Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = TiN thin-film electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3058 KB  
Article
Influence of N2/Ar Flow Ratio on the Microstructure and Electrochemical Capacitive Performance of TiN Thin-Film Electrodes for Micro-Supercapacitors
by Jiaxin Tan, Lin Yi, Min Zhang and Suyuan Bai
Coatings 2026, 16(1), 69; https://doi.org/10.3390/coatings16010069 - 7 Jan 2026
Viewed by 26
Abstract
With the rapid development of the Internet of Things (IoT), micro-energy storage devices face increasing demands for miniaturization, high energy density, and high power density. Owing to their excellent electrical conductivity and mechanical strength, TiN thin films are promising candidates for micro-supercapacitor electrodes. [...] Read more.
With the rapid development of the Internet of Things (IoT), micro-energy storage devices face increasing demands for miniaturization, high energy density, and high power density. Owing to their excellent electrical conductivity and mechanical strength, TiN thin films are promising candidates for micro-supercapacitor electrodes. In this work, TiN thin films were prepared by direct current magnetron sputtering under different N2/Ar flow ratios. The effects of the N2/Ar flow ratio on the crystal structure, surface morphology, roughness, and electrochemical capacitive performance of TiN thin films were systematically investigated. The results show that at lower N2/Ar flow ratios, the films consist of a mixture of TiN and Ti2O3 phases, while at higher N2/Ar ratios, single-phase TiN with a preferred orientation along the (220) plane is detected in the obtained films. AFM measurements indicate that the root mean square roughness first increases and then decreases with increases in N2/Ar flow ratios, and it reaches a maximum of around 15.9 nm when the N2/Ar flow ratio is 5:15. XPS results show that the 5:15 sample contains the highest oxygen vacancy concentration, offering it the best conductivity, which is confirmed by four-probe measurements. Electrochemical tests demonstrate that the N2/Ar flow ratio has a significant influence on the specific capacitance of TiN films, with the highest value of 3.29 mF/cm2 achieved at a N2/Ar flow ratio of 5:15, which is likely due to the rough and porous surface and much better conductivity of the as-deposited films. This study provides an important experimental basis for optimizing the performance of TiN thin-film electrodes. Full article
Show Figures

Figure 1

12 pages, 17680 KB  
Article
Silver Nanowire-Amorphous Indium Zinc Oxide Composite Electrodes for Transparent Film Heaters
by Xingzhen Yan, Mengying Lyu and Ziyao Niu
Nanomaterials 2025, 15(24), 1883; https://doi.org/10.3390/nano15241883 - 15 Dec 2025
Viewed by 379
Abstract
Transparent conductive films based on silver nanowire meshes have demonstrated significant potential as alternatives to conventional tin-doped indium oxide and fluorine-doped tin oxide thin films. However, these materials feature high junction resistance, poor damp heat (DH) stability, and weak mechanical adhesion to substrates, [...] Read more.
Transparent conductive films based on silver nanowire meshes have demonstrated significant potential as alternatives to conventional tin-doped indium oxide and fluorine-doped tin oxide thin films. However, these materials feature high junction resistance, poor damp heat (DH) stability, and weak mechanical adhesion to substrates, which are critical issues that must be addressed before any practical applications. In this paper, transparent conducting films composed of silver nanowire (AgNW) frameworks and amorphous indium zinc oxide (IZO) fillers were prepared by a spin-coating method. The AgNW-IZO composite films exhibited a higher conductivity and better DH stability and adhesion to substrates than that of their constituent parts alone. The lowest sheet resistance of the composite films was 3.3 ohm/sq with approximately 70% transparency in the visible spectrum. No degradation was observed after 8 months. The excellent DH stability and mechanical adhesion might facilitate applications of these AgNW-IZO composite films in optoelectronic devices. Furthermore, the composite electrode is shown to have potential as a transparent heater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

28 pages, 8641 KB  
Review
Recent Progress in Dielectric/Ag/Dielectric Transparent Electrodes on Flexible Substrates
by Yawei Wang, Yujie Nian, Shuai Wang, Cailin Lu, Lingfeng Yin, Chunmei Wang, Peiyong Ma and Yingcui Fang
Coatings 2025, 15(12), 1370; https://doi.org/10.3390/coatings15121370 - 24 Nov 2025
Viewed by 741
Abstract
Dielectric/Ag/dielectric (DAD) multilayer thin-film transparent electrode features high visible-light transmittance, low sheet resistance, good mechanical flexibility, and low haze. The fabrication techniques are compatible with large-scale integrated circuits, and the materials are cheap. These advantages make the DAD transparent electrodes a promising alternative [...] Read more.
Dielectric/Ag/dielectric (DAD) multilayer thin-film transparent electrode features high visible-light transmittance, low sheet resistance, good mechanical flexibility, and low haze. The fabrication techniques are compatible with large-scale integrated circuits, and the materials are cheap. These advantages make the DAD transparent electrodes a promising alternative to indium tin oxide (ITO) electrodes for flexible devices. This review summarizes recent advances in DAD transparent electrodes on flexible substrates, mainly focusing on the opto-electrical performance improvement due to damping of the localized surface resonance (LSPR) of Ag nanoparticles (AgNPs). It begins with an analysis of the performance-limiting factors of DAD transparent electrodes, elucidating the importance of damping the LSPR of AgNPs. Subsequently, the state-of-the-art fabrication methods for Ag ultrathin films of weak LSPR and the dielectric material optimization are reviewed. It concludes with perspectives on future research. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

12 pages, 3078 KB  
Article
Photoelectrochemical Water Splitting by SnO2/CuO Thin Film Heterostructure-Based Photocatalysts for Hydrogen Generation
by Joun Ali Faraz, Tanvir Hussain, Muhammad Bilal, Khaleel Ahmad and Luminita-Ioana Cotirla
Nanomaterials 2025, 15(22), 1748; https://doi.org/10.3390/nano15221748 - 20 Nov 2025
Viewed by 754
Abstract
The emission of greenhouse gases from fossil fuels creates devastating effects on Earth’s atmosphere. Therefore, a clean energy source is required to fulfill the energy demand. Hydrogen is considered an energy vector, and the production of green hydrogen is a promising approach. Photoelectrochemical [...] Read more.
The emission of greenhouse gases from fossil fuels creates devastating effects on Earth’s atmosphere. Therefore, a clean energy source is required to fulfill the energy demand. Hydrogen is considered an energy vector, and the production of green hydrogen is a promising approach. Photoelectrochemical (PEC) water splitting is the best approach to produced green hydrogen, but the efficiency is low. To produce hydrogen by PEC splitting water, semiconductor photocatalysts have received an enormous amount of academic research in recent years. A new class of co-catalysts based on transition metals has emerged as a powerful tool for reducing charge transfer barriers and enhancing photoelectrochemical (PEC) efficiency. In this study, copper oxide (CuO) and tin oxide (SnO2) multilayer thin films were prepared by thermal evaporation to create an energy gradient between SnO2 and CuO semiconductors for better charge transfer. To improve the crystallinity and reduce the defects, the prepared films were annealed in a tube furnace at 400 °C, 500 °C, and 600 °C in an argon inert gas environment. XRD results showed that SnO2/CuO-600 °C exhibited strong peaks, indicating the transformation from amorphous to polycrystalline. SEM images showed the transformation of smooth dense film to a granular structure by annealing, which is better for charge transfer from electrode to electrolyte. Optical properties showed that the bandgap was decreased by annealing, which might be diffusion of Cu and Sn atoms at the interface. PEC results showed that the SnO2/CuO-600 °C heterostructure exhibits the solar light-to-hydrogen (STH%) conversion efficiency of 0.25%. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 1914 KB  
Article
Microstructure Regulation and Optoelectronic Performance Optimization of Flexible CPI-Based ITO Thin Films Under Low-Temperature Heat Treatment Process
by Hanyan Zhang, Ruohe Yao, Weijing Wu and Yi Shen
Coatings 2025, 15(11), 1352; https://doi.org/10.3390/coatings15111352 - 19 Nov 2025
Viewed by 399
Abstract
Addressing the urgent need for low-temperature processes in the manufacturing of flexible vehicle-mounted touch display devices, this study investigates the process–structure–performance relationships of indium tin oxide (ITO) thin films prepared by DC magnetron sputtering on transparent polyimide (CPI) substrates. A synergistic strategy of [...] Read more.
Addressing the urgent need for low-temperature processes in the manufacturing of flexible vehicle-mounted touch display devices, this study investigates the process–structure–performance relationships of indium tin oxide (ITO) thin films prepared by DC magnetron sputtering on transparent polyimide (CPI) substrates. A synergistic strategy of “low-temperature deposition (110 °C)–230 °C atmospheric annealing” was employed. The optimal sample exhibited excellent comprehensive performance: a resistivity as low as 203 μΩ·cm, an average visible light transmittance of 89.2%, a surface roughness of 0.76 nm, and the ability to endure 100,000 bending cycles at a radius of R = 5 mm with a sheet resistance change rate of less than 10%. Microstructural and chemical state analyses revealed that this process facilitates the complete oxidation of Sn2+ to Sn4+ (Sn4+/Sn2+ ratio of 8.2:1) and the controlled formation of oxygen vacancies (O_L/O_V ratio of 6.5:1), leading to a synergistic improvement in carrier concentration (8.7 × 1020 cm−3) and mobility (35.2 cm2/V·s). This work elucidates the crystallization kinetics and doping mechanisms under low-temperature conditions, providing a viable low-temperature technical pathway for the fabrication of high-performance transparent electrodes in flexible electronics. Full article
Show Figures

Figure 1

12 pages, 4359 KB  
Article
Highly Selective Laser Ablation for Thin-Film Electronics: Overcoming Variations Due to Minute Optical Path Length Differences in Plastic Substrates
by Ahmed Fawzy, Henri Fledderus, Jie Shen, Wiel H. Manders, Emile Verstegen and Hylke B. Akkerman
J. Exp. Theor. Anal. 2025, 3(4), 38; https://doi.org/10.3390/jeta3040038 - 14 Nov 2025
Viewed by 456
Abstract
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To [...] Read more.
Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To perform laser ablation of functional layers on top of such barrier films, in particular that of transparent electrodes, highly selective laser ablation is required to completely remove the layers without damaging the thin-film barrier layers underneath. When targeting highly selective laser ablation of indium tin oxide (ITO) on top of silicon nitride (SiN) barrier layers with a 1064 nm picosecond or 1030 nm femtosecond laser, we observed the emergence of visible large-scale patterns due to local variations in ablation quality. Our investigations using a very sensitive Raman spectroscopy setup show that the observed ablation variations stem from subtle differences in optical path length within the heat-stabilized plastic substrates. These variations are likely caused by minute, localized changes in the refractive index, introduced during the bi-axial stretching process used in film fabrication. Depending on the optical path length, these variations lead to either constructive or destructive interference between the incoming laser beam and the light reflected from the back surface of the substrate. By performing laser ablation under an angle such that the reflected and incoming laser beam do not spatially overlap, highly selective uniform laser ablation can be performed, even for two stacked optically transparent layers. Full article
Show Figures

Graphical abstract

16 pages, 9551 KB  
Article
Enhancing Energy Harvesting in Plant Microbial Fuel Cells with SnS-Coated 304 Stainless Steel Electrodes
by Nestor Rodríguez-Regalado, Yolanda Peña-Méndez, Edith Osorio-de-la-Rosa, Idalia Gómez-de-la-Fuente, Mirna Valdez-Hernández and Francisco López-Huerta
Coatings 2025, 15(10), 1130; https://doi.org/10.3390/coatings15101130 - 30 Sep 2025
Viewed by 913
Abstract
Plant microbial fuel cells (PMFCs) represent an eco-friendly solution for generating clean energy by converting biological processes into electricity. This work presents the first integration of tin sulfide (SnS)-coated 304 stainless steel (SS304) electrodes into Aloe vera-based PMFCs for enhanced energy harvesting. [...] Read more.
Plant microbial fuel cells (PMFCs) represent an eco-friendly solution for generating clean energy by converting biological processes into electricity. This work presents the first integration of tin sulfide (SnS)-coated 304 stainless steel (SS304) electrodes into Aloe vera-based PMFCs for enhanced energy harvesting. SnS thin films were obtained via chemical bath deposition and screen printing, followed by thermal treatment. X-ray diffraction (XRD) revealed a crystal size of 15 nm, while scanning electron microscopy (SEM) confirmed film thicknesses ranging from 3 to 13.75 µm. Over a 17-week period, SnS-coated SS304 electrodes demonstrated stable performance, with open circuit voltages of 0.6–0.7 V and current densities between 30 and 92 mA/m2, significantly improving power generation compared to uncoated electrodes. Polarization analysis indicated an internal resistance of 150 Ω and a power output of 5.8 mW/m2. Notably, the system successfully charged a 15 F supercapacitor with 8.8 J of stored energy, demonstrating a practical proof-of-concept for powering low-power IoT devices and advancing PMFC applications beyond power generation. Microbial biofilm formation, observed via SEM, contributed to enhanced electron transfer and system stability. These findings highlight the potential of PMFCs as a scalable, cost-effective, and sustainable energy solution suitable for industrial and commercial applications, contributing to the transition toward greener energy systems. These incremental advances demonstrate the potential of combining low-cost electrode materials and energy storage systems for future scalable and sustainable bioenergy solutions. Full article
(This article belongs to the Special Issue Advances and Challenges in Coating Materials for Battery Electrodes)
Show Figures

Figure 1

11 pages, 2198 KB  
Article
Effect of Hafnium-Based Thin Film Thickness on Microstructure and Electrical of Yttrium-Doped Hafnium Oxide Ferroelectric Devices Prepared by Magnetron Sputtering
by Bei Ma, Ke Ma, Xinhui Qin, Yingxue Xi, Jin Zhang, Xinyu Yang, Pengfei Yang and Weiguo Liu
Micromachines 2025, 16(9), 1066; https://doi.org/10.3390/mi16091066 - 21 Sep 2025
Viewed by 722
Abstract
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical [...] Read more.
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical properties of TiN/Y-HfO2/TiN thin film devices. Radio frequency magnetron sputtering was utilized to deposit Y-HfO2 films of varying thicknesses on TiN electrodes by controlling deposition time, with a yttrium doping concentration of 8.24 mol.%. The surface morphology and crystal structure of the thin films were characterized using atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD). Results indicate that as film thickness increases, surface roughness and Raman peak intensity increase correspondingly, with the tetragonal phase (t) characteristic peak being most prominent at 65 nm. DC magnetron sputtering was employed to deposit TiN top electrodes, resulting in TiN/Y-HfO2/TiN thin film devices. Following rapid thermal annealing at 700 °C, electrical properties were evaluated using a ferroelectric tester. Leakage current density exhibited a decreasing trend with increasing film thickness, while the maximum polarization intensity gradually increased, reaching a maximum of 11.5 μC/cm2 at 120 nm. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Devices)
Show Figures

Figure 1

15 pages, 4276 KB  
Article
Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine
by Saengrawee Sriwichai and Pimmada Thongnoppakhun
Polymers 2025, 17(18), 2539; https://doi.org/10.3390/polym17182539 - 19 Sep 2025
Viewed by 862
Abstract
Monitoring dopamine (DA) has attracted increasing attention due to alterations in DA levels associated with brain disorders. In addition, the urinary DA concentration plays a significant role in the sympathoadrenal system. A decrease in DA can impair reward-seeking behavior and cognitive flexibility. Therefore, [...] Read more.
Monitoring dopamine (DA) has attracted increasing attention due to alterations in DA levels associated with brain disorders. In addition, the urinary DA concentration plays a significant role in the sympathoadrenal system. A decrease in DA can impair reward-seeking behavior and cognitive flexibility. Therefore, accurate and precise DA detection is necessary. In this study, a poly(3-aminobenzylamine)/functionalized multi-walled carbon nanotube (PABA/f-CNT) composite thin film was fabricated by electrochemical synthesis, or electropolymerization, of 3-aminobenzylamine (3-ABA) monomer and f-CNTs through cyclic voltammetry (CV) on a fluorine-doped tin oxide (FTO)-coated glass substrate, which also served as a working electrode for label-free DA detection in artificial urine. The formation of the film was confirmed by the obtained cyclic voltammogram, electrochemical impedance spectroscopy (EIS) plots, and scanning electron microscope (SEM) and transmission electron microscope (TEM) images. The chemical components of the films were analyzed using attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). For label-free DA detection, various concentrations (50–1000 nM) of DA were determined in buffer solution through differential pulse voltammetry (DPV). The fabricated PABA/f-CNT film presented two linear ranges of 50–400 nM (R2 = 0.9915) and 500–1000 nM (R2 = 0.9443), with sensitivities of 1.97 and 0.95 µA·cm−2·µM−1, respectively. The limit of detection (LOD) and the limit of quantity (LOQ) were 119.54 nM and 398.48 nM, respectively. In addition, the PABA/f-CNT film provided excellent selectivity against common interferents (ascorbic acid, uric acid, and glucose) with high stability, reproducibility, and repeatability. For potential future medical applications, DA detection was further performed in artificial urine, yielding a high percentage of recovery. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

18 pages, 6030 KB  
Article
Impact of Rapid Thermal Annealing and Oxygen Concentration on Symmetry Bipolar Switching Characteristics of Tin Oxide-Based Memory Devices
by Kai-Huang Chen, Chien-Min Cheng, Ming-Cheng Kao, Hsin-Chin Chen, Yao-Chin Wang and Yu-Han Tsai
Micromachines 2025, 16(8), 956; https://doi.org/10.3390/mi16080956 - 19 Aug 2025
Cited by 1 | Viewed by 967
Abstract
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO [...] Read more.
In this study, tin oxide (SnO2) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal–insulator–metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO2) layer onto a silicon (Si) substrate, followed by the deposition of a titanium nitride (TiN) layer to serve as the bottom electrode. Subsequently, the tin oxide (SnO2) layer was deposited as the resistive switching insulator. Two types of top electrodes were developed to investigate the influence of different oxygen concentrations on the bipolar switching, electrical characteristics, and performance of memory devices. An aluminum (Al) top electrode was deposited using thermal evaporation, while a platinum (Pt) top electrode was deposited via dc sputtering. As a result, two distinct metal–insulator–metal (MIM) memory RRAM device structures were formed, i.e., Al/SnO2/TiN/SiO2/Si and Pt/SnO2/TiN/SiO2/Si. In addition, the symmetry bipolar switching characteristics, electrical conduction mechanism, and oxygen concentration factor of the tin oxide-based memory devices using rapid thermal annealing and different top electrodes were determined and investigated by ohmic, space-charge-limit-current, Schottky, and Poole–Frenkel conduction equations in this study. Full article
Show Figures

Figure 1

13 pages, 3623 KB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 1179
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

21 pages, 4516 KB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 1720
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

12 pages, 1611 KB  
Article
Influence of Deposition Time on Properties of Se-Doped CdTe Thin Films for Solar Cells
by Ibrahim M. Beker, Francis B. Dejene, Lehlohonolo F. Koao, Jacobus J. Terblans and Habtamu F. Etefa
Crystals 2025, 15(7), 589; https://doi.org/10.3390/cryst15070589 - 22 Jun 2025
Viewed by 825
Abstract
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) [...] Read more.
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) were used as precursors. Instruments including X-ray diffraction for structural investigation, UV-Vis spectrophotometry for optical properties, and scanning probe microscopy for morphological properties were employed to investigate the physico-chemical characteristics of the resulting Se-doped CdTe thin-film. The films are polycrystalline with a cubic phase, according to X-ray diffraction (XRD) data. More ions are deposited on the substrate, which makes the material more crystalline and intensifies the characteristic peaks that are seen. It is observed from the acquired optical characterization that the film’s bandgap is greatly influenced by the deposition time. The bandgap dropped from 1.92 to 1.62 as the deposition period increased from 25 to 45 min, making the film more transparent and absorbing less light at shorter deposition durations. Images from scanning electron microscopy (SEM) show that the surface morphology is homogenous with closely packed grains and that the grain forms become less noticeable as the deposition time increases. This work is novel in that it investigates the influence of the deposition time on the structural, optical, and morphological properties of Se-doped CdTe thin films deposited using a cost-effective, simplified two-electrode electrochemical method—a fabrication route that remains largely unexplored for this material system. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

14 pages, 3791 KB  
Article
Deposition of HfO2 by Remote Plasma ALD for High-Aspect-Ratio Trench Capacitors in DRAM
by Jiwon Kim, Inkook Hwang, Byungwook Kim, Wookyung Lee, Juha Song, Yeonwoong Jung and Changbun Yoon
Nanomaterials 2025, 15(11), 783; https://doi.org/10.3390/nano15110783 - 23 May 2025
Cited by 1 | Viewed by 4197
Abstract
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that [...] Read more.
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that minimizes electronic defects caused by charged vacancies is essential for reducing leakage current and ensuring high dielectric strength. In this study, we fabricated metal–insulator–metal (MIM) capacitors in high-aspect-ratio trench structures using remote plasma ALD (RP-ALD) and direct plasma ALD (DP-ALD). The trenches, etched into silicon, featured a 7:1 aspect ratio, 76 nm pitch, and 38 nm critical dimension. We evaluated the electrical characteristics of HfO2-based capacitors with TiN top and bottom electrodes, focusing on leakage current density and equivalent oxide thickness. Capacitance–voltage analysis and X-ray photoelectron spectroscopy (XPS) revealed that RP-ALD effectively suppressed plasma-induced damage, reducing defect density and leakage current. While DP-ALD offered excellent film properties, it suffered from degraded lateral uniformity due to direct plasma exposure. Given its superior lateral uniformity, lower leakage, and defect suppression, RP-ALD shows strong potential for improving DRAM capacitor performance and serves as a promising alternative to the currently adopted thermal ALD process. Full article
Show Figures

Graphical abstract

20 pages, 8233 KB  
Article
Transformation of TiN to TiNO Films via In-Situ Temperature-Dependent Oxygen Diffusion Process and Their Electrochemical Behavior
by Sheilah Cherono, Ikenna Chris-Okoro, Mengxin Liu, R. Soyoung Kim, Swapnil Nalawade, Wisdom Akande, Mihai Maria-Diana, Johannes Mahl, Christopher Hale, Junko Yano, Shyam Aravamudhan, Ethan Crumlin, Valentin Craciun and Dhananjay Kumar
Metals 2025, 15(5), 497; https://doi.org/10.3390/met15050497 - 29 Apr 2025
Cited by 2 | Viewed by 2067
Abstract
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A [...] Read more.
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A comprehensive structural investigation was conducted by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Non-Rutherford backscattering spectrometry (N-RBS), and X-ray absorption spectroscopy (XAS), which facilitated a detailed analysis that determined the phase, composition, and crystallinity of the films. Structural control was achieved via temperature-dependent oxygen in-diffusion, nitrogen out-diffusion, and the nucleation growth process related to adatom mobility. The XPS analysis indicates that the TiNO films consist of heterogeneous mixtures of TiN, TiNO, and TiO2 phases with temperature-dependent relative abundances. The correlation between the structure and electrochemical behavior of the thin films was examined. The TiNO films with relatively higher N/O ratio, meaning less oxidized, were more electrochemically active than the films with lower N/O ratio, i.e., more oxidized films. Films with higher oxidation levels demonstrated enhanced crystallinity and greater stability under electrochemical polarization. These findings demonstrate the importance of substrate temperature control in tailoring the properties of TiNO film, which is a fundamental part of designing and optimizing an efficient electrode material. Full article
Show Figures

Figure 1

Back to TopTop