Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction, Separation, and Structural Identification of Chemical Constituents from DC
2.3. Preparation of Test Solution
2.4. Identification of Transdermal Constituents of DC
2.4.1. Chromatographic Conditions
2.4.2. Mass Spectrometric Analysis Parameters
2.4.3. Data Processing and Compound Identification
2.5. Network Pharmacology Investigation
2.5.1. Acquisition of Potential Targets for DC’s Transdermal Constituents
2.5.2. “Transdermal Constituent-Target” Network Construction and Analysis
2.5.3. Acquisition of Psoriasis Disease Targets
2.5.4. Venn Diagram Construction for Constituent-Disease Intersection Targets
2.5.5. PPI Network Establishment and Core Target Identification
2.5.6. Functional Annotation and Pathway Enrichment Analysis
2.5.7. Construction and Analysis of Multidimensional Interaction Network
2.5.8. Molecular Docking
2.6. In Vitro Validation
2.6.1. TNF-α-Stimulated HaCaT Cell Model Construction
2.6.2. Impact of Investigational Agents on Keratinocyte Viability
2.6.3. Impact of Investigational Agents on TNF-α-Mediated Keratinocyte Growth
2.6.4. Extraction of RNA and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
2.6.5. ELISA Detection of Inflammatory Markers
2.6.6. Data Analysis
3. Results and Discussion
3.1. Structure Identification of Extracted Constituents
3.2. Chromatographic and Mass Spectrometric Characterization
3.3. Identification and Analysis of Representative Compounds of Alkaloids and Limonoids
3.4. Integrated Network Pharmacological and Molecular Docking Evaluation
3.4.1. Targeted Prediction of Transdermal Constituents of DC
3.4.2. PPI Network Topology and Central Target Identification
3.4.3. Bioinformatic Analysis of Functional Annotations and Pathways
3.4.4. Establishment and Evaluation of the “Transdermal Component-Core Target-Key Pathway” Multidimensional Network
3.4.5. Molecular Docking Verification Analysis
3.5. Analysis of In Vitro Test Results
3.5.1. Effect of TNF-α on HaCaT Cells
3.5.2. Drug Concentration Screening
3.5.3. Inhibitory Effects of Different Compounds on Abnormal HaCaT Cell Proliferation
3.5.4. Modulation of Ki67 Expression by Various Compounds in a Psoriasis-like HaCaT Model
3.5.5. Effects of Different Compounds on Inflammatory Factor Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, Z.Y.; Jiang, M.; Zhang, Z.H.; An, Y.M.; Wang, X.Y.; Wu, Y.L.; Nan, J.X.; Lian, L.H. NETs contribute to psoriasiform skin inflammation: A novel therapeutic approach targeting IL-36 cytokines by a small molecule tetrahydroxystilbene glucoside. Phytomedicine 2024, 131, 155783. [Google Scholar] [CrossRef]
- Sugumaran, D.; Yong, A.C.H.; Stanslas, J. Advances in psoriasis research: From pathogenesis to therapeutics. Life Sci. 2024, 355, 122991. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhu, L. New advances in the pathogenesis and drug research of psoriasis. Acta Pharm. Sin. 2023, 58, 2942–2951. (In Chinese) [Google Scholar]
- Li, X.; Yan, Z.; Lan, H.; Wu, Y.; Chen, S.; Qiu, G.; Wu, Y. Genetic Comorbidity of Psoriasis and Four Cardiovascular Diseases: Uncovering Shared Mechanisms and Potential Therapeutic Targets. Exp. Dermatol. 2025, 34, e70158. [Google Scholar] [CrossRef]
- Wu, J.J.; Kavanaugh, A.; Lebwohl, M.G.; Gniadecki, R.; Merola, J.F. Psoriasis and metabolic syndrome: Implications for the management and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Shen, S.; Zhu, Z.; Li, Z.; Bai, Y.; Ma, J.; Hao, J.; Wang, L.; Fu, M.; Dang, E.; et al. Association of psoriasis with depression, anxiety, and suicidality: A bidirectional two-sample Mendelian randomization study. J. Dermatol. 2023, 50, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.; Musumeci, M.L.; D’Agata, E.; Micali, G. Depression and sleep quality in psoriatic patients: Impact of psoriasis severity. Int. J. Psychiatry Clin. Pract. 2020, 24, 102–104. [Google Scholar] [CrossRef]
- Committee on Psoriasis. Chinese Society of Dermatology. Guideline for the diagnosis and treatment of psoriasis in China (2023 edition). Chin. J. Dermatol. 2023, 56, 573–625. [Google Scholar] [CrossRef]
- Hu, W.; Shen, J.; Zhou, C.; Tai, Z.; Zhu, Q.; Chen, Z.; Huang, Y.; Sheng, C. Discovery of Janus Kinase and Histone Deacetylase Dual Inhibitors as a New Strategy to Treat Psoriasis. J. Med. Chem. 2024, 67, 19267–19281. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, X.; Su, Y.; Jin, Y.; Kuang, Q.; Li, S.; Shen, W.; Zhu, Y. Tanshinone I Ameliorates Psoriasis-Like Dermatitis by Suppressing Inflammation and Regulating Keratinocyte Differentiation. Drug Des. Dev. Ther. 2025, 19, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, M. Challenges and Future Trends in the Treatment of Psoriasis. Int. J. Mol. Sci. 2023, 24, 13313. [Google Scholar] [CrossRef]
- Wu, Z.M.; Duan, X.W.; Deng, H.H.; Li, X.T.; Han, S.W.; Qi, R.Z. Analysis of the characteristics and clinical application of Liangxue Wuhua Decoction in treating psoriasis based on the theory of “blood-heat as the root cause”. Yunnan J. Tradit. Chin. Med. Mater. Med. 2024, 45, 35–38. (In Chinese) [Google Scholar]
- Li, B.N.; Zhao, J.; Yuan, F.H.; Shu, X.G.; Zhang, X.Z. Research progress on the mechanism and clinical application of traditional Chinese medicine in the treatment of psoriasis. Heilongjiang J. Tradit. Chin. Med. 2024, 53, 353–354. (In Chinese) [Google Scholar]
- Lin, X.F.; Zhang, G.L.; Shen, Y.X.; Dong, C.L.; Tao, K.; Zhang, Y.S. Research progress on traditional Chinese medicine treatment of psoriasis. Chin. J. Geriatr. Care. 2024, 22, 122–126. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 2020 ed.; China Medical Science Press: Beijing, China, 2020; Volume 1, pp. 114–115. [Google Scholar]
- Steven, S.; Evie, W.O.; Albert, H.; Wang, Z.X. Functional Properties and Quality Control of Cortex Dictamni: A Review. Curr. Nutr. Food Sci. 2025, 21, 579–585. [Google Scholar]
- Liu, X.Y.; Chen, L.L.; Sun, P.; Zhan, Z.S.; Wang, J.F. Research progress in chemical composition, pharmacological effects, toxicology of Dictamni cortex and predictive analysis of its quality markers. Chin. New Drug J. 2023, 32, 799–805. (In Chinese) [Google Scholar]
- Xu, Q.Y.; Li, F.L.; Mao, X.; Song, H.C.; Qu, X.L. Research progress of traditional Chinese medicine in the blood-heat stage of psoriasis vulgaris. Shanghai Med. Pharm. J. 2021, 42, 18–20. (In Chinese) [Google Scholar]
- Yao, D.M.; Chen, J.J. Analysis of Medication Rules About External Traditional Chinese Medicine Preparations in National Patent Database for Psoriasis. Asia-Pac. Tradit. Med. 2024, 20, 142–146. (In Chinese) [Google Scholar]
- Xu, K.; Yang, S.Q.; Yuan, R. Wang Yuxi’s experience in treating psoriasis with Chinese herbal external washing therapy. Guide J. Tradit. Chin. Med. 2022, 28, 150–153. (In Chinese) [Google Scholar]
- Choi, M.; Yi, J.K.; Kim, S.Y.; Ryu, J.H.; Lee, J.; Kwon, W.; Jang, S.; Kim, D.; Kim, M.; Kim, H.; et al. Anti-inflammatory effects of a methanol extract of Dictamnus dasycarpus Turcz. root bark on imiquimod-induced psoriasis. BMC Complement. Altern. Med. 2019, 19, 347. [Google Scholar] [CrossRef]
- Gao, R.; Sun, H.J.; Zhang, M.M.; Deng, G.Y.; Zhang, Z.D. Mechanism of Dictamni Cortex aqueous extract in improving psoriasis-like rats based on Akt1, TP53, and Caspase-3 targets. J. Chin. Med. Mater. 2024, 47, 2328–2333. (In Chinese) [Google Scholar]
- Li, Y. Effect and Molecular Mechanisms of Dictamnine in Treating Psoriasis. Master’s Thesis, South-Central Minzu University, Wuhan, China, 2020. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Jiang, L.; Cheng, X.H.; Zeng, J.; Li, Q. Exploring the pharmacodynamic material basis of Heibu Yaogao in treating keloids based on transdermal component spectrum and network pharmacology. J. Shaanxi Univ. Chin. Med. 2025, 1–9. (In Chinese) [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Wen, W.; Tan, Y.; Wang, W.; Xu, J.; Xiong, P. A Network Pharmacology Study and In Vitro Evaluation of the Bioactive Compounds of Kadsura coccinea Leaf Extract for the Treatment of Type 2 Diabetes Mellitus. Molecules 2025, 30, 1157. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian Inheritance in Man (OMIM): Victor McKusick’s magnum opus. Am. J. Med. Genet. Part A 2021, 185, 3259–3265. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024, 52, D1465–D1477. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, H.; Xu, C.L.; Jin, J.J.; Qin, K.M. Mechanism of Cortex Dictamni in the Treatment of Eczema by LC-MS Combined with Network Pharmacology. World Sci. Technol. Mod. Tradit. Chin. Med. 2022, 24, 2053–2063. (In Chinese) [Google Scholar]
- Wei, J.; Liu, Z.; Li, M.; Du, L.; Zhu, X.; Leng, Y.; Han, C.; Xu, Q.; Zhang, C. Based on UPLC-Q-TOF/MS and Network Pharmacology to Explore the Mechanism of Qingre Lishi Decoction in the Treatment of Psoriasis. Drug Des. Dev. Ther. 2024, 18, 3871–3889. [Google Scholar] [CrossRef]
- Oliveros, J.C. (2007–2015) Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 15 June 2025).
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022, 51, D638–D646. [Google Scholar] [CrossRef]
- Zhou, J.X.; Shen, S.; Du, M.B.; Li, Y.J.; Sun, Y. Investigation of Transdermal Constituents and Molecular Mechanism of Euodiae Fructus in Treatment of Diarrhea by Transdermal Drug Delivery Based on Integrated Pharmacology and UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Form. 2021, 27, 112–120. (In Chinese) [Google Scholar]
- Wang, J.L.; Guan, Y.X.; Fan, J.W.; Li, Y.F.; Zhang, G.M. Quality Evaluation of Qinggan Granules Based on UPLC-Q-Exactive-Orbitrap-MS and Network Pharmacology. World Chin. Med. 2024, 19, 2035–2047. (In Chinese) [Google Scholar]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner., C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Qu, K.; Chen, Z.Y.; Li, N.; Liu, H.L.; Wu, Y.; Ding, Y.L.; Xu, J.H. Network Pharmacology and Experimental Validation of Effective Components of Panacis Quinquefolii Radix and Carthamus tinctorius in Treatment of Early Diabetic Nephropathy. World Chin. Med. 2024, 19, 2072–2080. (In Chinese) [Google Scholar]
- Qi, Y.L.; Bai, L.D.; Qiu, X.Z.; Si, Y.M.; Wang, Y.Y.; Chen, L.; Li, Y.H. Bioinformatics analysis of lymphangiogenesis in myocardial infarction and screening of traditional Chinese medicine for prevention treatment. J. Tianjin Univ. Tradit. Chin. Med. 2024, 43, 113–122. (In Chinese) [Google Scholar]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Du, Q.; Shi, S.; Lv, J.; Zhang, W.; Ge, D.; Xing, L.; Yu, N. Integrating UPLC-Q-TOF-MS and Network Pharmacology to Explore the Potential Mechanisms of Paeonia lactiflora Pall. in the Treatment of Blood Stasis Syndrome. Molecules 2024, 29, 3019. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol. Biol. 2017, 1607, 627–641. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Wikan, N.; Hankittichai, P.; Thaklaewphan, P.; Potikanond, S.; Nimlamool, W. Oxyresveratrol Inhibits TNF-α-Stimulated Cell Proliferation in Human Immortalized Keratinocytes (HaCaT) by Suppressing AKT Activation. Pharmaceutics 2021, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, H.; Zheng, Z.Y.; Qu, S.Q.; Zhang, Y.; Deng, S.Q.; Shen, S.; Liu, T.; Dai, Y.; Li, Y.; et al. MicroRNA-32-5p inhibits metastasis by directly targeting VPS4B and increases sensitivity to dihydroartemisinin in neuroblastoma. Sci. Tradit. Chin. Med. 2024, 2, 202–213. [Google Scholar] [CrossRef]
- Guo, L.N.; Wang, R.; Pei, Y.H.; Liu, L.; Sun, J.K.; Comg, H.; Cui, H.X.; Wang, X.L.; Li, W.J.; Jian, B.Y.; et al. Chemical constituents from the root barks of Dictamnus dasycarpus. Chin. Tradit. Pat. Med. 2016, 38, 2409–2413. (In Chinese) [Google Scholar]
- Liu, X. Chemical Constituents Research of Dictamnus dasycarpus. Master’s Thesis, China Medical University, Shenyang, China, 2020. [Google Scholar]
- Guo, X.X.; Zhao, L.N.; Wang, J.; Liu, S.; Bi, Q.R.; Wang, Z.; Tan, N.H. Chemical constituents from root barks of Dictamnus dasycarpus and their cytotoxic activities. Chin. J. Chin. Mater Med. 2018, 43, 4869–4877. (In Chinese) [Google Scholar]
- Wang, X.X. Active Constituents and Quality Research of Euodia Rutaecarpa. Ph.D. Dissertation, Shenyang Pharmaceutical University, Shenyang, China, 2013. [Google Scholar]
- Bai, Y.Y.; Tang, W.Z.; Wang, X.J. Chemical Constituents from Root Bark of Dictamnus dasycarpus. Chin. Med. Mat. 2014, 37, 263–265. (In Chinese) [Google Scholar]
- Du, C.F.; Yang, X.X.; Tu, P.F. Studies on chemical constituents in bark of Dictamnus dasycarpus. Chin. J. Chin. Mater Med. 2005, 21, 23–26. (In Chinese) [Google Scholar]
- Zhao, Q.Q. Isolation and Structural Identification of Chemical Constituents from Traditional Chinese Medicine Dictamnus dasycarpus. Master’s Thesis, Northwest University, Xi’an, China, 2015. [Google Scholar]
- Duan, J.; Li, W.; Hu, X.J.; Fu, H.Z.; Koike, K. Study on chemical constituents of Jiu-zishen. Chin. Tradit. Herb. Drugs 2009, 40, 528–530. (In Chinese) [Google Scholar]
- Gao, P.; Wang, L.; Zhao, L.; Lu, Y.Y.; Zeng, K.W.; Zhao, M.B.; Jiang, Y.; Tu, P.F.; Guo, X.Y. Rapid identification, isolation, and evaluation on anti-neuroinflammatory activity of limonoids derivatives from the root bark of Dictamnus dasycarpus. J. Pharm. Biomed. Anal. 2021, 200, 114079. [Google Scholar] [CrossRef]
- Yoon, J.S.; Sung, S.H.; Kim, Y.C. Neuroprotective limonoids of root bark of Dictamnus dasycarpus. J. Nat. Prod. 2008, 71, 208–211. [Google Scholar] [CrossRef]
- Yang, S.; Sun, F.; Ruan, J.; Yan, J.; Huang, P.; Wang, J.; Han, L.; Zhang, Y.; Wang, T. Anti-inflammatory constituents from Cortex Dictamni. Fitoterapia 2019, 134, 465–473. [Google Scholar] [CrossRef]
- Yoon, J.S.; Jeong, E.J.; Yang, H.; Kim, S.H.; Sung, S.H.; Kim, Y.C. Inhibitory alkaloids from Dictamnus dasycarpus root barks on lipopolysaccharide-induced nitric oxide production in BV2 cells. J. Enzym. Inhib. Med. Chem. 2012, 27, 490–494. [Google Scholar] [CrossRef]
- Yuldashev, M.P.; Batirov, É.K.; Bdovin, A.D.; Malikov, V.M.; Yagudaev, M.R. Coumarin glycosides of Haplophyllum performatum. structures of haploperosides C, D, and E. Chem. Nat. Compd. 1985, 21, 25–32. [Google Scholar] [CrossRef]
- Zhang, J.L.; Song, S.C.; Liu, J.C.; Ni, P.-H.; Liu, L.; Ma, Y.-K.; Sun, Y.; Liu, Q.; Guo, L.-N. Chemical constituents from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae) and their chemotaxonomic significance. Biochem. Syst. Ecol. 2019, 86, 103931. [Google Scholar] [CrossRef]
- Yuan, X.D.; Gao, H.M.; Chen, L.M.; Zhang, Q.W.; Wang, Z.M. A new lignan from stems of Sargentodoxa cuneata. Chin. J. Chin. Mater Med. 2013, 38, 2118–2124. [Google Scholar]
- Lee, D.G.; Jung, H.J.; Woo, E.R. Antimicrobial property of (+)-lyoniresinol-3alpha-O-beta-D- glucopyranoside isolated from the root bark of Lycium chinense Miller against human pathogenic microorganisms. Arch. Pharmacal Res. 2005, 28, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Gao, P.; Lu, Y.Y.; Tu, P.F.; Jiang, Y.; Guo, X.Y. Identification and characterization of quinoline alkaloids from the root bark of Dictamnus dasycarpus and their metabolites in rat plasma, urine and feces by UPLC/Qtrap-MS and UPLC/Q-TOF-MS. J. Pharm. Biomed. Anal. 2021, 204, 114229. [Google Scholar] [CrossRef]
- Guo, X.X.; Bi, Q.R.; Wang, Z.; Tan, N.H. Mass spectrometry guided strategy based on feature fragment ions forguided-separation on quinoline alkaloids from root barks of Dictamnus dasycarpus. Chin. J. Chin. Mater Med. 2018, 43, 3887–3892. (In Chinese) [Google Scholar]
- Xia, T.L.; Wang, Y.; Wang, D.; Zhao, D.P.; Su, T.; Zhao, J.H.; Lei, X.; Zhang, N. Analysis of Absorbed Components of Rhizoma Anemarrhenae-Cortex Phellodendri Chinesis Herb-Pair Based on UPLC-Q-Exactive Orbitrap-MS. Chin. Pharm. J. 2024, 59, 330–337. (In Chinese) [Google Scholar]
- Ren, W.; Li, Y.; Zuo, R.; Wang, H.; Si, N.; Zhao, H.; Han, L.; Yang, J.; Bian, B. Species-related difference between limonin and obacunone among five liver microsomes and zebrafish using ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass spectrometer. Rapid Commun. Mass Spectrom. 2014, 28, 2292–2300. [Google Scholar] [CrossRef]
- Zhao, X.M.; Chen, Y.X.; Liang, C.X.; Guo, J.; Liu, X.Q.; Feng, W.H.; Zhao, Z.B.; Yan, L.H.; Wang, Z.M. Analysis of Chemical Constituents in Euodiae Fructus by UPLC-Q-TOF-MS/MS. Chin. J. Exp. Tradit. Med. Form. 2021, 27, 113–126. (In Chinese) [Google Scholar]
- Gao, L.N.; Li, R.C.; Zhou, C.Z.; Liu, Q.Z.; Wan, X.H. Chemical constituents and pharmacological effects of Dictamni Cortex:a review. China J. Chin. Mater. Med. 2022, 47, 3723–3737. (In Chinese) [Google Scholar]
- Shi, M.; Ren, B.N.; Qiu, Z.H.; Wu, Y. Rapid identification of the components in Phellodendri chinensis Cortex based on UPLC-Q-TOF-MS. Chin. J. Hosp. Pharm. 2022, 42, 2225–2229. (In Chinese) [Google Scholar]
- Wang, Y.; Hu, W.D.; Hong, L.L.; Xu, X.Y.; Wang, H.; Wang, X.Y.; Yang, W.Z.; Gao, X.M. Characterization and identification of chemical components from Euodiae Fructus based on UHPLC-Q-TOF-MS. China J. Chin. Mater. Med. 2024, 49, 2953–2964. (In Chinese) [Google Scholar]
- Shi, J.W.; Hao, L.; Wang, Y.; Huo, Z.P.; Zhang, Y.Q.; Song, Z.H.; He, Y. Exploration of the Mechanism of Yangxue Qingnao Granules in the Treatment of Hypertension Based on Network Pharmacology and Molecular Docking. Tradit. Chin. Drug Res. Clin. Pharmacol. 2024, 35, 1206–1214. (In Chinese) [Google Scholar]
- Liu, L.; Zhang, H.; Tang, X.; Zhang, M.; Wu, Y.; Zhao, Y.; Lu, C.; Zhao, R. Geniposide ameliorates psoriatic skin inflammation by inhibiting the TLR4/MyD88/NF-κB p65 signaling pathway and MMP9. Int. Immunopharmacol. 2024, 133, 112082. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Cao, Y.; Wang, J.; Zhao, X.; Jiao, J.; Li, J.; Zhang, K.; Yin, G. Inhibition of miR-155 Attenuates CD14+ Monocyte-Mediated Inflammatory Response and Oxidative Stress in Psoriasis Through TLR4/MyD88/NF-κB Signaling Pathway. Clin. Cosmet. Investig. Dermatol. 2022, 15, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Zhang, B.W.; Li, J.T.; Zeng, X.; Pei, J.X.; Zhang, Y.M.; Yang, Y.X.; Li, F.L.; Deng, Y.; Zhao, Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J. Integr. Med. 2023, 21, 584–592. [Google Scholar] [CrossRef]
- Shih, C.M.; Hsieh, C.K.; Huang, C.Y.; Huang, C.Y.; Wang, K.H.; Fong, T.H.; Trang, N.T.T.; Liu, K.T.; Lee, A.W. Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice. Polymers 2020, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Murakami, M.; Shiraishi, K.; Muto, J.; Tohyama, M.; Mori, H.; Utsunomiya, R.; Sayama, K. EGFR ligands synergistically increase IL-17A-induced expression of psoriasis signature genes in human keratinocytes via IκBζ and Bcl3. Eur. J. Immunol. 2022, 52, 994–1005. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Peng, H.; Zeng, K. Recent advances on the roles of epidermal growth factor receptor in psoriasis. Am. J. Transl. Res. 2019, 11, 520–528. [Google Scholar]
- Yang, J. Cereblon Suppresses LPS-Induced Inflammatory Response and Apoptosis Through Promoting the Ubiquitination and Degradation of c-Jun. Master’s Thesis, Soochow University, Suzhou, China, 2018. [Google Scholar]
- Zhang, J.J.; Liu, J.X.; Zhang, X.Z.; Jia, Y. Exploration of the effects of Tuhuaidan Siwu Decoction on proliferation and inflammation of HaCaT Cells based on network pharmacology and molecular docking technology. J. Shanxi Univ. Chin. Med. 2022, 23, 214–220+224. (In Chinese) [Google Scholar]
- Lin, L.Y.; Lin, Y.; Lei, H.Q.; Liu, J.; Zhang, Y.L.; Huang, W.L.; Yang, L.H.; Tao, J.H. Network Pharmacology Study and Cellular Validation of Dictamni Cortex and Wogonin in the Treatment of Psoriasis. J. Guangzhou Univ. Tradit. Chin. Med. 2023, 40, 1488–1497. (In Chinese) [Google Scholar]
- Liu, T.; He, Y.; Liao, Y. Gypenosides alleviates HaCaT keratinocyte hyperproliferation and ameliorates imiquimod-induced psoriasis in mice. Allergol. Immunopathol. 2024, 52, 22–32. [Google Scholar] [CrossRef]
- Ma, C.; Gu, C.; Lian, P.; Wazir, J.; Lu, R.; Ruan, B.; Wei, L.; Li, L.; Pu, W.; Peng, Z.; et al. Sulforaphane alleviates psoriasis by enhancing antioxidant defense through KEAP1-NRF2 Pathway activation and attenuating inflammatory signaling. Cell Death Dis. 2023, 14, 768. [Google Scholar] [CrossRef] [PubMed]
- Veerasubramanian, P.K.; Wynn, T.A.; Quan, J.; Karlsson, F.J. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J. Exp. Med. 2024, 221, e20240806. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, S.; Zhang, H.; Zhang, X.; Xue, J.; Li, Z.; Zhang, Y.; Jiang, Y.; Zhang, P.; Yang, M.; et al. Amlexanox ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting Th17 cells and the NF-κB signal pathway. Biomed. Pharmacother. 2025, 184, 117922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, G.; Sun, H.; Jiang, C. NLRC3 affects the development of psoriasis by modulating the NF-κB signaling pathway mediated inflammatory response through its interaction with TRAF6. Immunol. Lett. 2025, 272, 106949. [Google Scholar] [CrossRef]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef]
- Adamczyk, M.; Bartosińska, J.; Raczkiewicz, D.; Michalak-Stoma, A.; Krasowska, D. The Impact of Biologic Treatment on PD-1/PD-L1 Pathway Disturbances in Psoriasis. J. Clin. Med. 2023, 12, 4179. [Google Scholar] [CrossRef] [PubMed]
- Emre, S.; Süngü, N.; Hayran, Y.; Demirseren, D.D.; Aktas, A.; Duman, T.Ö. Investigation of the PD-1/PD-L1 Expression in the Lesional Skins of Patients with Psoriasis. Dermatol. Pract. Concept. 2023, 13, e2023134. [Google Scholar] [CrossRef] [PubMed]
- Swindell, W.R.; Johnston, A.; Xing, X.; Voorhees, J.J.; Elder, J.T.; Gudjonsson, J.E. Modulation of epidermal transcription circuits in psoriasis: New links between inflammation and hyperproliferation. PLoS ONE 2013, 8, e79253. [Google Scholar] [CrossRef]
- Wang, A.; Wei, J.; Lu, C.; Chen, H.; Zhong, X.; Lu, Y.; Li, L.; Huang, H.; Dai, Z.; Han, L. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κB-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019, 69, 270–278. [Google Scholar] [CrossRef]
- Gao, J.; Chen, F.; Fang, H.; Mi, J.; Qi, Q.; Yang, M. Daphnetin inhibits proliferation and inflammatory response in human HaCaT keratinocytes and ameliorates imiquimod-induced psoriasis-like skin lesion in mice. Biol. Res. 2020, 53, 48. [Google Scholar] [CrossRef]
- Lin, X.Y.; He, F.; Dong, D.D.; Li, K. Expression and significance of Ki67 in psoriatic lesions. Sichuan Med. J. 2011, 32, 154–156. (In Chinese) [Google Scholar]
- Choi, D.H.; Hwang, H.S. Anti-inflammation activity of brazilin in TNF-α induced human psoriasis dermatitis skin model. Appl. Biol. Chem. 2019, 62, 46. [Google Scholar] [CrossRef]
- Takuathung, M.N.; Potikanond, S.; Sookkhee, S.; Mungkornasawakul, P.; Jearanaikulvanich, T.; Chinda, K.; Wikan, N.; Nimlamool, W. Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed. Pharmacother. 2021, 143, 112229. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, M.; Mabuchi, T. New Treatment Addressing the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2020, 21, 7488. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Jiang, H.; Xu, Y.; Liu, X.; Che, B.; Tang, J.; Liu, G.; Tang, Y.; Zhou, W.; et al. Glabridin, an isoflavan from licorice root, ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int. Immunopharmacol. 2018, 59, 243–251. [Google Scholar] [CrossRef]
- Lin, Y.; Yin, X.; Ma, S.; Xue, Y.; Hu, C.; Xie, Y.; Zeng, Y.; Zhao, X.; Du, C.; Sun, Y.; et al. Cang-ai volatile oil ameliorates imiquimod-induced psoriatic skin lesions by suppressing the ILC3s. J. Ethnopharmacol. 2024, 326, 117867. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.N.; Hong, D.; Shi, Z.R.; Lu, S.Y.; Lai, Y.X.; Ren, Y.L.; Liu, X.T.; Guo, C.P.; Tan, G.Z.; Wang, L.C. TNF-α promotes CXCL-1/8 production in keratinocytes by downregulating galectin-3 through NF-κB and hsa-miR-27a-3p pathway to contribute psoriasis development. Immunopharmacol. Immunotoxicol. 2023, 45, 692–700. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Forward | Reverse |
---|---|---|
Actin | TCCTCCTGAGCGCAAGTACTCC | CATACTCCTGCTTGCTGATCCAC |
Ki67 | TCCAGACACCAGACCACACTGA | GCCGCCTCCTTGTGCTTGTT |
No. | RT (min) | Compounds | Molecular Formula | Ion Mode | Theoretical value (m/z) | Actual value (m/z) | Error (ppm) | Fragment Ions (m/z) | Transdermal | Structure Type | References |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.40 | 4-hydroxy-3-methoxy-acetophenone-4-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside * | C21H30O12 | [M+Na]+ | 497.1635 | 497.1635 | 0.00 | 293, 167 | No | acetophenone glycosides | * |
2 | 3.47 | Haploperoside A * | C22H28O13 | [M+H]+ | 501.1608 | 501.1605 | 0.60 | 355, 193 | No | coumarin glycosides | * |
3 | 3.67 | Dictamalkoside A * | C18H19NO8 | [M+H]+ | 378.1189 | 378.1190 | −0.26 | 340, 322, 216 | No | alkaloid glycosides | * |
4 | 3.92 | 3-[1β-hydroxy-2-(β-D-glucopyranosyloxy)ethyl)-4-methoxy-2(1H)-quinolinone * | C18H23NO9 | [M+H]+ | 398.1451 | 398.1450 | 0.25 | 340, 322, 218 | No | alkaloid glycosides | * |
5 | 4.17 | 3-(2-hydroxy-3methyl-3-buten-1yl)-4-methoxy-1methyl-2(1H)quinolinone | C16H19NO3 | [M+H]+ | 274.1443 | 274.1440 | 1.09 | 256, 226, 202, 186, 172, 144 | No | QOA | [64] |
6 | 4.47 | (+)-lyoniresinol-3a-O-β-D-glucopyranoside * | C28H38O13 | [M−H]− | 581.2234 | 581.2225 | 1.55 | 384, 295 | No | lignan glycosides | * |
7 | 4.96 | (+)-cis-7,8dimethoxymyrtopsine | C17H21NO6 | [M+H]+ | 336.1447 | 336.1447 | 0.00 | 318, 290, 276, 264, 249, 234, 220, 164 | Yes | DFQA | [64] |
8 | 5.07 | Dictangustine A | C12H9NO3 | [M+H]+ | 216.0661 | 216.0661 | 0.00 | 201, 188, 160, 144, 134, 117 | Yes | FQA | [64] |
9 | 5.34 | Acetovanillone * | C9H10O3 | [M+H]+ | 167.0708 | 167.0708 | 0.00 | 141, 128 | No | acetophenone derivatives | * |
10 | 5.48 | Isodictamdiol C * | C15H18O5 | [M+K]+ | 301.1052 | 301.1045 | 2.32 | 261, 243, 215 | Yes | L | * |
11 | 5.63 | Dasycarine D | C17H21NO5 | [M+H]+ | 320.1498 | 320.1500 | −0.62 | 302, 287, 272, 254, 248, 216, 188, 175 | Yes | QOA | [64] |
12 | 5.69 | Platydesmine or isomers | C15H17NO3 | [M+H]+ | 260.1287 | 260.1285 | 0.77 | 242, 210, 188, 130, 103 | Yes | DFQA | [64] |
13 | 5.98 | Isodictamnine | C12H9NO2 | [M+H]+ | 200.0712 | 200.0711 | 0.50 | 185, 157, 129 | Yes | FQA | [65] |
14 | 6.04 | Dictamdiol B * | C15H18O5 | [M+K]+ | 301.1052 | 301.1051 | 0.33 | 261, 243, 215 | No | L | * |
15 | 6.43 | 9α-hydroxyfraxinellone-9-O-β-D-glucoside * | C20H26O9 | [M+H]+ | 411.1655 | 411.1655 | 0.00 | 291, 249, 231 | No | limonoid glycosides | * |
16 | 6.56 | Iso-γ-fagarine | C13H11NO3 | [M+H]+ | 230.0817 | 230.0816 | 0.43 | 215, 187, 172 | Yes | FQA | [65] |
17 | 7.20 | Haplopine | C13H11NO4 | [M+H]+ | 246.0766 | 246.0765 | 0.41 | 231, 216, 202, 188, 184, 160, 156, 132 | Yes | FQA | [64] |
18 | 7.50 | Isopteleine | C13H11NO3 | [M+H]+ | 230.0817 | 230.0817 | 0.00 | 215, 187, 172 | Yes | FQA | [65] |
19 | 8.12 | Isomaculosidine | C14H13NO4 | [M+H]+ | 260.0923 | 260.0923 | 0.00 | 245, 217, 202, 187, 174 | Yes | FQA | [65] |
20 | 8.58 | Skimmianine | C14H13NO4 | [M+H]+ | 260.0923 | 260.0923 | 0.00 | 245, 227, 216, 202, 199, 184, 174 | Yes | FQA | [64] |
21 | 8.63 | Kihadanin A | C26H30O9 | [M+H]+ | 487.1968 | 487.1969 | −0.21 | 469, 441, 423, 175 | No | L | [56] |
22 | 8.75 | γ-fagarine * | C13H11NO3 | [M+H]+ | 230.0817 | 230.0817 | 0.00 | 215, 200, 172, 144 | Yes | FQA | [65] |
23 | 9.06 | Kihadanin B | C26H30O9 | [M+H]+ | 487.1968 | 487.1967 | 0.21 | 469, 441, 425, 367, 161 | No | L | [56] |
24 | 9.50 | Dictamnine * | C12H9NO2 | [M+H]+ | 200.0712 | 200.0713 | −0.50 | 185, 157, 129 | Yes | FQA | [65] |
25 | 9.59 | Rutaevin * | C26H30O9 | [M−H]− | 485.1812 | 485.1811 | 0.21 | 397, 383 | Yes | L | [48,66] |
26 | 9.86 | Robustine | C12H9NO3 | [M+H]+ | 216.0661 | 216.0657 | 1.85 | 201, 173, 145, 117 | Yes | FQA | [64] |
27 | 9.92 | Fraxinellonone * | C14H14O4 | [M+H]+ | 247.0970 | 247.0966 | 1.62 | 229, 216, 185 | No | L | * |
28 | 10.07 | Limonin * | C26H30O8 | [M+H]+ | 471.2019 | 471.2020 | −0.21 | 427, 425, 161 | Yes | L | [37,48,67] |
29 | 10.32 | 8-methoxyflindersine | C15H15NO3 | [M+H]+ | 258.1130 | 258.1129 | 0.39 | 243, 240, 228, 216, 204, 106 | Yes | PQA | [64] |
30 | 10.48 | Evodol * | C26H28O9 | [M−H]− | 483.1655 | 483.1661 | −1.24 | 421, 395, 161 | Yes | L | [17,37] |
31 | 10.91 | Jangomolide * | C26H28O8 | [M+H]+ | 469.1862 | 469.1862 | 0.00 | 317, 187, 161 | Yes | L | * |
32 | 11.08 | 2-hydroxy-4methoxy-3-(3′ methyl-2′ butenyl)-quinolin | C15H17NO2 | [M+H]+ | 244.1338 | 244.1337 | 0.40 | 202, 200, 188, 186, 173, 160, 134, 91 | Yes | QOA | [64,68,69] |
33 | 11.53 | 2,6-dihydro-2,2,7-trimethyl-5H-pyrano [3,2-c] quinolin-5-one | C15H15NO2 | [M+H]+ | 242.1181 | 242.1180 | 0.41 | 227, 224, 212, 200, 188, 144, 106 | Yes | PQA | [64] |
34 | 11.63 | Preskimmianine * | C17H21NO4 | [M+H]+ | 304.1549 | 304.1546 | 0.99 | 248, 233, 216, 188, 175, 162, 146, 132 | Yes | QOA | [64] |
35 | 11.69 | Obacunone * | C26H30O7 | [M+H]+ | 455.2070 | 455.2070 | 0.00 | 437, 411, 409, 393, 391, 359, 161 | Yes | L | [17,67,70] |
36 | 12.16 | Fraxinellone * | C14H16O3 | [M+H]+ | 233.1178 | 233.1176 | 0.86 | 215, 187, 128 | Yes | L | [56] |
37 | 12.24 | 8-methoxy-N-methylflindersine | C16H17NO3 | [M+H]+ | 272.1287 | 272.1288 | −0.37 | 257, 242, 230 | Yes | PQA | [64] |
38 | 12.30 | Isofraxinellone | C14H16O3 | [M+H]+ | 233.1178 | 233.1178 | 0.00 | 215, 187, 128 | Yes | L | [56] |
39 | 12.50 | Calodendrolide or isomers | C15H16O4 | [M+H]+ | 261.1127 | 261.1127 | 0.00 | 182, 169, 141, 128 | No | L | [69,71] |
40 | 12.65 | 7α-obacunyl acetate | C28H34O8 | [M+H]+ | 499.2332 | 499.2334 | −0.40 | 439, 258, 202 | No | L | [56] |
41 | 12.95 | N-metilatanina | C16H19NO2 | [M+H]+ | 258.1494 | 258.1494 | 0.00 | 216, 202, 172, 144, 115 | No | QOA | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Pi, M.; Gao, Z.; Du, M.; Gu, L.; Liu, S.; Shen, S. Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group. Pharmaceutics 2025, 17, 1195. https://doi.org/10.3390/pharmaceutics17091195
Wang Z, Pi M, Gao Z, Du M, Gu L, Liu S, Shen S. Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group. Pharmaceutics. 2025; 17(9):1195. https://doi.org/10.3390/pharmaceutics17091195
Chicago/Turabian StyleWang, Zhaoyu, Mengting Pi, Ziang Gao, Maobo Du, Liwei Gu, Shuzhi Liu, and Shuo Shen. 2025. "Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group" Pharmaceutics 17, no. 9: 1195. https://doi.org/10.3390/pharmaceutics17091195
APA StyleWang, Z., Pi, M., Gao, Z., Du, M., Gu, L., Liu, S., & Shen, S. (2025). Anti-Psoriatic Pharmacodynamic Material Basis of Dictamni Cortex Based on Transdermal Constituents Group. Pharmaceutics, 17(9), 1195. https://doi.org/10.3390/pharmaceutics17091195