Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant
Abstract
1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Network Analysis Approach
2.3. Enrichment Analysis Approach
3. Results
3.1. Network Analysis Results
3.2. Enrichment Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 10039, 86–97. [Google Scholar] [CrossRef]
- Elkis, H.; Buckley, P.F. Treatment-Resistant Schizophrenia. Psychiatr. Clin. N. Am. 2016, 39, 239–265. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.-Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- Deidda, M.; Noto, A.; Bassareo, P.P.; Cadeddu Dessalvi, C.; Mercuro, G. Metabolomic Approach to Redox and Nitrosative Reactions in Cardiovascular Diseases. Front. Physiol. 2018, 9, 672. [Google Scholar] [CrossRef]
- Noto, A.; Fanos, V.; Barberini, L.; Grapov, D.; Fattuoni, C.; Zaffanello, M.; Casanova, A.; Fenu, G.; De Giacomo, A.; De Angelis, M.; et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J. Matern.-Fetal Neonatal Med. 2014, 27, 46–52. [Google Scholar] [CrossRef]
- Dharuri, H.; Demirkan, A.; van Klinken, J.B.; Mook-Kanamori, D.O.; van Duijn, C.M.; ’t Hoen, P.A.; Willems van Dijk, K. Genetics of the human metabolome, what is next? Biochim. Biophys. Acta-Mol. Basis Dis. 2014, 1842, 1923–1931. [Google Scholar] [CrossRef]
- Barabási, A.L. Scale-free networks: A decade and beyond. Science 2009, 5939, 412–413. [Google Scholar] [CrossRef]
- Jaffrey, S.R.; Snowman, A.M.; Eliasson, M.J.; Cohen, N.A.; Snyder, S.H. CAPON: A protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 1998, 20, 115–124. [Google Scholar] [CrossRef]
- Coyle, J.T.; Tsai, G.; Goff, D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann. N. Y. Acad. Sci. 2003, 1003, 318–327. [Google Scholar] [CrossRef]
- Wratten, N.S.; Memoli, H.; Huang, Y.; Dulencin, A.M.; Matteson, P.G.; Cornacchia, M.A.; Azaro, M.A.; Messenger, J.; Hayter, J.E.; Bassett, A.S.; et al. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am. J. Psychiatry 2009, 166, 434–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, A.; Hu, C.; Zhang, R.; Lu, H.; Shen, Y.; Liu, J.; Chen, R.; Fang, P.; Jia, W.; et al. Metabolomics reveals alterations of serotonin pathway in carriers of NOS1AP variant rs12742393. Metabolomics 2017, 13, 84. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- Yang, J.; Chen, T.; Sun, L.; Zhao, Z.; Qi, X.; Zhou, K.; Cao, Y.; Wang, X.; Qiu, Y.; Su, M.; et al. Potential metabolite markers of schizophrenia. Mol. Psychiatry 2013, 18, 67–78. [Google Scholar] [CrossRef]
- Umetrics AB. SIMCA, version 15.0. Umeå, Sweden: Umetrics AB (part of Sartorius Stedim Data Analytics). 2018. Available online: https://umetrics.com/products/simca (accessed on 10 August 2025).
- Akarachantachote, N.; Chadcham, S.; Saithanu, K. Cutoff threshold of variable importance in projection for variable selection. Int. J. Pure Appl. Math. 2014, 94, 307–322. [Google Scholar] [CrossRef]
- Jansson, J.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 2009, 4, e6386. [Google Scholar] [CrossRef]
- Grapov, D.; Wanichthanarak, K.; Fiehn, O. MetaMapR: Pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics 2015, 16, 2757–2760. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Cheng, T.; Yu, B.; Shoemaker, B.A.; Wang, J.; Bolton, E.E.; Wang, Y.; Bryant, S.H. Literature information in Pub-Chem: Associations between PubChem records and scientific articles. J. Cheminform. 2016, 8, 32. [Google Scholar] [CrossRef]
- Barupal, D.K.; Haldiya, P.K.; Wohlgemuth, G.; Kind, T.; Kothari, S.L.; Pinkerton, K.E.; Fiehn, O. MetaMapp: Mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinform. 2012, 13, 99. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 11, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Power, J.D.; Fair, D.A.; Schlaggar, B.L.; Petersen, S.E. The development of human functional brain networks. Neuron 2010, 67, 735–748. [Google Scholar] [CrossRef]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.-L. The large-scale organization of metabolic networks. Nature 2000, 407, 651–654. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Mauri, M.; Fanos, V. Scale-free networks in metabolomics. Bioinformation 2018, 14, 140–144. [Google Scholar] [CrossRef]
- He, Y.; Yu, Z.; Giegling, I.; Xie, L.; Hartmann, A.M.; Prehn, C.; Adamski, J.; Kahn, R.; Li, Y.; Illig, T.; et al. Schizophrenia shows a unique metabolomics signature in plasma. Transl. Psychiatry 2012, 8, e149. [Google Scholar] [CrossRef]
- Orešič, M.; Tang, J.; Seppänen-Laakso, T.; Mattila, I.; Saarni, S.E.; Saarni, S.I.; Lönnqvist, J.; Sysi-Aho, M.; Hyötyläinen, T.; Perälä, J.; et al. Metabolome in schizophrenia and other psychotic disorders: A general population-based study. Genome Med. 2011, 3, 19. [Google Scholar] [CrossRef]
- Paredes, R.M.; Quinones, M.; Marballi, K.; Gao, X.; Valdez, C.; Ahuja, S.S.; Velligan, D.; Walss-Bass, C. Metabolomic profiling of schizophrenia patients at risk for metabolic syndrome. Int. J. Neuropsychopharmacol. 2014, 8, 1139–1148. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Rösler, L.; Wijnen, J.P.; Boer, V.O.; Klomp, D.W.; Cahn, W.; Kahn, R.S.; Neggers, S.F. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings. Biol. Psychiatry 2017, 81, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Schroecksnadel, S.; Féart, C.; Aubert, A.; Higueret, D.; Barberger-Gateau, P.; Layé, S.; Fuchs, D. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: Role in neuropsy-chiatric symptoms. Biol. Psychiatry 2011, 70, 175–182. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef]
- Jacobsen, J.P.; Medvedev, I.O.; Caron, M.G. The 5-HT deficiency theory of depression: Perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 1601, 2444–2459. [Google Scholar] [CrossRef]
- Rodríguez, J.J.; Noristani, H.N.; Verkhratsky, A. The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol. 2012, 99, 15–41. [Google Scholar] [CrossRef]
- Huot, P.; Fox, S.H. The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp. Brain Res. 2013, 4, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Weng, R.; Shen, S.; Tian, Y.; Burton, C.; Xu, X.; Liu, Y.; Chang, C.; Bai, Y.; Liu, H. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency. Sci. Rep. 2015, 5, 11864. [Google Scholar] [CrossRef] [PubMed]
Characteristics | AA Genotype (N = 49) | AC Genotype (N = 49) | CC Genotype (N = 49) | p-Value |
---|---|---|---|---|
Age (mean years ± SD) | 51.22 ± 14.12 | 50.51 ± 13.48 | 50.76 ± 13.87 | 0.96 |
Female, n (%) | 26 (53.1) | 26 (53.1) | 27 (55.1) | |
BMI (kg/m2, mean ± SD) | 23.33 ± 3.58 | 23.64 ± 3.78 | 23.7 ± 4.72 | 0.90 |
Blood pressure (mean mm Hg ± SD) | ||||
Systolic BP | 120 ± 16 | 115 ± 16 | 114 ± 15 | 0.10 |
Diastolic BP | 72 ± 18 | 72 ± 19 | 73 ± 16 | 0.97 |
Metabolite | VIP Score | Trend in Genotypes AA-AC |
---|---|---|
[7-CD3]-1,3,7-Trimethyluric acid | 1.38 | down-regulated |
Guanidineacetic acid | 1.37 | up-regulated |
Hippurate | 1.36 | up-regulated |
2-aminobutyric acid | 1.32 | down-regulated |
Homocysteine | 1.30 | down-regulated |
O-Phosphothreonine | 1.30 | up-regulated |
Methionine sulfoxide | 1.29 | down-regulated |
Creatine | 1.27 | down-regulated |
5-aminolevulinic acid | 1.25 | down-regulated |
Carnosine | 1.25 | up-regulated |
Tryptophan | 1.12 | up-regulated |
Threonine | 1.10 | up-regulated |
Adenine | 1.09 | up-regulated |
3,4-Dehydro-proline | 1.08 | up-regulated |
4-aminophenol | 1.05 | up-regulated |
Tyrosine | 1.00 | up-regulated |
Metabolite | VIP Score | Trend in Genotype AA |
---|---|---|
(S)-2-hydroxy-isocaproic acid | 2.15 | down-regulated |
5-hydroxy-tryptophan | 2.13 | down-regulated |
2-methyl-4-pentenoic acid | 2.09 | up-regulated |
Capric acid (C10:0) | 2.07 | up-regulated |
Fumaric acid | 2.03 | down-regulated |
Lauric acid (C12:0) | 1.83 | up-regulated |
Isocaproic acid | 1.66 | down-regulated |
Hippurate | 1.58 | down-regulated |
Tyrosine | 1.55 | down-regulated |
Palmitic acid (C16:0) | 1.48 | up-regulated |
Aspartic acid | 1.41 | down-regulated |
Citric acid | 1.40 | down-regulated |
Adrenic acid (cis-7,10,13,16-C22:4) | 1.39 | up-regulated |
Phenylalanine | 1.37 | down-regulated |
Allantoin | 1.32 | down-regulated |
Myristic acid (C14:0) | 1.29 | up-regulated |
Adenine | 1.28 | down-regulated |
Pentadecanoic acid (C15:0) | 1.27 | up-regulated |
5-phenylvaleric acid | 1.23 | up-regulated |
Cis-8,11,14-eicosatrienoic acid (cis-8,11,14-C20:3, n-6) | 1.23 | up-regulated |
Quinic acid | 1.23 | down-regulated |
Palmitelaidic acid (trans-9-C16:1) | 1.22 | up-regulated |
Eicosadienoic acid (cis-11,14-C20:2, n-6) | 1.22 | down-regulated |
Oxypurinol | 1.22 | down-regulated |
Docosapentaenoic acid (cis-4,7,10,13,16,C22:5, 22n-6) | 1.21 | up-regulated |
Theanine | 1.21 | down-regulated |
Isoleucine | 1.20 | down-regulated |
P-coumaric acid | 1.20 | down-regulated |
Stearic acid (C18:0) | 1.19 | up-regulated |
Elaidic acid (trans-9-C18:1) | 1.19 | down-regulated |
4-hydroxybenzaldehyde | 1.18 | down-regulated |
3-methylindole | 1.17 | down-regulated |
Proline | 1.16 | down-regulated |
Pyroglutamic acid | 1.14 | down-regulated |
1-methyluric acid | 1.13 | down-regulated |
Heptadecanoic acid (C17:0) | 1.12 | down-regulated |
N-alpha-acetyl-ornithine | 1.11 | up-regulated |
Mandelic acid | 1.09 | down-regulated |
N-acetyl-methionine | 1.08 | down-regulated |
Taurine | 1.07 | down-regulated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajula, H.S.R.; Piras, C.; Kopeć, K.K.; Noto, A.; Spada, M.; Lilliu, K.; Manchia, M.; Mussap, M.; Atzori, L.; Fanos, V. Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant. Metabolites 2025, 15, 551. https://doi.org/10.3390/metabo15080551
Rajula HSR, Piras C, Kopeć KK, Noto A, Spada M, Lilliu K, Manchia M, Mussap M, Atzori L, Fanos V. Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant. Metabolites. 2025; 15(8):551. https://doi.org/10.3390/metabo15080551
Chicago/Turabian StyleRajula, Hema Sekhar Reddy, Cristina Piras, Karolina Krystyna Kopeć, Antonio Noto, Martina Spada, Katia Lilliu, Mirko Manchia, Michele Mussap, Luigi Atzori, and Vassilios Fanos. 2025. "Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant" Metabolites 15, no. 8: 551. https://doi.org/10.3390/metabo15080551
APA StyleRajula, H. S. R., Piras, C., Kopeć, K. K., Noto, A., Spada, M., Lilliu, K., Manchia, M., Mussap, M., Atzori, L., & Fanos, V. (2025). Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant. Metabolites, 15(8), 551. https://doi.org/10.3390/metabo15080551