Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen
Abstract
:1. Introduction
2. Results and Discussion
2.1. UHPLC-DAD-ESI-MSn Analysis and Isolation
2.2. Screening of Spilanthol Extraction with NADES and Ethanol
2.3. Testing Effects on Spilanthol Extraction with NADES in Single-Factor Experimental Design
2.3.1. Effect of Extraction Time
2.3.2. Effect of Water Addition
2.3.3. Effect of Extraction Temperature
2.4. Validation of Quantitative Analyses
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Solvents
3.3. Preparation and Synthesis of NADES
3.4. Extraction and Isolation of Constituents
3.5. Extraction Protocol for NADES and Ethanol
3.6. Chromatographic Techniques
3.6.1. UHPLC-DAD-ESI-MSn for Qualitative Analysis
3.6.2. HPLC-DAD for Quantitative Analysis
3.6.3. GC-MS Analysis
3.7. NMR Analysis
3.8. Validation of Quantitative Analyses
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jansen, R.K. The Systematics of Acmella (Asteraceae-Heliantheae). Syst. Bot. Monogr. 1985, 8, 1–115. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Baldassarri, C.; Cappellacci, L.; Marmugi, M.; Caselli, A.; Benelli, G.; Maggi, F.; Petrelli, R. A Review of the Chemistry and Biological Activities of Acmella oleracea (“jambù”, Asteraceae), with a View to the Development of Bioinsecticides and Acaricides. Plants 2022, 11, 2721. [Google Scholar] [CrossRef]
- Bae, S.S.; Ehrmann, B.M.; Ettefagh, K.A.; Cech, N.B. A validated liquid chromatography-electrospray ionization-mass spectrometry method for quantification of spilanthol in Spilanthes acmella (L.) Murr. Phytochem. Anal. 2010, 21, 438–443. [Google Scholar] [CrossRef]
- Boonen, J.; Baert, B.; Burvenich, C.; Blondeel, P.; de Saeger, S.; de Spiegeleer, B. LC-MS profiling of N-alkylamides in Spilanthes acmella extract and the transmucosal behaviour of its main bio-active spilanthol. J. Pharm. Biomed. Anal. 2010, 53, 243–249. [Google Scholar] [CrossRef]
- Bellumori, M.; Zonfrillo, B.; Maggini, V.; Bogani, P.; Gallo, E.; Firenzuoli, F.; Mulinacci, N.; Innocenti, M. Acmella oleracea (L.) R.K. Jansen: Alkylamides and phenolic compounds in aerial parts and roots of in vitro seedlings. J. Pharm. Biomed. Anal. 2022, 220, 114991. [Google Scholar] [CrossRef]
- Savic, S.; Petrovic, S.; Savic, S.; Cekic, N. Identification and photostability of N-alkylamides from Acmella oleracea extract. J. Pharm. Biomed. Anal. 2021, 195, 113819. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.Y.; Aguilar-Guadarrama, A.B.; Del Gutiérrez, M.C. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J. Ethnopharmacol. 2007, 110, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Déciga-Campos, M.; Rios, M.Y.; Aguilar-Guadarrama, A.B. Antinociceptive effect of Heliopsis longipes extract and affinin in mice. Planta Med. 2010, 76, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Nomura, E.C.O.; Rodrigues, M.R.A.; Da Silva, C.F.; Hamm, L.A.; Nascimento, A.M.; de Souza, L.M.; Cipriani, T.R.; Baggio, C.H.; Werner, M.F.d.P. Antinociceptive effects of ethanolic extract from the flowers of Acmella oleracea (L.) R.K. Jansen in mice. J. Ethnopharmacol. 2013, 150, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Dallazen, J.L.; Da Luz, B.B.; Maria-Ferreira, D.; Nascimento, A.M.; Cipriani, T.R.; de Souza, L.M.; Geppetti, P.; de Paula Werner, M.F. Local effects of natural alkylamides from Acmella oleracea and synthetic isobutylalkyl amide on neuropathic and postoperative pain models in mice. Fitoterapia 2022, 160, 105224. [Google Scholar] [CrossRef] [PubMed]
- Yien, R.M.K.; Gomes, A.C.C.; Goetze Fiorot, R.; Miranda, A.L.P.; Neves, G.A.; Da Andrade, B.S.; Costa, F.N.; Tributino, J.L.M.; Simas, N.K. Alkylamides from Acmella oleracea: Antinociceptive effect and molecular docking with cannabinoid and TRPV1 receptors. Nat. Prod. Res. 2023, 37, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Bakondi, E.; Singh, S.B.; Hajnády, Z.; Nagy-Pénzes, M.; Regdon, Z.; Kovács, K.; Hegedűs, C.; Madácsy, T.; Maléth, J.; Hegyi, P.; et al. Spilanthol Inhibits Inflammatory Transcription Factors and iNOS Expression in Macrophages and Exerts Anti-inflammatory Effects in Dermatitis and Pancreatitis. Int. J. Mol. Sci. 2019, 20, 4308. [Google Scholar] [CrossRef]
- de Freitas Blanco, V.S.; Monteiro, K.M.; de Oliveira, P.R.; de Oliveira, E.C.S.; de Oliveira Braga, L.E.; de Carvalho, J.E.; Ferreira Rodrigues, R.A. Spilanthol, the Principal Alkylamide from Acmella oleracea, Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Planta Med. 2019, 85, 203–209. [Google Scholar] [CrossRef]
- Nascimento de Alcantara, B.; Kobayashi, Y.T.; Barroso, K.F.; Da Silva, I.D.R.; de Almeida, B.; Barbosa, W.L.R. Pharmacognostic analyses and evaluation of the in vitro antimicrobial activity of Acmella oleracea (L.) RK Jansen (Jambu) floral extract and fractions. J. Med. Plants Res. 2015, 9, 91–96. [Google Scholar] [CrossRef]
- Peretti, P.; Rodrigues, E.T.; de Souza Junior, B.M.; Bezerra, R.M.; Guitián Fernández, E.; de Sousa, F.F.O.; Pinheiro, M.T. Spilanthol content of Acmella oleracea subtypes and their bactericide and antibiofilm activities against Streptococcus mutans. S. Afr. J. Bot. 2021, 143, 17–24. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, G.V.; Buitimea-Cantúa, N.E.; Del Refugio Rocha-Pizaña, M.; Rosas-Burgos, E.C.; Hernández-Morales, A.; Molina-Torres, J. Antifungal and anti-aflatoxigenic activity of Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus by downregulating the expression of alfD and aflR genes of the aflatoxins biosynthetic pathway. J. Environ. Sci. Health B 2020, 55, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Savic, S.M.; Cekic, N.D.; Savic, S.R.; Ilic, T.M.; Savic, S.D. ‘All-natural’ anti-wrinkle emulsion serum with Acmella oleracea extract: A design of experiments (DoE) formulation approach, rheology and in vivo skin performance/efficacy evaluation. Int. J. Cosmet. Sci. 2021, 43, 530–546. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Yao, T.; Song, J.; Yan, H.; Chen, S. Functionalized aqueous biphasic system coupled with HPLC for highly sensitive detection of quinolones in milk. LWT 2023, 173, 114398. [Google Scholar] [CrossRef]
- Yao, T.; Li, Q.; Li, H.; Peng, L.; Liu, Y.; Du, K. Extractive resolution of racemic phenylalanine and preparation of optically pure product by chiral magnetic ionic liquid aqueous two-phase system. Sep. Purif. Technol. 2021, 274, 119024. [Google Scholar] [CrossRef]
- Yao, T.; Li, H.; Ren, Y.; Feng, M.; Hu, Y.; Yan, H.; Peng, L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Sep. Purif. Technol. 2022, 282, 120034. [Google Scholar] [CrossRef]
- Yao, T.; Feng, C.; Chen, W.; Chen, S. Selective separation and simultaneous recoveries of amino acids by temperature-sensitive magnetic ionic liquid aqueous biphasic system. J. Mol. Liq. 2023, 371, 121099. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, T.A.T.G.; Boerboom, G.M. Is the intestinal mucous layer a natural deep eutectic solvent-based digestion matrix? Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 324, G438–G441. [Google Scholar] [CrossRef] [PubMed]
- Buarque, F.S.; Monteiro E Silva, S.A.; Ribeiro, B.D. Choline chloride-based deep eutectic solvent as an inhibitor of metalloproteases (collagenase and elastase) in cosmetic formulation. 3 Biotech 2023, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022, 12, 56. [Google Scholar] [CrossRef]
- González-Laredo, R.F.; Sayago-Monreal, V.I.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Landeros-Macías, L.F.; Rosales-Castro, M. Natural deep eutectic solvents (NaDES ) as an emerging technology for the valorisation of natural products and agro-food residues: A review. Int. J. Food Sci. Tech. 2023, 58, 6660–6673. [Google Scholar] [CrossRef]
- Wawoczny, A.; Gillner, D. The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents. J. Agric. Food Chem. 2023, 71, 10877–10900. [Google Scholar] [CrossRef]
- Spinozzi, E.; Pavela, R.; Bonacucina, G.; Perinelli, D.R.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Fiorini, D.; Scortichini, S.; Garzoli, S.; et al. Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) R.K. Jansen and its nanoemulsion: Insecticidal, cytotoxic and anti-inflammatory activities. Ind. Crops Prod. 2021, 172, 114027. [Google Scholar] [CrossRef]
- Grymel, M.; Mazurkiewicz, R.; Bajkacz, S.; Bilik, J.; Kowalczyk, S. Extraction, Purification, Quantification, and Stability of Bioactive Spilanthol from Acmella oleracea. Planta Med. 2023, 89, 551–560. [Google Scholar] [CrossRef]
- Dias, A.; Santos, P.; Seabra, I.J.; Júnior, R.; Braga, M.; de Sousa, H.C. Spilanthol from Spilanthes acmella flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. J. Supercrit. Fluids 2012, 61, 62–70. [Google Scholar] [CrossRef]
- de Freitas Blanco, V.S.; Michalak, B.; Zelioli, Í.A.M.; Da Oliveira, A.S.S.d.; Rodrigues, M.V.N.; Ferreira, A.G.; Garcia, V.L.; Cabral, F.A.; Kiss, A.K.; Rodrigues, R.A.F. Isolation of spilanthol from Acmella oleracea based on Green Chemistry and evaluation of its in vitro anti-inflammatory activity. J. Supercrit. Fluids 2018, 140, 372–379. [Google Scholar] [CrossRef]
- Barbosa, A.F.; Pereira, C.D.S.S.; Mendes, M.F.; de Carvalho Junior, R.N.; de Carvalho, M.G.; Maia, J.G.S.; Sabaa-Srur, A.U.O. Spilanthol Content in the Extract Obtained by Supercritical CO 2 at Different Storage Times of Acmella oleracea L. J. Food Process Eng. 2017, 40, e12441. [Google Scholar] [CrossRef]
- Spelman, K.; Wetschler, M.H.; Cech, N.B. Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC-ESI-MS. J. Pharm. Biomed. Anal. 2009, 49, 1141–1149. [Google Scholar] [CrossRef]
- Ley, J.P.; Blings, M.; Krammer, G.; Reinders, G.; Schmidt, C.-O.; Bertram, H.-J. Isolation and synthesis of acmellonate, a new unsaturated long chain 2-ketol ester from Spilanthes acmella. Nat. Prod. Res. 2006, 20, 798–804. [Google Scholar] [CrossRef]
- 21 CFR 182.8252. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182/subpart-I/section-182.8252 (accessed on 4 December 2023).
- Chen, J.; Liu, M.; Wang, Q.; Du, H.; Zhang, L. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae. Molecules 2016, 21, 1383. [Google Scholar] [CrossRef] [PubMed]
- Mulia, K.; Krisanti, E.; Terahadi, F.; Putri, S. Selected Natural Deep Eutectic Solvents for the Extraction of α-Mangostin from Mangosteen (Garcinia mangostana L.) Pericarp. IJTech 2015, 6, 1211. [Google Scholar] [CrossRef]
- Wojeicchowski, J.P.; Marques, C.; Igarashi-Mafra, L.; Coutinho, J.A.; Mafra, M.R. Extraction of phenolic compounds from rosemary using choline chloride—Based Deep Eutectic Solvents. Sep. Purif. Technol. 2021, 258, 117975. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-Y.; Song, J.-N.; Chang, Y.-Q.; Wang, L.; Zheng, Y.-G.; Zhang, D.; Guo, L. Natural Deep Eutectic Solvents for the Extraction of Bioactive Steroidal Saponins from Dioscoreae Nipponicae Rhizoma. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Shekaari, H.; Zafarani-Moattar, M.T.; Mokhtarpour, M. Effective ultrasonic-assisted extraction and solubilization of curcuminoids from turmeric by using natural deep eutectic solvents and imidazolium-based ionic liquids. J. Mol. Liq. 2022, 360, 119351. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Buarque, F.; Gautério, G.; Coelho, M.; Lemes, A.; Ribeiro, B. Aqueous Two-Phase Systems Based on Ionic Liquids and Deep Eutectic Solvents as a Tool for the Recovery of Non-Protein Bioactive Compounds—A Review. Processes 2023, 11, 31. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- González, C.G.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour. Fragr. J 2018, 33, 91–96. [Google Scholar] [CrossRef]
Nr. | RT [min] | [M + H]+ | MSn [m/z], Relative Intensity (%) 1 | Mol. Mass | Tentative Identification |
---|---|---|---|---|---|
1 | 11.97 | 204 | MS2 [204]: 176 (19), 148 (100), 131 (11), 120 (11), 105 (73), 103 (10)MS3 [148]: 131 (11), 120 (37), 106 (31), 105 (100), 103 (61), 79 (61) | 203 | (2Z)-N-isobutyl-2-nonene-6,8-diynamide [3,4,5,6] |
2 | 12.85 | 230 | MS2 [230]: 174 (43), 157 (16), 131 (100), 129 (54), 116 (19), 91 (49)MS3 [131]: 116 (27), 91 (100) | 229 | (2E,4Z)-N-isobutyl-2,4-undecadiene-8,10-diynamide [3,4,6] |
3 | 13.29 | 232 | MS2 [232]: 176 (100), 159 (23), 133 (89), 131 (20), 105 (70), 91 (28)MS3 [176]: 159 (100), 158 (40), 149 (59), 148 (74), 135 (97), 134 (40), 133 (55), 131 (96), 121 (32), 117 (32), 107 (22), 105 (59), 93 (17), 91 (40) | 231 | (2E)-N-isobutyl-2-undecene-8,10-diynamide 2 [3,4,5,6] |
4 | 13.87 | 222 | MSn identical to spilanthol | 221 | Spilanthol isomer [5] |
5 | 14.00 | 222 | MS2 [222]: 123 (100), 81 (60)MS3 [123]: 81 (100), 67 (17) | 221 | (2E,6Z,8E)-N-isobutyl-2,6,8-decatrienamide (spilanthol) 2 [3,4,5,6] |
6 | 14.19 | 222 | MSn identical to spilanthol | 221 | Spilanthol isomer [5] |
7 | 14.39 | 246 | MS2 [246]: 176 (100), 159 (19), 133 (71), 131 (16), 105 (54), 91 (26)MS3 [176]: 159 (99), 158 (41), 149 (48), 148 (75), 135 (74), 134 (33), 133 (66), 131 (100), 121 (24), 117 (29), 107 (19), 105 (82), 93 (13), 91 (49) | 245 | (2E)-N-(2-methylbutyl)-2-undecene-8,10-diynamide [3,4,5,6] |
8 | 14.61 | 258 | MS2 [258]: 230 (13), 202 (100), 185 (24), 174 (10), 161 (14), 159 (28), 157 (37), 143 (14), 133 (10), 131 (43), 129 (22), 117 (47), 105 (10), 91 (10)MS3 [202]: 185 (65), 184 (43), 175 (64), 174 (100), 167 (30), 161 (81), 160 (66), 159 (22), 157 (76), 148 (14), 146 (24), 143 (41), 136 (11), 133 (63), 131 (33), 129 (23), 119 (17), 117 (21) | 257 | (2E,7Z)-N-isobutyl-2,7-tridecadiene-10,12-diynamide [3,4,5,6] |
9 | 15.17 | 236 | MS2 [236]: 123 (100), 81 (61)MS3 [123]: 81 (100), 67 (18) | 235 | (2E,6Z,8E)-N-(2-methylbutyl)-2,6,8-decatrienamide (homospilanthol) 2 [3,4,5,6] |
10 | 15.55 | 220 | MS2 [220]: 202 (29), 192 (11), 164 (30), 149 (11), 147 (52), 121 (100), 119 (22), 93 (23)MS3 [121]: 93 (100), 79 (28) | 219 | UnidentifiedIsobutylamide [4] |
11 | 15.75 | 248 | MS2 [248]: 175 (23), 149 (100), 147 (21), 142 (47), 107 (11)MS3 [149]: 121 (95), 107 (100), 93 (90), 81 (41), 67 (12) | 247 | (2E,4E,8Z,10E)-N-isobutyl-dodeca-2,4,8,10-tetraenamide [3,4,5] |
Abbreviation | HBA | HBD | Molar Ratio | Water (+% m/m) 1 |
---|---|---|---|---|
ChCl/P (1:1) | Choline chloride | 1,2-Propanediol | 1:1 | 20 |
ChCl/P (1:2) | Choline chloride | 1,2-Propanediol | 1:2 | 10, 20, 30, 40, 50 |
ChCl/Gly (1:1) | Choline chloride | Glycerol | 1:1 | 20 |
ChCl/Gly (1:2) | Choline chloride | Glycerol | 1:2 | 20 |
ChCl/S (2:1) | Choline chloride | Sorbitol | 2:1 | 20 |
ChCl/S (3:1) | Choline chloride | Sorbitol | 2:1 | 20 |
ChCl/MeU (1:1) | Choline chloride | Methylurea | 1:1 | 20 |
ChCl/MeU (1:2) | Choline chloride | Methylurea | 1:2 | 10, 20, 30, 40, 50 |
ChCl/U (1:1) | Choline chloride | Urea | 1:1 | 20 |
ChCl/U (1:2) | Choline chloride | Urea | 1:2 | 20 |
ChCl/MO (1:1) | Choline chloride | Malonic acid | 1:1 | 20 |
ChCl/MO (1:2) | Choline chloride | Malonic acid | 1:2 | 20 |
ChCl/C (1:1) | Choline chloride | Citric acid monohydrate | 1:1 | 20 |
ChCl/C (1:2) | Choline chloride | Citric acid monohydrate | 1:2 | 20 |
ChCl/MA (1:1) | Choline chloride | Malic acid | 1:1 | 20 |
ChCl/MA (2:1) | Choline chloride | Malic acid | 2:1 | 20 |
ChCl/Glu (2:1) | Choline chloride | Glucose | 2:1 | 20 |
ChCl/Glu (3:1) | Choline chloride | Glucose | 3:1 | 20 |
ChCl/Fru (1:1) | Choline chloride | Fructose | 1:1 | 20 |
ChCl/Fru (1:2) | Choline chloride | Fructose | 1:2 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alperth, F.; Feistritzer, T.; Huber, M.; Kunert, O.; Bucar, F. Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen. Molecules 2024, 29, 612. https://doi.org/10.3390/molecules29030612
Alperth F, Feistritzer T, Huber M, Kunert O, Bucar F. Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen. Molecules. 2024; 29(3):612. https://doi.org/10.3390/molecules29030612
Chicago/Turabian StyleAlperth, Fabian, Theresa Feistritzer, Melanie Huber, Olaf Kunert, and Franz Bucar. 2024. "Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen" Molecules 29, no. 3: 612. https://doi.org/10.3390/molecules29030612
APA StyleAlperth, F., Feistritzer, T., Huber, M., Kunert, O., & Bucar, F. (2024). Natural Deep Eutectic Solvents for the Extraction of Spilanthol from Acmella oleracea (L.) R.K.Jansen. Molecules, 29(3), 612. https://doi.org/10.3390/molecules29030612