Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = UHPLC-DAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3813 KiB  
Article
An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591
by Cleudiane Pereira de Andrade, Caroline Dutra Lacerda, Raíssa Assímen Valente, Liss Stone de Holanda Rocha, Anne Terezinha Fernandes de Souza, Dorothy Ívila de Melo Pereira, Larissa Kirsch Barbosa, Cleiton Fantin, Sergio Duvoisin Junior and Patrícia Melchionna Albuquerque
Antibiotics 2025, 14(8), 756; https://doi.org/10.3390/antibiotics14080756 - 27 Jul 2025
Viewed by 330
Abstract
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds [...] Read more.
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds by two Amazonian fungal strains using the OSMAC (One Strain–Many Compounds) approach. Methods: Two fungal strains, Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591, were cultivated under five distinct culture media to modulate secondary metabolite production. Ethyl acetate extracts were prepared and evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as pathogenic yeasts. Chemical characterization was performed using thin-layer chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV-Vis) spectroscopy, and Ultra-High-Performance Liquid Chromatography with Diode Array Detection (uHPLC-DAD). Results: The extracts exhibited significant antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging from 78 to 5000 µg/mL. Chemical analyses revealed the presence of phenolic compounds, particularly caffeic and chlorogenic acids. Variations in the culture media substantially affected both the metabolite profiles and antimicrobial efficacy of the extracts. Conclusions: The OSMAC strategy effectively enhanced the metabolic diversity of the Amazonian fungal strains, leading to the production of bioactive metabolites with antimicrobial potential. These findings support the importance of optimizing culture conditions to unlock the biosynthetic capacity of Amazonian fungi as promising sources of antimicrobial agents. Full article
Show Figures

Figure 1

25 pages, 2588 KiB  
Article
Phytochemical Analysis and Therapeutic Potential of Tuberaria lignosa (Sweet) Samp. Aqueous Extract in Skin Injuries
by Manuel González-Vázquez, Ana Quílez Guerrero, Mónica Zuzarte, Lígia Salgueiro, Jorge Alves-Silva, María Luisa González-Rodríguez and Rocío De la Puerta
Plants 2025, 14(15), 2299; https://doi.org/10.3390/plants14152299 - 25 Jul 2025
Viewed by 337
Abstract
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in [...] Read more.
Tuberaria lignosa (Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several Candida and dermatophyte species, while antibiofilm activity was tested against Epidermophyton floccosum. The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of T. lignosa as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy. Full article
Show Figures

Graphical abstract

27 pages, 6079 KiB  
Article
Bioactive Cyclopeptide Alkaloids and Ceanothane Triterpenoids from Ziziphus mauritiana Roots: Antiplasmodial Activity, UHPLC-MS/MS Molecular Networking, ADMET Profiling, and Target Prediction
by Sylvestre Saidou Tsila, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Kevine Johanne Jumeta Dongmo, Jean Koffi Garba, Noella Molisa Efange, Lawrence Ayong, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2025, 30(14), 2958; https://doi.org/10.3390/molecules30142958 - 14 Jul 2025
Viewed by 401
Abstract
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, [...] Read more.
Malaria continues to pose a significant global health burden, driving the search for novel antimalarial agents to address emerging drug resistance. This study evaluated the antiplasmodial potential of Ziziphus mauritiana Lam. (Rhamnaceae) roots through an integrated phytochemical and pharmacological approach. The ethanol extract, along with its derived fractions, demonstrated potent in vitro activity against the chloroquine-sensitive Plasmodium falciparum strain 3D7 (Pf3D7), with the ethyl acetate-soluble (IC50 = 11.35 µg/mL) and alkaloid-rich (IC50 = 4.75 µg/mL) fractions showing particularly strong inhibition. UHPLC-DAD-ESI-QTOF-MS/MS-based molecular networking enabled the identification of thirty-two secondary metabolites (132), comprising twenty-five cyclopeptide alkaloids (CPAs), five of which had not yet been described (11, 20, 22, 23, 25), and seven known triterpenoids. Bioactivity-guided isolation yielded thirteen purified compounds (5, 6, 14, 2630, 3236), with betulinic acid (30; IC50 = 19.0 µM) and zizyberenalic acid (32; IC50 = 20.45 µM) exhibiting the most potent antiplasmodial effects. Computational ADMET analysis identified mauritine F (4), hemisine A (10), and nummularine R (21) as particularly promising lead compounds, demonstrating favourable pharmacokinetic properties, low toxicity profiles, and predicted activity against both family A G protein-coupled receptors and evolutionarily distinct Plasmodium protein kinases. Quantitative analysis revealed exceptionally high concentrations of key bioactive constituents, notably zizyberenalic acid (24.3 mg/g) in the root extracts. These findings provide robust scientific validation for the traditional use of Z. mauritiana in malaria treatment while identifying specific cyclopeptide alkaloids and triterpenoids as valuable scaffolds for antimalarial drug development. The study highlights the effectiveness of combining advanced metabolomics, bioassay-guided fractionation, and computational pharmacology in natural product-based drug discovery against resistant malaria strains. Full article
Show Figures

Figure 1

18 pages, 389 KiB  
Article
Global DNA Methylation in Poorly Controlled Type 2 Diabetes Mellitus: Association with Redox and Inflammatory Biomarkers
by Sanja Vujcic, Jelena Kotur-Stevuljevic, Zoran Vujcic, Sanja Stojanovic, Teodora Beljic Zivkovic, Miljanka Vuksanovic, Milica Marjanovic Petkovic, Iva Perovic Blagojevic, Branka Koprivica-Uzelac, Sanja Ilic-Mijailovic, Manfredi Rizzo, Aleksandra Zeljkovic, Tatjana Stefanovic, Srecko Bosic and Jelena Vekic
Int. J. Mol. Sci. 2025, 26(14), 6716; https://doi.org/10.3390/ijms26146716 - 13 Jul 2025
Viewed by 410
Abstract
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly [...] Read more.
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly controlled T2DM and to identify diabetes-related factors associated with DNA methylation levels. The study included 107 patients and 50 healthy controls. Global DNA methylation (5mC) was measured by UHPLC-DAD method. Pro-oxidant and antioxidant biomarkers, advanced glycation end-products, high-sensitivity C-reactive protein (hsCRP) and complete blood count were determined and leukocyte indices calculated. Patients had a significantly lower 5mC than controls (3.56 ± 0.31% vs. 4.00 ± 0.68%; p < 0.001), with further reductions observed in those with longer disease duration and diabetic foot ulcers. Oxidative stress and inflammatory biomarkers were higher in the patient group. DNA hypomethylation was associated with a higher monocyte-to-lymphocyte ratio and hsCRP, pro-oxidant–antioxidant balance, ischemia-modified albumin, and advanced oxidation protein products levels. Conversely, 5mC levels showed positive correlations with total antioxidant status and total sulfhydryl groups. Principal component analysis identified five key factors: proinflammatory, pro-oxidant, aging, hyperglycemic, and antioxidant. The pro-oxidant factor emerged as the sole independent predictor of global DNA hypomethylation in T2DM (OR = 2.294; p = 0.027). Our results indicate that global DNA hypomethylation could be a biomarker of T2DM progression, reflecting the complex interactions between oxidative stress, inflammation, and epigenetic modifications in T2DM. Full article
Show Figures

Figure 1

18 pages, 405 KiB  
Article
Validated UHPLC Methods for Melatonin Quantification Reveal Regulatory Violations in EU Online Dietary Supplements Commerce
by Celine Vanhee, Cloë Degrève, Niels Boschmans, Yasmina Naïmi, Michael Canfyn, Eric Deconinck and Marie Willocx
Molecules 2025, 30(12), 2647; https://doi.org/10.3390/molecules30122647 - 19 Jun 2025
Viewed by 834
Abstract
The global sleep aids market has grown significantly due to rising stress and increased awareness of sleep’s importance. Melatonin, available in the EU as a prescription or over-the-counter medicine, depending on the country, is also permitted in dietary supplements with country-specific limits. Recent [...] Read more.
The global sleep aids market has grown significantly due to rising stress and increased awareness of sleep’s importance. Melatonin, available in the EU as a prescription or over-the-counter medicine, depending on the country, is also permitted in dietary supplements with country-specific limits. Recent reports indicate concerning levels of excessive melatonin in EU dietary supplements, necessitating accurate quantification methods. We developed and validated, by applying accuracy profiles, ISO17025-compliant, rapid ultra-high performance liquid chromatography (UHPLC) methodologies coupled with either diode array detection (DAD) or high-resolution accurate mass spectrometry (HRAM MS). The cost-effective UHPLC-DAD method is suitable for medicines and most dietary supplements, except those more complex herbal matrices containing passionflower, hop, hemp, lime tree or lavender or their extracts, where UHPLC-HRAM MS is recommended due to selectivity issues of the DAD methodology. To demonstrate the applicability, we analyzed 50 dietary supplements claiming to contain melatonin—25 from legal supply chains and 25 from suspicious sources claiming therapeutic melatonin content. Our findings confirmed previous reports of high melatonin content in online products, especially when purchased through rogue internet pharmacies. Moreover, 12% of legal supply chain samples violated current legislation through unauthorized health claims or contained at least triple the melatonin amount permitted in Belgium. This research provides reliable analytical methods for regulatory bodies and confirms the circulation of non-compliant melatonin-containing dietary supplements in the EU market, even in the legal supply chain. Full article
Show Figures

Graphical abstract

22 pages, 2086 KiB  
Article
Chemical Composition and In Vitro Biological Activity of the Polar and Non-Polar Fractions Obtained from the Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim
by Jakub Gębalski, Milena Małkowska, Ewa Kiełkowska, Filip Graczyk, Sylwia Wnorowska, Iga Hołyńska-Iwan, Maciej Strzemski, Magdalena Wójciak and Daniel Załuski
Int. J. Mol. Sci. 2025, 26(12), 5619; https://doi.org/10.3390/ijms26125619 - 12 Jun 2025
Viewed by 469
Abstract
Eleutherococcus senticosus (ES) has been used in traditional medicine for immune-boosting, stress-reducing, and endurance-enhancing properties. In this study, the chemical composition and biological activity of polar and non-polar fractions obtained from 75% methanol E. senticosus roots extract were evaluated. Spectrophotometric methods were used [...] Read more.
Eleutherococcus senticosus (ES) has been used in traditional medicine for immune-boosting, stress-reducing, and endurance-enhancing properties. In this study, the chemical composition and biological activity of polar and non-polar fractions obtained from 75% methanol E. senticosus roots extract were evaluated. Spectrophotometric methods were used to assess the antioxidant (DPPH, ABTS, FRAP, CUPRAC, O2•−) and anti-enzymatic (hyaluronidase, acetylcholinesterase, butyrylcholinesterase, α-amylase, and tyrosinase) activities. Metabolic profiling was carried out using HPLC-DAD and UHPLC-DAD/ESI-TOF-MS. The ethyl acetate fraction (EtOAc) showed the highest antioxidant activity with IC50 values of 82.73 ± 0.065 µg/mL (DPPH) and 9.92 ± 0.17 µg/mL (ABTS). The EtOAc fraction also exhibited strong anti-enzymatic effects against hyaluronidase and α-amylase (125.24 ± 12.29 and 97.34 ± 9.18 µg/mL, resp.). In turn, the hexane fraction exhibited the most potent anti-AChE activity with IC50 equal 245.72 ± 11.82 µg/mL. The HPLC-DAD analysis revealed the presence of caffeic acid derivatives. These results suggest that the ethyl acetate fraction may have therapeutic relevance in inflammation- and metabolic-related diseases. We perceive the potential of this fraction as a rich source of compounds with an anti-inflammatory activity; however, more advanced research in in vivo model is required. Full article
(This article belongs to the Special Issue Plant Bioactive Substances and Potential Applications)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Marine Algae Extract-Loaded Nanoemulsions: A Spectrophotometric Approach to Broad-Spectrum Photoprotection
by Julian Tello Quiroz, Ingrid Andrea Rodriguez Martinez, Vanessa Urrea-Victoria, Leonardo Castellanos and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(3), 101; https://doi.org/10.3390/cosmetics12030101 - 15 May 2025
Viewed by 907
Abstract
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids [...] Read more.
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids (MAAs) and fucoxanthin, offering natural alternatives to synthetic sunscreens. This study aimed to develop and optimize a nanoemulsion incorporating both algal extracts, with MAAs and fucoxanthin strategically distributed in the aqueous and oil phases, respectively, to enhance synergistic broad-spectrum UV protection. MAAs were quantified in Gracilaria sp. using UHPLC-DAD, revealing 8.03 mg/g dry weight, primarily composed of shinorine and porphyra-334. Fucoxanthin was identified in S. polyceratium at 0.98 mg/g dry weight. A Box–Behnken design (BBD) was employed to optimize the nanoemulsion, targeting minimal droplet size and optimal ζ potential. The resulting formulation achieved a droplet size less than 100 nm and a ζ potential less than −25.0 mV. In vitro spectrophotometric analysis demonstrated significant photoprotective potential. The nanoemulsion containing only 375 ppm of algal extracts exhibited a UVA ratio of 1.25 and a critical wavelength of 379 nm, meeting the criteria for broad-spectrum protection and outperforming the commercial natural filter Helioguard®365. These results confirm the efficacy of combining red and brown algae extracts in a nanoemulsion platform to deliver sustainable, low-dose photoprotection. This work presents, for the first time, the incorporation of red and brown algae extracts into a single nanoemulsion system, representing a novel strategy to maximize the combined photoprotective potential of MAAs and fucoxanthin. Ultimately, this investigation contributes to the growing field of marine-derived sunscreens and supports the advancement of “blue beauty” innovations aligned with eco-conscious formulation principles. Full article
Show Figures

Figure 1

16 pages, 1799 KiB  
Article
The Association Between the Flesh Colour and Carotenoid Profile of 25 Cultivars of Mangoes
by Tatsuyoshi Takagi, Hung Hong, Natalie Dillon, Peter Crisp, Daniel Cozzolino and Tim O’Hare
Molecules 2025, 30(8), 1661; https://doi.org/10.3390/molecules30081661 - 8 Apr 2025
Viewed by 686
Abstract
Mango (Mangifera indica L.) cultivars display a wide range of ripe flesh colours, from deep-orange to pale-yellow, largely linked to differences in carotenoid profiles. This study examined the relationship between carotenoid profile and flesh colour across 25 mango cultivars. Flesh colour was [...] Read more.
Mango (Mangifera indica L.) cultivars display a wide range of ripe flesh colours, from deep-orange to pale-yellow, largely linked to differences in carotenoid profiles. This study examined the relationship between carotenoid profile and flesh colour across 25 mango cultivars. Flesh colour was measured using chroma (intensity) and hue angle (colour) and correlated with carotenoid content quantified using ultra-high performance liquid chromatography with diode-array detection (UHPLC-DAD). Chroma and hue angle displayed a second-order inverse polynomial relationship with chroma increasing as hue angle decreased. At lower hue angles, a wider range of chroma values was observed. Regression analysis showed that chroma correlated most strongly with total carotenoid concentration (TCC) (R2 = 0.54), followed by total orange carotenoid concentration (R2 = 0.47) and all-trans β-carotene concentration (R2 = 0.45). Hue angle correlated most strongly with the total orange carotenoid concentration (R2 = 0.76), then all-trans β-carotene concentration (R2 = 0.73) and TCC (R2 = 0.64). Interestingly, pale-yellow cultivars often exhibited low carotenoid concentrations, high titratable acidity and low soluble solids, suggesting incomplete ripening may also contribute to their pale colouration. These results provide insight into carotenoid-colour relationships and offer direction for phytochemical-based breeding programmes targeting mango flesh colour traits. Full article
(This article belongs to the Special Issue Feature Papers in Food Chemistry—3rd Edition)
Show Figures

Figure 1

17 pages, 2361 KiB  
Article
A Modified Extraction and Saponification Method for the Determination of Carotenoids in the Fruit of Capsicum annuum
by Hung Trieu Hong, Rimjhim Agarwal, Tatsuyoshi Takagi, Michael E. Netzel, Stephen M. Harper and Tim J. O’Hare
Agriculture 2025, 15(6), 646; https://doi.org/10.3390/agriculture15060646 - 18 Mar 2025
Cited by 1 | Viewed by 894
Abstract
Quantification of free and bound carotenoids in pigmented fruit and vegetable matrices has previously been challenging due to carotenoid instability, degradation during extraction, and the prevalence of predominant carotenoid esters. The aim of the present study was to develop an optimized extraction procedure [...] Read more.
Quantification of free and bound carotenoids in pigmented fruit and vegetable matrices has previously been challenging due to carotenoid instability, degradation during extraction, and the prevalence of predominant carotenoid esters. The aim of the present study was to develop an optimized extraction procedure that minimises the loss of free and bound carotenoids by utilising a combination of extraction solutions, followed by an improved saponification process. A mixture of hexane, dichloromethane, ethanol and water achieved the highest extraction efficiency (>97%) from the chili/capsicum matrix. The study also addressed the previously unexplained loss of carotenoids during saponification by adding phosphate buffer to the sample–extract mixture, which prevented soap micelle formation. Additionally, the duration and temperature of the saponification procedure and pH of the final extraction solution were further optimised to achieve a higher total carotenoid recovery. A total of 48 free and bound carotenoids were identified in the capsicum fruit samples using UHPLC-DAD-MS/MS. The total carotenoid content within six bell pepper and chili fruits ranged between 1.63 (green bell capsicum) and 32.08 mg/100 g fresh weight (sweet red baby capsicum). The current methodology potentially could be used in a broad range of different carotenoid-containing matrices and commodities. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

29 pages, 689 KiB  
Article
Recovery of Bioactive Compounds from the Biomass of Aromatic Plants After Distillation Using NADES: A Sustainable Alternative Extraction Method
by Eleonora Truzzi, Davide Bertelli, Benedetta Catellani, Danial Darvishi Jazi and Stefania Benvenuti
Molecules 2025, 30(5), 1120; https://doi.org/10.3390/molecules30051120 - 28 Feb 2025
Viewed by 1316
Abstract
The extraction processes for medicinal plants, particularly the distillation of aromatic plants, generate significant quantities of by-products, consisting of fibrous biomass and hydrosols. These by-products pose challenges for disposal and recovery. Consequently, it is imperative to make the entire highly energy-intensive process more [...] Read more.
The extraction processes for medicinal plants, particularly the distillation of aromatic plants, generate significant quantities of by-products, consisting of fibrous biomass and hydrosols. These by-products pose challenges for disposal and recovery. Consequently, it is imperative to make the entire highly energy-intensive process more sustainable by valorizing all derivatives. This study aims to recover polyphenols from the exhausted biomasses of Artemisia dracunculus, Echinacea purpurea, Helichrysum italicum (from the Asteraceae family), and Lavandula angustifolia, Lavandula × intermedia, Melissa officinalis, Salvia officinalis, Salvia sclarea, and Salvia rosmarinus (from the Lamiaceae family) after steam distillation. The residual biomasses were extracted using ethanol (conventional solvent) and different natural deep eutectic solvents (NADES) composed of choline chloride in combination with citric and lactic acids at different molar ratios. The NADES containing choline chloride and lactic acid at the molar ratio 1:1 (CLA11) exhibited the highest recovery of representative phenols of the plants, namely chicoric and rosmarinic acids. The CLA11 solvent demonstrated a stronger extractive capacity compared to ethanol in all the biomasses belonging to the Asteraceae and Lamiaceae families. Specifically, CLA11 extracts showed a higher number of compounds in UHPLC-HRMS and greater concentrations of chicoric and rosmarinic acids determined by HPLC-DAD than ethanol extracts. In conclusion, NADES were demonstrated to be a viable alternative system for the recovery of bioactive compounds that could be used to formulate new products for the food, pharmaceutical, and cosmetic industries. Moreover, the use of NADES can enhance the sustainability of the whole production chain of essential oils being environmentally friendly. Full article
(This article belongs to the Special Issue Chemical Analysis of Functional Foods)
Show Figures

Figure 1

28 pages, 3543 KiB  
Article
Pairing Red Wine and Closure: New Achievements from Short-to-Medium Storage Time Assays
by João Mota, André Viana, Cátia Martins, Adriana C. S. Pais, Sónia A. O. Santos, Armando J. D. Silvestre, José Pedro Machado and Sílvia M. Rocha
Foods 2025, 14(5), 783; https://doi.org/10.3390/foods14050783 - 25 Feb 2025
Viewed by 1453
Abstract
The physicochemical and sensory properties of wines are influenced by several factors, starting in the vineyard and evolving during the winemaking stages. After bottling, variables such as bottle position, closure type, storage temperature, and storage time shape wine characteristics. In this study, red [...] Read more.
The physicochemical and sensory properties of wines are influenced by several factors, starting in the vineyard and evolving during the winemaking stages. After bottling, variables such as bottle position, closure type, storage temperature, and storage time shape wine characteristics. In this study, red wines stored for approximately 0.5 and 3 years with natural cork, micro-agglomerated cork stoppers, and screw cap closures were analyzed. Various techniques were employed to investigate changes during bottle storage, including the determination of volatile components by comprehensive gas chromatography-mass spectrometry with time-of-flight analyzer (GC × GC-ToFMS), phenolic profile by ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (UHPLC-DAD-MSn), general physicochemical parameters, the oxygen transfer rate of cork stoppers, and sensorial analysis performed by a trained panel. The results revealed that the type of closure created distinct environments within the bottles, slightly influencing both sensory attributes and chemical evolution of the red wines. These findings highlight the value of combining diverse analytical techniques to reveal closure-driven differences, with volatile compound profiling emerging as the most sensitive methodology. Additionally, this study emphasizes that differences modulated by the wine–closure pairing, which become more pronounced during storage, can serve as an oenological tool in the construction of a wine’s identity. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

31 pages, 5710 KiB  
Article
Antitumor Activity, Mechanisms of Action and Phytochemical Profiling of Sub-Fractions Obtained from Ulex gallii Planch. (Fabaceae): A Medicinal Plant from Galicia (Spain)
by Lucía Bada, Hussain Shakeel Butt, Elías Quezada, Aitor Picos, Helle Wangensteen, Kari Tvete Inngjerdingen, José Gil-Longo and Dolores Viña
Molecules 2025, 30(4), 972; https://doi.org/10.3390/molecules30040972 - 19 Feb 2025
Cited by 1 | Viewed by 1074
Abstract
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with [...] Read more.
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with their phytochemical profiles. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and cell cycle arrest and apoptosis were assessed through flow cytometry and by measuring reactive oxygen species (ROS) and protein expression levels. D7 and D8 dichloromethane sub-fractions significantly reduced cell viability, triggered early apoptosis in SH-SY5Y and U-87MG cells and specifically increased ROS levels in U-87MG cells. Western blot analyses showed that D7 increased p53, caspase-3, caspase-8 and γH2AX expression in SH-SY5Y and U-87MG cells, while D8 specifically elevated p53 in SH-SY5Y cells and caspase-3 in both cell lines. In U-373 cells, D7 and D8 markedly reduced cell viability, with D8 inducing necrosis. Morphological changes indicative of apoptosis were also observed in all cell lines. Bioinformatic analysis of UHPLC-MS and GC-MS data tentatively identified 20 metabolites in D7 and 15 in D8, primarily flavonoids. HPLC-DAD confirmed isoprunetin and genistein as the most abundant in D7 and D8, respectively, both isolated and identified by NMR spectroscopy. Most of the flavonoids identified have been reported as antitumor agents, suggesting that these compounds may be responsible for the observed pharmacological activity. Full article
Show Figures

Graphical abstract

21 pages, 1549 KiB  
Article
Nasturtium officinale Microshoot Culture Multiplied in PlantForm Bioreactor—Phytochemical Profiling and Biological Activity
by Marta Klimek-Szczykutowicz, Magdalena Anna Malinowska, Aleksandra Gałka, Ivica Blažević, Azra Ðulović, Paulina Paprocka, Małgorzata Wrzosek and Agnieszka Szopa
Molecules 2025, 30(4), 936; https://doi.org/10.3390/molecules30040936 - 18 Feb 2025
Viewed by 974
Abstract
Nasturtium officinale R. Br. (watercress) is an endangered species with valuable pharmaceutical, cosmetic, and nutritional properties. The purpose of this work was to evaluate the phytochemical profile and biological activity of extracts from microshoot cultures grown in PlantForm bioreactors and the parent plant [...] Read more.
Nasturtium officinale R. Br. (watercress) is an endangered species with valuable pharmaceutical, cosmetic, and nutritional properties. The purpose of this work was to evaluate the phytochemical profile and biological activity of extracts from microshoot cultures grown in PlantForm bioreactors and the parent plant material. After 20 days of cultivation, the cultures achieved the best results both in terms of key active ingredient content and biological activity. The glucosinolates (GSL) profile by the UHPLC-DAD-MS/MS method showed that the dominant compounds were glucobrassicin (493.00 mg/100 g DW, 10 days) and gluconasturtiin (268.04 mg/100 g DW, 20 days). The highest total polyphenol content (TPC) was obtained after a 20-day growth period (2690 mg GAE/100 g DW). Among polyphenols, the dominant compounds in the extracts from in vitro cultures were sinapinic acid (114.83 mg/100 g DW, 10 days) and ferulic acid (87.78 mg/100 g DW, 20 days). The highest antioxidant potential assessed by ABTS and DPPH assays was observed for ethanol extracts. The best results for inhibiting hyperpigmentation (18.12%) were obtained for ethanol extracts and anti-elastase activity (79.78%) for aqueous extract from N. officinale microshoot cultures. The extracts from microshoot cultures inhibited the growth of bacteria, including Cutibacterium acnes (MIC = 0.625 mg/mL). Antioxidant tests and the chelating capacity of iron ions Fe2+ of the face emulsion with N. officinale extracts showed higher results than the control. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

15 pages, 3675 KiB  
Article
Exploring the Effects of Sweet Potato Leaves on Skin Health—From Antimicrobial to Immunomodulator
by Manuela Machado, Sara Silva, Manuela Pintado and Eduardo M. Costa
Molecules 2025, 30(4), 855; https://doi.org/10.3390/molecules30040855 - 13 Feb 2025
Viewed by 1803
Abstract
Sweet potato leaves (SPL), an agricultural byproduct, hold significant potential in dermatological applications due to their bioactive compounds. This study evaluates the phenolic profile of SPL extracts and investigates their biological activities relevant to skin health. Extract fingerprinting, through uHPLC-DAD and LC–MS, identified [...] Read more.
Sweet potato leaves (SPL), an agricultural byproduct, hold significant potential in dermatological applications due to their bioactive compounds. This study evaluates the phenolic profile of SPL extracts and investigates their biological activities relevant to skin health. Extract fingerprinting, through uHPLC-DAD and LC–MS, identified phenolic acids and flavonoids, with cynarin, neochlorogenic acid, and spiraeoside being predominant. The presence of hyperoside was detected. From a biological standpoint, SPL demonstrated notable antimicrobial activity, with MICs ranging from 2.5 to 5 mg/mL against various bacterial strains, such as MRSA and P. aeruginosa, and effective antibiofilm activity, as it reduced biofilm formation by over 80% for most tested strains. When evaluating its effect upon keratinocytes, the cytotoxicity assessment revealed safe usage concentrations at 111 µg/mL and immunomodulatory capacities, as it increased IL-6 production in unchallenged cells but had no synergistic effects under inflammatory stimuli. While preliminary, and with more assays being necessary, these findings highlight SPL’s potential as a natural agent for antimicrobial and anti-inflammatory applications in skin-related applications and open a new avenue for a possible added value application of SPL. Full article
Show Figures

Figure 1

20 pages, 1344 KiB  
Article
Optimization of Extraction Conditions for Phenolic Compounds from Potato Tubers: LC-MS Phenolic Profile as a Powerful Tool to Assess the Genotypes, Vegetation Period, and Production Systems of Potato
by Aleksandra Dramićanin, Nikola Horvacki, Uroš Gašić and Dušanka Milojković-Opsenica
Processes 2025, 13(2), 396; https://doi.org/10.3390/pr13020396 - 2 Feb 2025
Viewed by 1023
Abstract
Five different extraction methods were assessed to select an optimal procedure for extracting the phenolic antioxidants from potato tubers. Total phenolic content and antioxidant capacity were determined for each type of extraction. In total, 144 samples of four potato varieties from three production [...] Read more.
Five different extraction methods were assessed to select an optimal procedure for extracting the phenolic antioxidants from potato tubers. Total phenolic content and antioxidant capacity were determined for each type of extraction. In total, 144 samples of four potato varieties from three production systems, over a period of three years, were analyzed. The results show that TPC and RSA tests can be used as parameters for differentiating potato parts and variety and to distinguish the samples depending on ripening time and the production system. Higher values of TPC and RSA were observed in samples from the organic cultivation system compared to integral and conventional cultivation in the same cultivar. Finally, by the employment of UHPLC-LTQ Orbitrap XL, fifty-nine phenolic compounds were identified. It was concluded that the phenolic profile is a powerful tool for confirming botanical origin, distinguishing between genotypes, and distinguishing various production systems of potato. Full article
Show Figures

Figure 1

Back to TopTop