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 1796 KB  
Article
Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions
by Mohammed Albratty, Maryam Halawi and Ali Mufraih Albarrati
Pharmaceuticals 2025, 18(7), 983; https://doi.org/10.3390/ph18070983 - 30 Jun 2025
Viewed by 538
Abstract
Background: The therapeutic potential of natural products in cognitive disabilities has drawn growing attention, yet a comprehensive analysis of trends and key contributors is lacking. This study provides a bibliometric overview highlighting growth patterns, themes, and future directions. Methods: A comprehensive [...] Read more.
Background: The therapeutic potential of natural products in cognitive disabilities has drawn growing attention, yet a comprehensive analysis of trends and key contributors is lacking. This study provides a bibliometric overview highlighting growth patterns, themes, and future directions. Methods: A comprehensive Scopus search with multistep filtering was conducted by applying keywords related to natural products and cognitive disabilities to titles, abstracts, and keywords, initially retrieving 10,011 documents. Filters for original articles and English language reduced the results to 5688. Data extracted in October 2024 were analyzed using Excel and the R-package, yielding performance and citation indices. Differential proliferation was visualized using a Sankey diagram, while thematic maps highlighted key research themes, geographic trends, and subject clusters. Results: The field exhibited an annual growth rate of 12.36% from 1971 to 2024, with 2021 being the most productive year (497 articles). In recent decades, citation metrics have highlighted significant impacts. Thematic maps and Sankey diagrams revealed the research focus, geographic trends, and collaboration. Alzheimer’s disease dominates the field, alongside topics such as oxidative stress, neuroprotection, and molecular docking. Emerging trends include ferroptosis, UPLC-Q-TOF-MS, and network pharmacology, which have marked advancements in therapeutic and computational approaches. Conclusions: This analysis underscores the dynamic and interdisciplinary nature of this field, highlighting areas for future exploration, particularly underrepresented cognitive disorders and novel therapeutic approaches. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

Back to TopTop