Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALD | Atomic layer deposition |
CBO | Conduction band offset |
CPALD | Co-plasma atomic layer deposition |
DP | Direct plasma |
FE-TEM | Field emission transmission electron microscopy |
FFT | Fast Fourier transform |
MFM | Metal–ferroelectric–metal |
PEALD | Plasma-enhanced atomic layer deposition |
RP | Remote plasma |
RPS | Remote plasma system |
RTA | Rapid thermal annealing |
TEC | Thermal expansion coefficient |
TEM | Transmission electron microscopy |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Cho, D.Y.; Jung, H.S.; Yu, I.H.; Yoon, J.H.; Kim, H.K.; Lee, S.Y.; Jeon, S.H.; Han, S.; Kim, J.H.; Park, T.J.; et al. Stabilization of Tetragonal HfO2 under Low Active Oxygen Source Environment in Atomic Layer Deposition. Chem. Mater. 2012, 24, 3534–3543. [Google Scholar] [CrossRef]
- Salahuddin, S.; Ni, K.; Datta, S. The Era of Hyper-Scaling in Electronics. Nat. Electron. 2018, 1, 442–450. [Google Scholar] [CrossRef]
- Borg, M.; Papadopoulos, C.; Yu, S.; Hur, J.; Luo, Y.; Shim, W.; Choe, G. Ferroelectric HfO2-Based Synaptic Devices: Recent Trends and Prospects. Semicond. Sci. Technol. 2021, 36, 104001. [Google Scholar] [CrossRef]
- Chen, G.H.; Chen, Y.R.; Zhao, Z.; Lee, J.Y.; Chen, Y.W.; Xing, Y.; Dobhal, R.; Liu, C.W. A Kinetic Pathway to Orthorhombic HfZrO. IEEE J. Electron Devices Soc. 2023, 11, 752–758. [Google Scholar] [CrossRef]
- Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient Ferroelectricity in Al-Doped HfO2 Thin Films. Adv. Funct. Mater. 2012, 22, 2412–2417. [Google Scholar] [CrossRef]
- Martin, D.; Müller, J.; Schenk, T.; Arruda, T.M.; Kumar, A.; Strelcov, E.; Yurchuk, E.; Müller, S.; Pohl, D.; Schröder, U.; et al. Ferroelectricity in Si-Doped HfO2 Revealed: A Binary Lead-Free Ferroelectric. Adv. Mater. 2014, 26, 8198–8202. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wang, Y.; Liang, X.; Qin, J.; Zhang, Y.; Yuan, X.; Wang, Z.; Peng, B.; Deng, L.; Liu, Q.; et al. HfO2-Based Highly Stable Radiation-Immune Ferroelectric Memory. IEEE Electron Device Lett. 2017, 38, 330–333. [Google Scholar] [CrossRef]
- Kobayashi, M.; Wu, J.; Sawabe, Y.; Takuya, S.; Hiramoto, T. Mesoscopic-Scale Grain Formation in HfO2-Based Ferroelectric Thin Films and Its Impact on Electrical Characteristics. Nano Converg. 2022, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Park, W.J.; Kim, H.J.; Lee, J.H.; Kim, J.H.; Uhm, S.H.; Kim, S.W.; Lee, H.C. Characterization of HZO Films Fabricated by Co-Plasma Atomic Layer Deposition for Ferroelectric Memory Applications. Nanomaterials 2024, 14, 1801. [Google Scholar] [CrossRef]
- Cao, R.; Wang, Y.; Zhao, S.; Yang, Y.; Zhao, X.; Wang, W.; Zhang, X.; Lv, H.; Liu, Q.; Liu, M. Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films. IEEE Electron Device Lett. 2018, 39, 1207–1210. [Google Scholar] [CrossRef]
- Kim, S.J.; Mohan, J.; Summerfelt, S.R.; Kim, J. Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. Jom 2019, 71, 246–255. [Google Scholar] [CrossRef]
- Wang, C.I.; Wang, C.Y.; Chang, T.J.; Jiang, Y.S.; Shyue, J.J.; Lin, H.C.; Chen, M.J. Atomic Layer Deposited TiN Capping Layer for Sub-10 nm Ferroelectric Hf0.5Zr0.5O2 with Large Remnant Polarization and Low Thermal Budget. Appl. Surf. Sci. 2021, 570, 151152. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wang, C.H.; Shih, H.Y.; Kuo, C.Y.; Wu, Y.H. Polarization and Reliability Enhancement for Ferroelectric Capacitors by Interface Engineering Through Crystalline TaN. IEEE Trans. Electron Devices 2024, 71, 3433–3438. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Li, Z.; Xu, K.; Liu, Y.; Meng, J.; Zhu, H.; Sun, Q.; Zhu, X.; Zhang, D.W.; et al. Excellent Reliability in Hf0.5Zr0.5O2based Ferroelectric Device with Oxygen-Doped ITO Electrodes. IEEE Electron Device Lett. 2024, 45, 2565–2568. [Google Scholar] [CrossRef]
- Hsiang, K.Y.; Liao, C.Y.; Lin, Y.Y.; Lou, Z.F.; Lin, C.Y.; Lee, J.Y.; Chang, F.S.; Li, Z.X.; Tseng, H.C.; Wang, C.C.; et al. Correlation between Access Polarization and High Endurance (~1012 cycling) of Ferroelectric and Anti-Ferroelectric HfZrO2. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. P91–P94. [Google Scholar] [CrossRef]
- Koroleva, A.A.; Chernikova, A.G.; Zarubin, S.S.; Korostylev, E.; Khakimov, R.R.; Zhuk, M.Y.; Markeev, A.M. Retention Improvement of HZO-Based Ferroelectric Capacitors with TiO2 Insets. ACS Omega 2022, 7, 47084–47095. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Do Kim, K.; Hyun, S.D.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Understanding the Formation of the Metastable Ferroelectric Phase in Hafnia-Zirconia Solid Solution Thin Films. Nanoscale 2018, 10, 716–725. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, M.H.; Kim, Y.J.; Lee, Y.H.; Moon, T.; Do Kim, K.; Hyun, S.D.; Hwang, C.S. A Study on the Wake-up Effect of Ferroelectric Hf0.5Zr0.5O2 Films by Pulse-Switching Measurement. Nanoscale 2016, 8, 1383–1389. [Google Scholar] [CrossRef]
- Kim, B.S.; Hyun, S.D.; Moon, T.; Do Kim, K.; Lee, Y.H.; Park, H.W.; Lee, Y.B.; Roh, J.; Kim, B.Y.; Kim, H.H.; et al. A Comparative Study on the Ferroelectric Performances in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films Using Tetrakis(Ethylmethylamino) and Tetrakis(Dimethylamino) Precursors. Nanoscale Res. Lett. 2020, 15, 72. [Google Scholar] [CrossRef]
- Choi, Y.; Han, C.; Shin, J.; Moon, S.; Min, J.; Park, H.; Eom, D.; Lee, J.; Shin, C. Impact of Chamber/Annealing Temperature on the Endurance Characteristic of Zr:HfO2 Ferroelectric Capacitor. Sensors 2022, 22, 4087. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, C.; Lin, B.; Yang, Z.; Chen, S.; Zhang, K.H.L.; Chen, Z. Leakage Mechanism in Ferroelectric Hf0.5Zr0.5O2 Epitaxial Thin Films. Appl. Mater. Today 2023, 32, 101804. [Google Scholar] [CrossRef]
- Yang, K.; Jeong, H.W.; Lee, J.; Cho, Y.H.; Park, J.Y.; Choi, H.; Kim, Y.Y.; Lee, Y.; Kim, Y.; Park, M.H. Texture Modulation of Ferroelectric Hf0.5Zr0.5O2 Thin Films by Engineering the Polymorphism and Texture of Tungsten Electrodes. J. Mater. 2025, 11, 101015. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, T.H.; Jeong, B.H.; Kim, K.N.; Yeom, G.Y. Properties of Tungsten Thin Film Deposited Using Inductively Coupled Plasma Assisted Sputtering for Next-Generation Interconnect Metal. Thin Solid Film. 2019, 674, 64–70. [Google Scholar] [CrossRef]
- Mannequin, C.; Gonon, P.; Vallée, C.; Latu-Romain, L.; Bsiesy, A.; Grampeix, H.; Salaün, A.; Jousseaume, V. Stress-Induced Leakage Current and Trap Generation in HfO2 Thin Films. J. Appl. Phys. 2012, 112, 074103. [Google Scholar] [CrossRef]
- Ranjan, A.; Xu, H.; Wang, C.; Molina, J.; Wu, X.; Zhang, H.; Sun, L.; Chu, J.; Pey, K.L. Probing Resistive Switching in HfO2/Al2O3 Bilayer Oxides Using in-Situ Transmission Electron Microscopy. Appl. Mater. Today 2023, 31, 101739. [Google Scholar] [CrossRef]
- Wang, X.; Wu, M.; Zhang, T.; Cui, B.; Li, Y.C.; Liu, J.; Wu, Y.; Wen, Y.; Ye, S.; Ren, P.; et al. Exploring tungsten-oxygen vacancy synergy: Impact on leakage characteristics in Hf0.5Zr0.5O2 ferroelectric thin films. Appl. Phys. Lett. 2024, 124, 232901. [Google Scholar] [CrossRef]
- Gaddam, V.; Das, D.; Jeon, S. Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors. IEEE Trans. Electron Devices 2020, 67, 745–750. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, Z.; Jiao, L.; Wang, X.; Kang, Y.; Wang, H.; Han, K.; Zheng, Z.; Gong, X. Al-Doped and Deposition Temperature-Engineered HfO2 Near Morphotropic Phase Boundary with Record Dielectric Permittivity (68). In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 13.4.1–13.4.4. [Google Scholar] [CrossRef]
- Kashir, A.; Hwang, H. Ferroelectric and Dielectric Properties of Hf0.5Zr0.5O2 Thin Film Near Morphotropic Phase Boundary. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2000819. [Google Scholar] [CrossRef]
- Hsain, H.A.; Lee, Y.; Parsons, G.; Jones, J.L. Compositional Dependence of Crystallization Temperatures and Phase Evolution in Hafnia-Zirconia (HfxZr1−x)O2thin Films. Appl. Phys. Lett. 2020, 116, 192901. [Google Scholar] [CrossRef]
- Yu, G.T.; Park, G.H.; Lee, E.B.; Park, M.H. Review of the Mechanism for Ferroelectric Phase Formation in Fluorite-Structure Oxide. New Phys. Sae Mulli 2021, 71, 890–900. [Google Scholar] [CrossRef]
- Hyuk Park, M.; Joon Kim, H.; Jin Kim, Y.; Lee, W.; Moon, T.; Seong Hwang, C. Evolution of Phases and Ferroelectric Properties of Thin Hf0.5Zr0.5O2 Films According to the Thickness and Annealing Temperature. Appl. Phys. Lett. 2013, 102, 242905. [Google Scholar] [CrossRef]
- Hwang, C.S. Prospective of Semiconductor Memory Devices: From Memory System to Materials. Adv. Electron. Mater. 2015, 1, 1400056. [Google Scholar] [CrossRef]
- Kashir, A.; Kim, H.; Oh, S.; Hwang, H. Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering. ACS Appl. Electron. Mater. 2021, 3, 629–638. [Google Scholar] [CrossRef]
- Park, M.H.; Schenk, T.; Fancher, C.M.; Grimley, E.D.; Zhou, C.; Richter, C.; Lebeau, J.M.; Jones, J.L.; Mikolajick, T.; Schroeder, U. A Comprehensive Study on the Structural Evolution of HfO2 Thin Films Doped with Various Dopants. J. Mater. Chem. C 2017, 5, 4677–4690. [Google Scholar] [CrossRef]
- Lin, Y.J.; Teng, C.Y.; Chang, S.J.; Liao, Y.F.; Hu, C.; Su, C.J.; Tseng, Y.C. Role of Electrode-Induced Oxygen Vacancies in Regulating Polarization Wake-up in Ferroelectric Capacitors. Appl. Surf. Sci. 2020, 528, 147014. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Wang, J.; Luo, C.; Li, M.; Shuai, W.; Tao, R.; Fan, Z.; Chen, D.; Zeng, M.; et al. Enhanced Ferroelectric Polarization with Less Wake-up Effect and Improved Endurance of Hf0.5Zr0.5O2 Thin Films by Implementing W Electrode. J. Mater. Sci. Technol. 2022, 104, 1–7. [Google Scholar] [CrossRef]
- Yang, K.; Kim, G.Y.; Ryu, J.J.; Lee, D.H.; Park, J.Y.; Kim, S.H.; Park, G.H.; Yu, G.T.; Kim, G.H.; Choi, S.Y.; et al. Wake-up-Mitigated Giant Ferroelectricity in Hf0.5Zr0.5O2 Thin Films through Oxygen-Providing, Surface-Oxidized W Electrode. Mater. Sci. Semicond. Process. 2023, 164, 107565. [Google Scholar] [CrossRef]
- Matveyev, Y.; Negrov, D.; Chernikova, A.; Lebedinskii, Y.; Kirtaev, R.; Zarubin, S.; Suvorova, E.; Gloskovskii, A.; Zenkevich, A. Effect of Polarization Reversal in Ferroelectric TiN/Hf0.5Zr0.5O2/TiN Devices on Electronic Conditions at Interfaces Studied in Operando by Hard X-Ray Photoemission Spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 43370–43376. [Google Scholar] [CrossRef]
- Mu, X.; Wu, Y.; Zeng, B.; Jiang, J.; Zhou, Y.; Yin, L.; Liao, M.; Yang, Q. Polarization Switching of HfO2 Ferroelectric in Bulk and Electrode/Ferroelectric/Electrode Heterostructure. npj Comput. Mater. 2025, 11, 126. [Google Scholar] [CrossRef]
- Ambriz-Vargas, F.; Kolhatkar, G.; Broyer, M.; Hadj-Youssef, A.; Nouar, R.; Sarkissian, A.; Thomas, R.; Gomez-Yáñez, C.; Gauthier, M.A.; Ruediger, A. A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction. ACS Appl. Mater. Interfaces 2017, 9, 13262–13268. [Google Scholar] [CrossRef]
- Major, G.H.; Fairley, N.; Sherwood, P.M.A.; Linford, M.R.; Terry, J.; Fernandez, V.; Artyushkova, K. Practical Guide for Curve Fitting in X-Ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 061203. [Google Scholar] [CrossRef]
- Pešić, M.; Fengler, F.P.G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E.D.; Sang, X.; LeBeau, J.M.; Slesazeck, S.; Schroeder, U.; et al. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors. Adv. Funct. Mater. 2016, 26, 4601–4612. [Google Scholar] [CrossRef]
- Lee, Y.; Goh, Y.; Hwang, J.; Das, D.; Jeon, S. The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia. IEEE Trans. Electron Devices 2021, 68, 523–528. [Google Scholar] [CrossRef]
- Goh, Y.; Cho, S.H.; Park, S.H.K.; Jeon, S. Oxygen Vacancy Control as a Strategy to Achieve Highly Reliable Hafnia Ferroelectrics Using Oxide Electrode. Nanoscale 2020, 12, 9024–9031. [Google Scholar] [CrossRef]
- Chiniwar, S.P.; Hsieh, Y.C.; Shih, C.H.; Teng, C.Y.; Yang, J.L.; Hu, C.; Lin, B.H.; Tang, M.T.; Tseng, Y.C. Ferroelectric Enhancement in a TiN/Hf1−XZrxO2/W Device with Controlled Oxidation of the Bottom Electrode. ACS Appl. Electron. Mater. 2024, 6, 1078–1086. [Google Scholar] [CrossRef]
- Kim, S.J.; Narayan, D.; Lee, J.G.; Mohan, J.; Lee, J.S.; Lee, J.; Kim, H.S.; Byun, Y.C.; Lucero, A.T.; Young, C.D.; et al. Large Ferroelectric Polarization of TiN/Hf0.5Zr0.5O2/TiN Capacitors Due to Stress-Induced Crystallization at Low Thermal Budget. Appl. Phys. Lett. 2017, 111, 242901. [Google Scholar] [CrossRef]
- Dai, S.; Yang, C.; Wang, Y.; Jiang, Y.; Zeng, L. In Situ TEM Studies of Tunnel-Structured Materials for Alkali Metal-Ion Batteries. Adv. Sci. 2025, 12, 2500513. [Google Scholar] [CrossRef]
- Lederer, M.; Olivo, R.; Lehninger, D.; Abdulazhanov, S.; Kämpfe, T.; Kirbach, S.; Mart, C.; Seidel, K.; Eng, L.M. On the Origin of Wake-Up and Antiferroelectric-Like Behavior in Ferroelectric Hafnium Oxide. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2100086. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Xue, Z.; Dong, Y.; Chen, D.; Zhang, J.; Liu, J.; Si, M.; Luo, C.; Li, W.; et al. Hidden Structural Phase Transition Assisted Ferroelectric Domain Orientation Engineering in Hf0.5Zr0.5O2 Films. Nat. Commun. 2025, 16, 4232. [Google Scholar] [CrossRef]
- Cho, H.W.; Pujar, P.; Choi, M.; Kang, S.; Hong, S.; Park, J.; Baek, S.; Kim, Y.; Lee, J.; Kim, S. Direct Growth of Orthorhombic Hf0.5Zr0.5O2 Thin Films for Hysteresis-Free MoS2 Negative Capacitance Field-Effect Transistors. npj 2D Mater. Appl. 2021, 5, 46. [Google Scholar] [CrossRef]
- Cao, R.; Liu, Q.; Liu, M.; Song, B.; Shang, D.; Yang, Y.; Luo, Q.; Wu, S.; Li, Y.; Wang, Y.; et al. Improvement of Endurance in HZO-Based Ferroelectric Capacitor Using Ru Electrode. IEEE Electron Device Lett. 2019, 40, 1744–1747. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, W.; Wang, F.; Ma, X.; Wang, Q.; Sang, P.; Zhan, X.; Li, Y.; Tai, L.; Luo, Q.; et al. Deep Insights into the Failure Mechanisms in Field-Cycled Ferroelectric Hf0.5Zr0.5O2 Thin Film: TDDB Characterizations and First-Principles Calculations. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 39.6.1–39.6.4. [Google Scholar] [CrossRef]
- Kim, H.; Kashir, A.; Oh, S.; Hwang, H. A New Approach to Achieving Strong Ferroelectric Properties in TiN/Hf0.5Zr0.5O2/TiN Devices. Nanotechnology 2020, 32, 055703. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Choi, J.-H.; Lee, S.-E.; Kim, S.-W.; Lee, H.-C. Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure. Materials 2025, 18, 3547. https://doi.org/10.3390/ma18153547
Kim H-J, Choi J-H, Lee S-E, Kim S-W, Lee H-C. Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure. Materials. 2025; 18(15):3547. https://doi.org/10.3390/ma18153547
Chicago/Turabian StyleKim, Ha-Jung, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim, and Hee-Chul Lee. 2025. "Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure" Materials 18, no. 15: 3547. https://doi.org/10.3390/ma18153547
APA StyleKim, H.-J., Choi, J.-H., Lee, S.-E., Kim, S.-W., & Lee, H.-C. (2025). Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure. Materials, 18(15), 3547. https://doi.org/10.3390/ma18153547