Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = UHPLC-DAD-ESI/MSn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4096 KiB  
Article
Valorization of Legume By-Products Based on Polyphenols and Protein Contents for Potential Nutraceutical Applications
by Cristina Terenzi, Gabriela Bermudez, Francesca Medri, Serena Montanari, Franz Bucar and Vincenza Andrisano
Antioxidants 2024, 13(12), 1531; https://doi.org/10.3390/antiox13121531 - 14 Dec 2024
Viewed by 1185
Abstract
A significant amount of agri-food by-products is generated by large food industry production lines. Aligned with the principles of a circular economy, this project aims to recycle and valorize legumes, such as beans, green beans and soy by-products characterized by different heat treatments, [...] Read more.
A significant amount of agri-food by-products is generated by large food industry production lines. Aligned with the principles of a circular economy, this project aims to recycle and valorize legumes, such as beans, green beans and soy by-products characterized by different heat treatments, maturation stages and cultivation methods. The valorization of food waste involved the development of an Ultrasound-Assisted Extraction (UAE) method to isolate polyphenols. Analytical techniques, including UHPLC-DAD-ESI-MSn, were used to identify polyphenols in legume, green bean and soy extracts obtained through UAE. Additionally, UV-Vis spectrophotometric assays measured the Total Phenolic Content (TPC) and Total Antioxidant Status (TAS), while the Kjeldahl method was employed to assess the protein content in each UAE extract. The analyses revealed a variety of valuable polyphenols in legume, green bean and soy by-products. For instance, bean by-products contain feruloyl glucaric acid derivatives, green beans by-products have different types of flavonols such as quercetin-3-O-glucuronide, and soy by-products are rich in isoflavones. These findings demonstrate the potential for formulating nutraceuticals from these by-products’ extracts. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Figure 1

15 pages, 3028 KiB  
Article
Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen
by Fabian Alperth, Theresa Feistritzer, Melanie Huber, Olaf Kunert and Franz Bucar
Molecules 2024, 29(3), 612; https://doi.org/10.3390/molecules29030612 - 27 Jan 2024
Cited by 2 | Viewed by 2639
Abstract
With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction [...] Read more.
With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents. Full article
Show Figures

Figure 1

11 pages, 672 KiB  
Article
Phytochemical Analysis of Pinus cembra Heartwood—UHPLC-DAD-ESI-MSn with Focus on Flavonoids, Stilbenes, Bibenzyls and Improved HPLC Separation
by Fabian Alperth, Anna Schneebauer, Olaf Kunert and Franz Bucar
Plants 2023, 12(19), 3388; https://doi.org/10.3390/plants12193388 - 25 Sep 2023
Cited by 4 | Viewed by 1995
Abstract
The heartwood of the Swiss Stone Pine, Pinus cembra L., has been scarcely investigated for secondary metabolites for a long period of time. Considering age and relative simplicity of heartwood investigations dating back to the 1940s to 1960s, we conducted the first investigation [...] Read more.
The heartwood of the Swiss Stone Pine, Pinus cembra L., has been scarcely investigated for secondary metabolites for a long period of time. Considering age and relative simplicity of heartwood investigations dating back to the 1940s to 1960s, we conducted the first investigation of P. cembra heartwood by HPLC, using UHPLC-DAD-ESI-MSn and HPLC-DAD techniques in combination with isolation and NMR spectroscopy, with focus on stilbenes, bibenzyls and flavonoids. Analytical problems in the HPLC analysis of Pinus stilbenes and flavonoids on reversed stationary phases were also challenged, by comparing HPLC on pentafluorophenyl (PFP) and C18 stationary phases. Seven flavonoids (1, 2, 3, 7, 8, 11, 12), four stilbenes (4, 6, 10, 13), two bibenzyls (5, 9), three fatty acids (14, 16, 17) and one diterpenic acid (15) were detected in an ethanolic extract of Pinus cembra heartwood. HPLC comparison of reversed stationary phases in HPLC showed that the antifungal, antibacterial and chemosensitizing dihydropinosylvin monomethyl ether (9) and pinosylvin monomethyl ether (10) can be separated on PFP, but not on C18 material, when eluting with a screening gradient of 20–100% acetonitrile. Flavonoid separation showed additional benefits of combining analyses on different stationary phases, as flavonoids 7 and 8 could only be separated on one of two C18 stationary phases. Earlier phytochemical results for heartwood investigations were shown to be mostly correct, yet expandable. Substances 5 to 12 were found in alignment with these references, proving remarkable phytochemical analyses at the time. Evidence for the described presence of pinobanksin could not be found. Substances 1 to 4 and 13 have to our knowledge not yet been described for P. cembra. Full article
Show Figures

Figure 1

17 pages, 679 KiB  
Article
A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks
by Antonio Costa-Pérez, Diego A. Moreno, Paula M. Periago, Cristina García-Viguera and Raúl Domínguez-Perles
Foods 2022, 11(12), 1734; https://doi.org/10.3390/foods11121734 - 14 Jun 2022
Cited by 17 | Viewed by 3446
Abstract
Broccoli (Brassica oleracea var. italica) stalks account for up to 35% of the broccoli harvest remains with the concomitant generation of unused waste that needs recovery to contribute to the sustainability of the system. However, due to its phytochemical composition, rich [...] Read more.
Broccoli (Brassica oleracea var. italica) stalks account for up to 35% of the broccoli harvest remains with the concomitant generation of unused waste that needs recovery to contribute to the sustainability of the system. However, due to its phytochemical composition, rich in bioactive (poly)phenols and glucosinolates, as well as other nutrients, the development of valorization alternatives as a source of functional ingredients must be considered. In this situation, the present work aims to develop/obtain a new ingredient rich in bioactive compounds from broccoli, stabilizing them and reducing their degradation to further guarantee a high bioaccessibility, which has also been studied. The phytochemical profile of lyophilized and thermally treated (low-temperature and descending gradient temperature treatments), together with the digested materials (simulated static in vitro digestion) were analysed by HPLC-PDA-ESI-MSn and UHPLC-3Q-MS/MS. Broccoli stalks and co-products were featured by containing phenolic compounds (mainly hydroxycinnamic acid derivatives and glycosylated flavonols) and glucosinolates. The highest content of organosulfur compounds corresponding to the cores of the broccoli stalks treated by applying a drying descendant temperature gradient (aliphatic 18.05 g/kg dw and indolic 1.61 g/kg dw, on average, while the breakdown products were more abundant in the bark ongoing low temperature drying 11.29 g/kg dw, on average). On the other hand, for phenolics, feruloylquinic, and sinapoylquinic acid derivatives of complete broccoli stalk and bark, were more abundant when applying low-temperature drying (14.48 and 28.22 g/kg dw, on average, respectively), while higher concentrations were found in the core treated with decreasing temperature gradients (9.99 and 26.26 g/kg dw, on average, respectively). When analysing the bioaccessibility of these compounds, it was found that low-temperature stabilization of the core samples provided the material with the highest content of bioactives including antioxidant phenolics (13.6 and 33.9 g/kg dw of feruloylquinic and sinapoylquinic acids, on average, respectively) and sulforaphane (4.1 g/kg dw, on average). These processing options enabled us to obtain a new product or ingredient rich in bioactive and bioaccessible compounds based on broccoli stalks with the potential for antioxidant and anti-inflammatory capacities of interest. Full article
(This article belongs to the Special Issue Bioavailability and Bioactivity of Dietary Polyphenols)
Show Figures

Figure 1

14 pages, 1130 KiB  
Article
UHPLC Analysis of Reynoutria japonica Houtt. Rhizome Preparations Regarding Stilbene and Anthranoid Composition and Their Antimycobacterial Activity Evaluation
by Fabian Alperth, Lena Melinz, Johannes-Paul Fladerer and Franz Bucar
Plants 2021, 10(9), 1809; https://doi.org/10.3390/plants10091809 - 30 Aug 2021
Cited by 10 | Viewed by 3771
Abstract
Reynoutria japonica Houtt. is a critical invasive alien plant in Europe and North America with a drastic impact on native flora. However, R. japonica has medicinal potential, especially as a source of stilbenes. In order to explore the potential of simple extractions of [...] Read more.
Reynoutria japonica Houtt. is a critical invasive alien plant in Europe and North America with a drastic impact on native flora. However, R. japonica has medicinal potential, especially as a source of stilbenes. In order to explore the potential of simple extractions of R. japonica, we conducted qualitative and quantitative analyses of fresh R. japonica rhizome infusion, decoction, and macerates with ethanol by UHPLC-DAD-ESI-MSn and UHPLC-DAD, with a focus on major constituent groups of stilbenes and anthranoids. Since R. japonica rhizome extracts showed antimicrobial potential in the past, we also evaluated the antimycobacterial effect of raw R. japonica extracts for the first time against Mycobacterium smegmatis. Of thirty-four characterized substances, six were stilbenes and twelve anthranoids. The main constituents, four trans-stilbenes and eight anthranoids, were quantified in a validated UHPLC-DAD method. The 38% ethanol macerate showed high stilbene (155.078 mg/100 g fluid extract) and low anthranoid content (5.420 mg/100 g fluid extract), while decoction showed the highest anthranoids. Antimycobacterial testing gave good results for all macerates (MIC 256 µg/mL) and trans-resveratrol (64 µg/mL). Extraction and enrichment of stilbenes from fresh plant material by simple extraction methods with food-grade solvents might encourage consideration of wild harvest of rhizomes over classic means of eradication of R. japonica. Full article
(This article belongs to the Collection The Use and Management of Invasive Plants)
Show Figures

Figure 1

20 pages, 2692 KiB  
Article
Ethyl Acetate Fraction and Isolated Phenolics Derivatives from Mandevilla moricandiana Identified by UHPLC-DAD-ESI-MSn with Pharmacological Potential for the Improvement of Obesity-Induced Endothelial Dysfunction
by Leticia L. D. M. Ferreira, Valéria de F. Leão, Cinthya M. de Melo, Thelma de B. Machado, Ana Claudia F. Amaral, Leandro L. da Silva, Naomi K. Simas, Michelle F. Muzitano, Ivana C. R. Leal and Juliana M. Raimundo
Pharmaceutics 2021, 13(8), 1173; https://doi.org/10.3390/pharmaceutics13081173 - 29 Jul 2021
Cited by 4 | Viewed by 2831
Abstract
Endothelial dysfunction in obesity plays a key role in the development of cardiovascular diseases, and it is characterized by increased vascular tonus and oxidative stress. Thus, this study aimed to investigate the vasodilatory and antioxidant activities of Mandevilla moricandiana ethyl acetate fraction and [...] Read more.
Endothelial dysfunction in obesity plays a key role in the development of cardiovascular diseases, and it is characterized by increased vascular tonus and oxidative stress. Thus, this study aimed to investigate the vasodilatory and antioxidant activities of Mandevilla moricandiana ethyl acetate fraction and subfractions. Vascular effects were investigated on aorta isolated from control and monosodium glutamate (MSG) induced-obese Wistar rats, and antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods. The ethyl acetate fraction (MMEAF) induced a concentration-dependent vasodilation on aortic rings through the NO pathway, with the involvement of histamine H1 and estrogen ERα receptors and showed potent antioxidant activity. In aorta of MSG obese rats, maximal relaxation to acetylcholine was increased in the presence of MMEAF (3 µg/mL), indicating that MMEAF ameliorated obesity-induced endothelial dysfunction. Quercetin and kaempferol aglycones and their correspondent glycosides, as well as caffeoylquinic acid derivatives, A-type procyanidin trimer, ursolic and oleanolic triterpenoid acids were identified in subfractions from MMEAF and seem to be the metabolites responsible for the vascular and antioxidant activities of this fraction. Full article
(This article belongs to the Special Issue Medicinal Plants Discovery Targeting Cardiovascular Diseases)
Show Figures

Figure 1

15 pages, 525 KiB  
Article
Scrophularia Tenuipes Coss and Durieu: Phytochemical Composition and Biological Activities
by Zeyneb Chaibeddra, Salah Akkal, Houria Ouled-Haddar, Artur M. S. Silva, Ammar Zellagui, Mohamed Sebti and Susana M. Cardoso
Molecules 2020, 25(7), 1647; https://doi.org/10.3390/molecules25071647 - 3 Apr 2020
Cited by 4 | Viewed by 3615
Abstract
Scrophularia tenuipes is an Algerian-Tunisian endemic species, which has not been studied yet. Ethyl acetate (EA) and n-butanol (Bu) fractions obtained from Scrophularia tenuipes were investigated for their health benefit properties, in particular with respect to in vivo/in vitro anti-inflammatory and antioxidant [...] Read more.
Scrophularia tenuipes is an Algerian-Tunisian endemic species, which has not been studied yet. Ethyl acetate (EA) and n-butanol (Bu) fractions obtained from Scrophularia tenuipes were investigated for their health benefit properties, in particular with respect to in vivo/in vitro anti-inflammatory and antioxidant activities, as well as their potential to inhibit key enzymes with impact in diabetes (α-glucosidase and α-amylase). The fractions had a distinct phytochemical composition, of which EA was richer in total phenolic compounds (225 mg GAE/g) and mostly composed of the phenylethanoid acetyl martynoside. Compared to EA, Bu had higher amounts of total flavonoids, and according to the result obtained from UHPLC-DAD-ESI-MSn analysis, harpagoside (iridoid) was its major phytochemical. EA fraction was quite promising with regard to the in vivo (at 200 mg/kg, po) anti-inflammatory effect (62% and 52% for carrageenan-induced rat paw edema and xylene-induced ear edema tests, respectively), while Bu fraction exhibited a stronger antioxidant capacity in all tests (IC50 = 68 µg/mL, IC50 = 18 µg/mL, IC50 = 18 µg/mL and A0.50 = 43 µg/mL for DPPH, ABTS•+, O2•− scavenging assays and cupric-reducing antioxidant capacity method, respectively). Both fractions also showed a strong effect against α-amylase enzyme (IC50 = 8 µg/mL and 10 µg/mL for EA and Bu fraction, respectively). Full article
Show Figures

Figure 1

18 pages, 925 KiB  
Article
Differentiation of Phenolic Composition Among Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae) Populations: Correlation to Bioactive Activities
by Rym Jaouadi, Artur M. S. Silva, Mohamed Boussaid, Imen B. H. Yahia, Susana M. Cardoso and Yosr Zaouali
Antioxidants 2019, 8(11), 515; https://doi.org/10.3390/antiox8110515 - 28 Oct 2019
Cited by 21 | Viewed by 3406
Abstract
Twelve Tunisian Thymus algeriensis populations growing wild in different bioclimatic zones, extending from the subhumid to the upper-arid bioclimates, were compared regarding their phenolic composition and their ability to serve as antioxidant, anti-acetylcholinesterase, and antibacterial agents. A significant variation of phenol profile was [...] Read more.
Twelve Tunisian Thymus algeriensis populations growing wild in different bioclimatic zones, extending from the subhumid to the upper-arid bioclimates, were compared regarding their phenolic composition and their ability to serve as antioxidant, anti-acetylcholinesterase, and antibacterial agents. A significant variation of phenol profile was observed between the analyzed populations, as assessed by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MSn) technique. Rosmarinic acid was the main phenolic compound in most populations (383.8–1157.8 µg/mL extract), but still, those from the upper-arid bioclimatic zone were distinguished by the presence of carvacrol (1374.7 and 2221.6 µg/mL extract), which was absent in the remaining ones. T. algeriensis methanolic extracts were found to possess a substantial antioxidant and anti-acetylcholinesterase activities, with significant variation observed between populations, which were correlated to their phenolic contents. The antibacterial activity of the extracts tested against seven bacteria was revealed only by populations collected from upper-arid bioclimate and mainly associated with the presence of carvacrol. Extracts revealed a bacteriostatic effect against all bacteria (MIC = 1.4 mg/mL). Yet, the bactericidal activity (MBC = 1.4mg/mL) was restricted to the gram-negative bacteria Escherchia coli. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

17 pages, 1876 KiB  
Article
Optimization of Ultrasound-Assisted Extraction of Polyphenols from Myrtus communis L. Pericarp
by Nadia Bouaoudia-Madi, Lila Boulekbache-Makhlouf, Khodir Madani, Artur M.S. Silva, Sofiane Dairi, Sonia Oukhmanou–Bensidhoum and Susana M. Cardoso
Antioxidants 2019, 8(7), 205; https://doi.org/10.3390/antiox8070205 - 2 Jul 2019
Cited by 44 | Viewed by 6521
Abstract
Response surface methodology (RSM) was used to optimize the extraction of phenolics from pericap of Myrtus communis using ultrasound-assisted extraction (UAE). The results were compared with those obtained by microwave-assisted extraction (MAE) and conventional solvent extraction (CSE) methods. The individual compounds of the [...] Read more.
Response surface methodology (RSM) was used to optimize the extraction of phenolics from pericap of Myrtus communis using ultrasound-assisted extraction (UAE). The results were compared with those obtained by microwave-assisted extraction (MAE) and conventional solvent extraction (CSE) methods. The individual compounds of the optimized extract obtained by UAE were identified by ultra-high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (UHPLC-DAD-ESI-MSn). The yield of total phenolic compounds (TPC) was affected more significantly by ethanol concentration, irradiation time, liquid solvent-to-solid ratio (p < 0.0001) and amplitude (p = 0.0421) and optimal parameters conditions set by the RSM model were 70% (v/v), 7.5 min and 30%, respectively. The experimental yield of TPC (241.66 ± 12.77 mg gallic acid equivalent/g dry weight) confirmed the predicted value (235.52 ± 9.9 mg gallic acid equivalent/g dry weight), allowing also to confirm the model validity. Under optimized conditions, UAE was more efficient than MAE and CSE in extracting antioxidants, which comprised mostly myricetin glycosides. Globally, the present work demonstrated that, compared to MAE and CSE, UAE is an efficient method for phenolic extraction from M. communis pericarp, enabling to reduce the working time and the solvent consumption. Full article
(This article belongs to the Special Issue Antioxidant Activity of Polyphenolic Plant Extracts)
Show Figures

Graphical abstract

16 pages, 894 KiB  
Article
Apple Pomace Extract as a Sustainable Food Ingredient
by Pedro A. R. Fernandes, Sónia S. Ferreira, Rita Bastos, Isabel Ferreira, Maria T. Cruz, António Pinto, Elisabete Coelho, Cláudia P. Passos, Manuel A. Coimbra, Susana M. Cardoso and Dulcineia F. Wessel
Antioxidants 2019, 8(6), 189; https://doi.org/10.3390/antiox8060189 - 21 Jun 2019
Cited by 76 | Viewed by 9490
Abstract
Apple pomace is a by-product of apple processing industries with low value and thus frequent disposal, although with valuable compounds. Acidified hot water extraction has been suggested as a clean, feasible, and easy approach for the recovery of polyphenols. This type of extraction [...] Read more.
Apple pomace is a by-product of apple processing industries with low value and thus frequent disposal, although with valuable compounds. Acidified hot water extraction has been suggested as a clean, feasible, and easy approach for the recovery of polyphenols. This type of extraction allowed us to obtain 296 g of extract per kg of dry apple pomace, including 3.3 g of polyphenols and 281 g of carbohydrates. Ultrafiltration and solid-phase extraction using C18 cartridges of the hot water extract suggested that, in addition to the apple native polyphenols detected by ultra-high-pressure liquid chromatography coupled to a diode-array detector and mass spectrometry UHPLC-DAD-ESI-MSn, polyphenols could also be present as complexes with carbohydrates. For the water-soluble polyphenols, antioxidant and anti-inflammatory effects were observed by inhibiting chemically generated hydroxyl radicals (OH•) and nitrogen monoxide radicals (NO•) produced in lipopolysaccharide-stimulated macrophages. The water-soluble polyphenols, when incorporated into yogurt formulations, were not affected by fermentation and improved the antioxidant properties of the final product. This in vitro research paves the way for agro-food industries to achieve more diversified and sustainable solutions towards their main by-products. Full article
(This article belongs to the Special Issue Polyphenolic Antioxidants from Agri-Food Waste Biomass)
Show Figures

Figure 1

14 pages, 1542 KiB  
Article
Qualitative and Quantitative Analysis of Different Rhodiola rosea Rhizome Extracts by UHPLC-DAD-ESI-MSn
by Fabian Alperth, Ivana Turek, Sandra Weiss, Dietmar Vogt and Franz Bucar
Sci. Pharm. 2019, 87(2), 8; https://doi.org/10.3390/scipharm87020008 - 29 Mar 2019
Cited by 36 | Viewed by 6369
Abstract
Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and [...] Read more.
Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and accelerated solvent extraction (ASE) extracts prepared with 85% methanol, in order to shed light on the effectivity of different extraction methods. Extract samples were analyzed by UHPLC-DAD-ESI-MSn on a ZORBAX SB-C18 column (100 × 2.1 mm, 1.8 μm) with a mobile phase consisting of water + 0.1% formic acid and acetonitrile. Qualitative analysis lead to the tentative identification of 18 compounds: Two cyanogenic glycosides (rhodiocyanoside A, lotaustralin), three phenylethanoids (salidroside, viridoside, 2-phenylethyl-vicianoside), two procyanidin and catechin derivatives (epigallocatechin-epigallocatechin gallate, epigallocatechin-3-O-gallate), five phenylpropanoids (cinnamyl alcohol, rosarin, rosavin, rosin, cinnamyl-(6’-O-β-d-xylopyranosyl)-O-β-glucopyranoside), two monoterpene alcohols (rhodioloside E, rosiridin) and four flavonols (rhodionidin, rhodiosin, rhodionin, kaempferol). Quantity was determined for salidroside, cinnamyl alcohol and its three major glycosides (rosarin, rosavin, rosin), as well as three flavonols (rhodionidin, rhodiosin, rhodionin). Methanolic ASE proved to be the superior extraction method for different substance groups. For macerates, high ethanol content increased yield and lowered hydrolysis of glycosides during extraction, but ethanolic macerates still showed low reproducibility and high fluctuations in quantity of marker compounds salidroside and rosavins, as well as flavonols. Rhodiola rosea rhizomes of wild origins seemed to underly great variability in chemical composition dependent on grow site. Full article
Show Figures

Figure 1

11 pages, 1753 KiB  
Article
Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity
by Naima Rahmouni, Diana C. G. A. Pinto, Noureddine Beghidja, Samir Benayache and Artur M. S. Silva
Molecules 2018, 23(6), 1285; https://doi.org/10.3390/molecules23061285 - 27 May 2018
Cited by 20 | Viewed by 4768
Abstract
The phenolic profile of Scabiosa stellata L., a species used in Moroccan traditional medicine, is disclosed. To obtain that profile the species extract was analyzed by ultra-high-performance chromatography coupled to photodiode-array detection and electrospray ionization/ion trap mass spectrometry (UHPLC-DAD-ESI/MSn). Twenty-five phenolic [...] Read more.
The phenolic profile of Scabiosa stellata L., a species used in Moroccan traditional medicine, is disclosed. To obtain that profile the species extract was analyzed by ultra-high-performance chromatography coupled to photodiode-array detection and electrospray ionization/ion trap mass spectrometry (UHPLC-DAD-ESI/MSn). Twenty-five phenolic compounds were identified from which isoorientin and 4-O-caffeoylquinic acid can be highlighted because they are the major ones. The antioxidant activity was significantly controlled by the fraction type, with the n-butanol fraction showing the highest antioxidant activity (FRS50 = 64.46 µg/mL in the DPPH assay, FRS50 = 27.87 µg/mL in the ABTS assay and EC50 = 161.11 µg/mL in the reducing power assay). A phytochemical study of the n-butanol fraction was performed, and some important flavone glycosides were isolated. Among them the tamarixetin derivatives—the less common ones—can be emphasized. This phytochemical study and polyphenolic profile can be correlated with S. stellata extracts in vitro antioxidant activity. Moreover, it can be regarded as an evidence of its medicinal use and can incentivize its consumption. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products)
Show Figures

Graphical abstract

17 pages, 1689 KiB  
Article
Impact of Xanthylium Derivatives on the Color of White Wine
by Franziska Bührle, Anita Gohl and Fabian Weber
Molecules 2017, 22(8), 1376; https://doi.org/10.3390/molecules22081376 - 19 Aug 2017
Cited by 18 | Viewed by 7123
Abstract
Xanthylium derivatives are yellow to orange pigments with a glyoxylic acid bridge formed by dimerization of flavanols, which are built by oxidative cleavage of tartaric acid. Although their structure and formation under wine-like conditions are well established, knowledge about their color properties and [...] Read more.
Xanthylium derivatives are yellow to orange pigments with a glyoxylic acid bridge formed by dimerization of flavanols, which are built by oxidative cleavage of tartaric acid. Although their structure and formation under wine-like conditions are well established, knowledge about their color properties and their occurrence and importance in wine is deficient. Xanthylium cations and their corresponding esters were synthesized in a model wine solution and isolated via high-performance countercurrent chromatography (HPCCC) and solid phase extraction (SPE). A Three-Alternative-Forced-Choice (3-AFC) test was applied to reveal the color perception threshold of the isolated compounds in white wine. Their presence and color impact was assessed in 70 different wines (58 white and 12 rosé wines) by UHPLC-DAD-ESI-MSn and the storage stability in wine was determined. The thresholds in young Riesling wine were 0.57 mg/L (cations), 1.04 mg/L (esters) and 0.67 mg/L (1:1 (w/w) mixture), respectively. The low thresholds suggest a possible impact on white wine color, but concentrations in wines were below the threshold. The stability study showed the degradation of the compounds during storage under several conditions. Despite the low perception threshold, xanthylium derivatives might have no direct impact on white wine color, but might play a role in color formation as intermediate products in polymerization and browning. Full article
(This article belongs to the Collection Wine Chemistry)
Show Figures

Figure 1

Back to TopTop