Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions
Abstract
1. Introduction
2. Results
2.1. Annual Growth and Citation Dynamics
2.2. Key Contributors in the Field
2.3. Top-Cited and Collaborative Countries
2.4. Authors’ Keyword Co-Occurrence Analysis
2.5. Progression of Themes in Research
2.6. Conceptual Structure
2.7. Emerging Topics
3. Discussion
4. Limitations
5. Materials and Methods
5.1. Search Strategy and Data Extraction
5.2. Analysis and Visualizations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uabundit, N.; Wattanathorn, J.; Mucimapura, S.; Ingkaninan, K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010, 127, 26–31. [Google Scholar] [CrossRef]
- Chu, S.; Gu, J.; Feng, L.; Liu, J.; Zhang, M.; Jia, X.; Liu, M.; Yao, D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int. Immunopharmacol. 2014, 19, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Sigafoos, J.; Roche, L.; O’Reilly, M.F.; Lancioni, G.E. Persistence of primitive reflexes in developmental disorders. Curr. Dev. Disord. Rep. 2021, 8, 98–105. [Google Scholar] [CrossRef]
- Yeung, P.; Breheny, M. Quality of life among older people with a disability: The role of purpose in life and capabilities. Disabil. Rehabil. 2021, 43, 181–191. [Google Scholar] [CrossRef]
- Megari, K.; Thomaidou, E.; Chatzidimitriou, E. Highlighting the Neuropsychological Consequences of COVID-19: Evidence From a Narrative Review. INQUIRY J. Health Care Organ. Provis. Financ. 2024, 61, 00469580241262442. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370–8377. [Google Scholar] [CrossRef]
- Park, C.H.; Choi, S.H.; Koo, J.W.; Seo, J.H.; Kim, H.S.; Jeong, S.J.; Suh, Y.H. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia willdenow extract, BT-11. J. Neurosci. Res. 2002, 70, 484–492. [Google Scholar] [CrossRef]
- Hepperlen, R.A.; Biggs, J.; Mwandileya, W.; Rabaey, P.; Ngulube, E.; Hearst, M.O. Using community-based interventions to reduce public stigma of children with disabilities: A feasibility study. J. Appl. Res. Intellect. Disabil. 2021, 34, 1499–1510. [Google Scholar] [CrossRef]
- Budzynska, B.; Boguszewska-Czubara, A.; Kruk-Slomka, M.; Skalicka-Wozniak, K.; Michalak, A.; Musik, I.; Biala, G. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 2015, 232, 931–942. [Google Scholar] [CrossRef]
- Geng, Y.; Li, C.; Liu, J.; Xing, G.; Zhou, L.; Dong, M.; Li, X.; Niu, Y. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol. Pharm. Bull. 2010, 33, 836–843. [Google Scholar] [CrossRef]
- Yong, Y.Y.; Yan, L.; Wang, B.D.; Fan, D.S.; Guo, M.S.; Yu, L.; Wu, J.M.; Qin, D.L.; Law, B.Y.K.; Wong, V.K.W.; et al. Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer’s disease. Phytomedicine 2024, 127, 155463. [Google Scholar] [CrossRef]
- Yong, Y.; Yan, L.; Wei, J.; Feng, C.; Yu, L.; Wu, J.; Guo, M.; Fan, D.; Yu, C.; Qin, D.; et al. A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer’s disease by activating GPX4. Theranostics 2024, 14, 6161–6184. [Google Scholar] [CrossRef]
- Tao, L.; Liu, Z.; Li, X.; Wang, H.; Wang, Y.; Zhou, D.; Zhang, H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167459. [Google Scholar] [CrossRef]
- Tang, H.; He, K.; Zhao, K.; Zheng, C.; Wu, W.; Jin, W.; Yang, L.; Xie, B. Protective Effects of Hinokitiol on Neuronal Ferroptosis by Activating the Keap1/Nrf2/HO-1 Pathway in Traumatic Brain Injury. J. Neurotrauma 2024, 41, 734–750. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, J.; Wei, W.; Zhang, Y.; Li, M.; Bai, Y.; Wang, H.; Meng, Q.; Guo, D.A. Integrated UPLC/Q-TOF-MS/MS Analysis and Network Pharmacology to Reveal the Neuroprotective Mechanisms and Potential Pharmacological Ingredients of Aurantii Fructus Immaturus and Aurantii Fructus. Pharmaceuticals 2024, 17, 239. [Google Scholar] [CrossRef]
- Long, Q.; Li, T.; Zhu, Q.; He, L.; Zhao, B. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. J. Ethnopharmacol. 2024, 323, 117679. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Zhen, Y.; Jin, W.; Ma, X.; Yuan, Z.; Liu, B.; Zhou, X.L.; Zhang, L. Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer’s disease by modulating the NOX4/Nrf2 axis. Phytomedicine 2024, 135, 156209. [Google Scholar] [CrossRef]
- Mishra, V.H.; Khade, A.; Noman, O. Drug effects on the nervous system: Mechanisms and future directions in neuropharmacological therapy. Adv. Hum. Biol. 2025, 15, 291–292. [Google Scholar] [CrossRef]
- Um, M.Y.; Choi, W.H.; Aan, J.Y.; Kim, S.R.; Ha, T.Y. Protective effect of Polygonum multiflorum Thunb on amyloid β-peptide 25-35 induced cognitive deficits in mice. J. Ethnopharmacol. 2006, 104, 144–148. [Google Scholar] [CrossRef]
- Ghallab, Y.K.; Elassal, O.S. Biochemical and Neuropharmacology of Psychiatric Disorders. In Nutrition and Psychiatric Disorders: An Evidence-Based Approach to Understanding the Diet-Brain Connection; Springer: Berlin/Heidelberg, Germany, 2024; pp. 25–47. [Google Scholar]
- Orchard, I.; Leyria, J.; Al-Dailami, A.; Lange, A.B. Fluid secretion by Malpighian tubules of Rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 2021, 12, 722487. [Google Scholar] [CrossRef]
- Oyebanjo, O.T.; Adetuyi, B.O.; Adeoye, A.D.; Adetuyi, O.A.; Oni, P.G.; Ogunlana, O.O. Neuropharmacology and neurotherapeutics: Advancing the understanding and treatment of neurological disorders. In Biochemical and Molecular Pharmacology in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2024; pp. 403–425. [Google Scholar]
- Tassé, M.J.; Luckasson, R.; Schalock, R.L. The relation between intellectual functioning and adaptive behavior in the diagnosis of intellectual disability. Intellect. Dev. Disabil. 2016, 54, 381–390. [Google Scholar] [CrossRef]
- Tassé, M.J.; Grover, M. American association on intellectual and developmental disabilities (aaidd). In Encyclopedia of Autism Spectrum Disorders; Springer: Berlin/Heidelberg, Germany, 2021; pp. 165–168. [Google Scholar]
- Boat, T.F.; Wu, J.T.; Committee to Evaluate the Supplemental Security Income Disability Program for Children with Mental Disorders; Board on the Health of Select Populations; Board on Children, Youth, and Families; Institute of Medicine; The National Academies of Sciences, Engineering, and Medicine. Clinical characteristics of intellectual disabilities. In Mental Disorders and Disabilities Among Low-Income Children; National Academies Press (US): Washington, DC, USA, 2015. [Google Scholar]
- Bao, X.; Song, X.; Deng, H.; Jiang, L. The Impact of Virtual Reality Training Combined with Traditional Chinese Medicine Health Preservation Therapy on Cognitive Function, Neurological Function, and Physical Function of Stroke Patients. Int. J. Neurosci. 2024. [Google Scholar] [CrossRef]
- Li, L.; Li, W.J.; Zheng, X.R.; Liu, Q.L.; Du, Q.; Lai, Y.J.; Liu, S.Q. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol. Med. 2022, 28, 11. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int. J. Food Prop. 2017, 20, 1761–1772. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Mariod, A.A. Performance analysis, conceptual mapping, and emerging trends for Gum Arabic research: A comprehensive bibliometric analysis from 1916 to 2023. Food Prod. Process. Nutr. 2025, 7, 4. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Farasani, A.; Alfaifi, H.A.; Hassan, W. Trends and dynamics in facelift surgery research: A bibliometric analysis of the top 50 most cited papers. Chin. J. Plast. Reconstr. Surg. 2024, 7, 11–17. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Y.; Li, Y.; Weng, F.; Chen, T.; He, L. Curculigoside, a traditional Chinese medicine monomer, ameliorates oxidative stress in Alzheimer’s disease mouse model via suppressing ferroptosis. Phytother. Res. 2024, 38, 2462–2481. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Bérdi, M. Bibliometric analysis of Hungarian-related publications in suicidal behavior research of the last three decades. Psychiatr. Hung. 2023, 38, 189–202. [Google Scholar]
- Bastianetto, S.; Yao, Z.X.; Papadopoulos, V.; Quirion, R. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur. J. Neurosci. 2006, 23, 55–64. [Google Scholar] [CrossRef]
- Das, A.; Shanker, G.; Nath, C.; Pal, R.; Singh, S.; Singh, H.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba—Anticholinesterase and cognitive enhancing activities. Pharmacol. Biochem. Behav. 2002, 73, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Picot, M.C.N.; Zengin, G.; Mollica, A.; Stefanucci, A.; Carradori, S.; Mahomoodally, M.F. In vitro and in silico studies of mangiferin from aphloia theiformis on key enzymes linked to diabetes type 2 and associated complications. Med. Chem. 2017, 13, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, H.; Wu, M.; Gan, Y.; Zhang, S.; Wu, D.; Ou, J.; Jin, C.; Zhang, W. Integrated UHPLC-Q-Orbitrap-MS/MS Method and Network Pharmacology for Exploring the Active Components and Potential Mechanisms of Neuroprotective Effect of the n-Butanol Part of Mume Flos. Nat. Prod. Commun. 2024, 19. [Google Scholar] [CrossRef]
- Tao, Q.; Chao, H.; Fang, D.; Dou, D. Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regen. Res. 2024, 19, 226–232. [Google Scholar] [CrossRef]
- Lin, F.; Huang, D.; He, N.; Gu, Y.; Wu, Y. Effect of music therapy derived from the five elements in Traditional Chinese Medicine on post-stroke depression. J. Tradit. Chin. Med. 2017, 37, 675–680. [Google Scholar] [PubMed]
- Movahhedin, N.; Zengin, G.; Bahadori, M.B.; Sarikurkcu, C.; Bahadori, S.; Dinparast, L. Ajuga chamaecistus subsp. scoparia (Boiss.) Rech.f.: A new source of phytochemicals for antidiabetic, skin-care, and neuroprotective uses. Ind. Crops Prod. 2016, 94, 89–96. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Ak, G.; Mahomoodally, M.F.; Paksoy, M.Y.; Picot-Allain, C.; Glamocilja, J.; Sokovic, M.; Jekő, J.; Cziáky, Z.; et al. Chemical profile, antioxidant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: A comparative study. Ind. Crops Prod. 2020, 153, 112572. [Google Scholar] [CrossRef]
- Savran, A.; Zengin, G.; Aktumsek, A.; Mocan, A.; Glamoćlija, J.; Ćirić, A.; Soković, M. Phenolic compounds and biological effects of edible: Rumex scutatus and Pseudosempervivum sempervivum: Potential sources of natural agents with health benefits. Food Funct. 2016, 7, 3252–3262. [Google Scholar] [CrossRef]
- Zengin, G.; Nithiyanantham, S.; Locatelli, M.; Ceylan, R.; Uysal, S.; Aktumsek, A.; Selvi, P.K.; Maskovic, P. Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur. J. Integr. Med. 2016, 8, 286–292. [Google Scholar] [CrossRef]
- Zengin, G.; Sarıkürkçü, C.; Aktümsek, A.; Ceylan, R. Antioxidant potential and inhibition of key enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. Endemic to Turkey. Rec. Nat. Prod. 2015, 10, 195–206. [Google Scholar]
- Zengin, G.; Sarikurkcu, C.; Gunes, E.; Uysal, A.; Ceylan, R.; Uysal, S.; Gungor, H.; Aktumsek, A. Two Ganoderma species: Profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders. Food Funct. 2015, 6, 2794–2802. [Google Scholar] [CrossRef]
- Zengin, G.; Stefanucci, A.; Rodrigues, M.J.; Mollica, A.; Custodio, L.; Aumeeruddy, M.Z.; Mahomoodally, M.F. Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. J. Pharm. Biomed. Anal. 2019, 162, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Heo, H.J.; Kim, D.O.; Shin, S.C.; Kim, M.J.; Kim, B.G.; Shin, D.H. Effect of Antioxidant Flavanone, Naringenin, from Citrus junos on Neuroprotection. J. Agric. Food Chem. 2004, 52, 1520–1525. [Google Scholar] [CrossRef]
- Yu, M.S.; Leung, S.K.Y.; Lai, S.W.; Che, C.M.; Zee, S.Y.; So, K.F.; Yuen, W.H.; Chang, R.C.C. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against β-amyloid peptide neurotoxicity. Exp. Gerontol. 2005, 40, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol. 2008, 120, 112–117. [Google Scholar] [CrossRef]
- Zhang, J.-N.; Pei, Z.-D.; Wang, W.-Y.; Zhao, M.-Y.; Pei, W.-H.; Zhang, H.; Yin, H.-B.; Wang, T.-M.; Xin, G.-Z.; Xie, M. Integration of High-Resolution LC-Q-TOF Mass Spectrometry and Multidimensional Chemical-Biological Analysis to Detect Nanomolar-Level Acetylcholinesterase Inhibitors from Different Parts of Zanthoxylum nitidum. J. Agric. Food Chem. 2024, 72, 17328–17342. [Google Scholar] [CrossRef] [PubMed]
- McCarney, R.; Warner, J.; Iliffe, S.; Van Haselen, R.; Griffin, M.; Fisher, P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Alkhammash, R. Bibliometric, network, and thematic mapping analyses of metaphor and discourse in COVID-19 publications from 2020 to 2022. Front. Psychol. 2023, 13, 1062943. [Google Scholar] [CrossRef]
Authors | N | Affiliation | N | Sources | N | Country | N |
---|---|---|---|---|---|---|---|
Zengin, G. | 42 | Ministry of Education of the People’s Republic of China | 166 | Journal of Ethnopharmacology | 187 | China | 1270 |
Oh, M.S. | 28 | Kyung Hee University | 133 | Molecules | 131 | India | 777 |
Choi, J.S. | 27 | Chinese Academy of Sciences | 95 | Phytomedicine | 91 | United States | 700 |
Shin, D.H. | 26 | Seoul National University | 65 | Frontiers in Pharmacology | 75 | South Korea | 627 |
Ryu, J.H. | 23 | Shenyang Pharmaceutical University | 62 | International Journal of Molecular Sciences | 75 | Japan | 389 |
Oboh, G. | 22 | King Saud University | 58 | Journal of Alzheimer’s Disease | 75 | Italy | 240 |
Hritcu, L. | 21 | Chinese Academy of Medical Sciences & Peking Union Medical College | 55 | Phytotherapy Research | 74 | Iran | 235 |
Jung, H.A. | 21 | Selçuk Üniversitesi | 52 | Nutrients | 71 | Turkey | 214 |
Bi, K. | 20 | National Research Centre | 51 | Evidence-Based Complementary and Alternative Medicine | 69 | Saudi Arabia | 199 |
Choi, S.J. | 20 | King Abdulaziz University | 50 | PLOS One | 68 | Germany | 197 |
Item | Frequency | Year_q1 | Year_med | Year_q3 |
---|---|---|---|---|
UPLC-Q-TOF-MS | 6 | 2023 | 2024 | 2024 |
Ferroptosis | 9 | 2022 | 2024 | 2024 |
Network pharmacology | 65 | 2021 | 2022 | 2024 |
Molecular dynamics simulation | 28 | 2021 | 2023 | 2024 |
ADMET | 18 | 2021 | 2023 | 2024 |
Molecular docking | 236 | 2020 | 2022 | 2023 |
Alzheimer’s disease | 628 | 2019 | 2021 | 2023 |
Phytochemicals | 85 | 2019 | 2021 | 2023 |
Autophagy | 48 | 2019 | 2022 | 2023 |
Neuroinflammation | 190 | 2018 | 2021 | 2023 |
Neurodegeneration | 106 | 2016 | 2020 | 2022 |
Antioxidant | 258 | 2015 | 2019 | 2022 |
Antioxidant activity | 106 | 2015 | 2019 | 2022 |
Flavonoids | 94 | 2015 | 2020 | 2022 |
Oxidative stress | 387 | 2014 | 2019 | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albratty, M.; Halawi, M.; Albarrati, A.M. Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions. Pharmaceuticals 2025, 18, 983. https://doi.org/10.3390/ph18070983
Albratty M, Halawi M, Albarrati AM. Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions. Pharmaceuticals. 2025; 18(7):983. https://doi.org/10.3390/ph18070983
Chicago/Turabian StyleAlbratty, Mohammed, Maryam Halawi, and Ali Mufraih Albarrati. 2025. "Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions" Pharmaceuticals 18, no. 7: 983. https://doi.org/10.3390/ph18070983
APA StyleAlbratty, M., Halawi, M., & Albarrati, A. M. (2025). Natural Products for Drug Discovery in Cognitive Disabilities: Bibliometric Hotspots, Research Trends, Conceptual Framework, and Future Directions. Pharmaceuticals, 18(7), 983. https://doi.org/10.3390/ph18070983