Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (930)

Search Parameters:
Keywords = Ti-42Nb alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

25 pages, 5020 KiB  
Review
Research Progress on Tribological Properties of High-Entropy Alloys
by Shuai Zhang, Zhaofeng Wang, Wenqing Lin and Haoyu Guo
Lubricants 2025, 13(8), 342; https://doi.org/10.3390/lubricants13080342 - 1 Aug 2025
Viewed by 181
Abstract
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail [...] Read more.
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail effect. This paper systematically reviews the research progress on the friction and wear properties of high-entropy alloys. The mechanisms of metal elements such as Al, Ti, Cu and Nb through solid solution strengthening, second-phase precipitation and oxide film formation were analyzed emphatically. And non-metallic elements such as C, Si, and B form and strengthen the regulation laws of their tribological properties. The influence of working conditions, such as high temperature, ocean, and hydrogen peroxide on the friction and wear behavior of high-entropy alloys by altering the wear mechanism, was discussed. The influence of test conditions such as load, sliding velocity and friction pair matching on its friction coefficient and wear rate was expounded. It is pointed out that high-entropy alloys have significant application potential in key friction components, providing reference and guidance for the further development and application of high-entropy alloys. Full article
(This article belongs to the Special Issue Tribological Performance of High-Entropy Alloys)
Show Figures

Figure 1

19 pages, 7948 KiB  
Article
Comparative Analysis of Fracture Mechanics Parameters for Wrought and SLM-Produced Ti-6Al-7Nb Alloy
by Ivan Gelo, Dražan Kozak, Nenad Gubeljak, Tomaž Vuherer, Pejo Konjatić and Marko Katinić
Appl. Sci. 2025, 15(15), 8308; https://doi.org/10.3390/app15158308 - 25 Jul 2025
Viewed by 177
Abstract
The research presented in this paper is based on the need for personalized medical implants, whose serial production is impossible, so the need for production process adjustments is inevitable. Conventional production technologies usually set geometrical limitations and generate a lot of waste material, [...] Read more.
The research presented in this paper is based on the need for personalized medical implants, whose serial production is impossible, so the need for production process adjustments is inevitable. Conventional production technologies usually set geometrical limitations and generate a lot of waste material, which leads to great expenses, especially when the material used for production is an expensive Ti alloy. Additive technologies offer the possibility to produce a product almost without waste material and geometrical limitations. Nevertheless, the methods developed for additive production using metal powder are not significantly used in biomedicine because there is insufficient data published regarding the properties of additively produced parts, especially from the fatigue and fracture standpoint. The aim of this research is the experimental determination of fracture mechanics properties of additively produced parts and their comparison with the properties of parts produced by conventional technologies. Drawing is the first production process in the comparison, and the second one is selective laser melting (SLM). The Ti-alloy Ti-6Al-7Nb, used for medical implants, was selected for this research. Experimental testing was performed in order to determine ΔKth fracture mechanics parameters and resistance curves according to ASTM E1820. Test specimen dimensioning and the experiments were carried out according to the respective standards. For the drawn test specimen, the value obtained was ΔKth = 3.84 MPam0.5, and the fracture toughness was Kc = 84 MPam0.5, while for SLM produced test specimens the values were ΔKth = 4.53 MPam0.5, and Kc = 21.9 MPam0.5. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 241
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

19 pages, 3800 KiB  
Article
Influence of Ni and Nb Addition in TiVCr-Based High Entropy Alloys for Room-Temperature Hydrogen Storage
by Srilakshmi Jeyaraman, Dmitri L. Danilov, Peter H. L. Notten, Udaya Bhaskar Reddy Ragula, Vaira Vignesh Ramalingam and Thirugnasambandam G. Manivasagam
Energies 2025, 18(15), 3920; https://doi.org/10.3390/en18153920 - 23 Jul 2025
Viewed by 282
Abstract
TiVCr-based alloys are well-explored body-centered cubic (BCC) materials for hydrogen storage applications that can potentially store higher amounts of hydrogen at moderate temperatures. The challenge remains in optimizing the alloy-hydrogen stability, and several transition elements have been found to support the reduction in [...] Read more.
TiVCr-based alloys are well-explored body-centered cubic (BCC) materials for hydrogen storage applications that can potentially store higher amounts of hydrogen at moderate temperatures. The challenge remains in optimizing the alloy-hydrogen stability, and several transition elements have been found to support the reduction in the hydride stability. In this study, Ni and Nb transition elements were incorporated into the TiVCr alloy system to thoroughly understand their influence on the (de)hydrogenation kinetics and thermodynamic properties. Three different compositions, (TiVCr)95Ni5, (TiVCr)90 Ni10, and (TiVCr)95Ni5Nb5, were prepared via arc melting. The as-prepared samples showed the formation of a dual-phase BCC solid solution and secondary phase precipitates. The samples were characterized using hydrogen sorption studies. Among the studied compositions, (TiVCr)90Ni10 exhibited the highest hydrogen absorption capacity of 3 wt%, whereas both (TiVCr)95Ni5 and (TiVCr)90Ni5Nb5 absorbed up to 2.5 wt% hydrogen. The kinetics of (de)hydrogenation were modeled using the JMAK and 3D Jander diffusion models. The kinetics results showed that the presence of Ni improved hydrogen adsorption at the interface level, whereas Nb substitution enhanced diffusion and hydrogen release at room temperature. Thus, the addition of Ni and Nb to Ti-V-Cr-based high-entropy alloys significantly improved the hydrogen absorption and desorption properties at room temperature for gas-phase hydrogen storage. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

14 pages, 10913 KiB  
Article
Lattice Distortion Effects on Mechanical Properties in Nb-Ti-V-Zr Refractory Medium-Entropy Alloys
by Xiaochang Xie, Ping Yang, Yuefei Jia and Yandong Jia
Materials 2025, 18(14), 3356; https://doi.org/10.3390/ma18143356 - 17 Jul 2025
Viewed by 243
Abstract
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)x [...] Read more.
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)xZr (x = 1, 2, 3, 4 and 5). Experimental results show that the Nb(TiV)xZr r alloys exhibit greater atomic size mismatches and increased lattice distortion compared to the Nb(Ti1.5V)xZr alloys, leading to higher yield strengths via enhanced solid-solution strengthening. However, excessive lattice distortion does not ensure an optimal strength–ductility balance, as the alloys with the highest distortion demonstrate limited plasticity. Thus, moderate reduction in lattice distortion proves beneficial in achieving an excellent compromise between strength and ductility. These findings offer valuable guidance for leveraging lattice distortion in the design of high-strength, high-ductility, body-centered cubic (BCC) MEAs for extreme environments. Full article
Show Figures

Graphical abstract

26 pages, 8642 KiB  
Article
Ultra-High Strength and Specific Strength in Ti61Al16Cr10Nb8V5 Multi-Principal Element Alloy: Quasi-Static and Dynamic Deformation and Fracture Mechanisms
by Yang-Yu He, Zhao-Hui Zhang, Yi-Fan Liu, Yi-Chen Cheng, Xiao-Tong Jia, Qiang Wang, Jin-Zhao Zhou and Xing-Wang Cheng
Materials 2025, 18(14), 3245; https://doi.org/10.3390/ma18143245 - 10 Jul 2025
Viewed by 363
Abstract
This study investigates the deformation and fracture mechanisms of a Ti61Al16Cr10Nb8V5 multi-principal element alloy (Ti61V5 alloy) under quasi-static and dynamic compression. The alloy comprises an equiaxed BCC matrix (~35 μm) with uniformly dispersed nano-sized [...] Read more.
This study investigates the deformation and fracture mechanisms of a Ti61Al16Cr10Nb8V5 multi-principal element alloy (Ti61V5 alloy) under quasi-static and dynamic compression. The alloy comprises an equiaxed BCC matrix (~35 μm) with uniformly dispersed nano-sized B2 precipitates and a ~3.5% HCP phase along grain boundaries, exhibiting a density of 4.82 g/cm3, an ultimate tensile strength of 1260 MPa, 12.8% elongation, and a specific strength of 262 MPa·cm3/g. The Ti61V5 alloy exhibits a pronounced strain-rate-strengthening effect, with a strain rate sensitivity coefficient (m) of ~0.0088 at 0.001–10/s. Deformation activates abundant {011} and {112} slip bands in the BCC matrix, whose interactions generate jogs, dislocation dipoles, and loops, evolving into high-density forest dislocations and promoting screw-dominated mixed dislocations. The B2 phase strengthens the alloy via dislocation shearing, forming dislocation arrays, while the HCP phase enhances strength through a dislocation bypass mechanism. At higher strain rates (960–5020/s), m increases to ~0.0985. Besides {011} and {112}, the BCC matrix activates high-index slip planes {123}. Intensified slip band interactions generate dense jogs and forest dislocations, while planar dislocations combined with edge dislocation climb enable obstacle bypassing, increasing the fraction of edge-dominated mixed dislocations. The Ti61V5 alloy shows low sensitivity to adiabatic shear localization. Under forced shear, plastic-flow shear bands form first, followed by recrystallized shear bands formed through a rotational dynamic recrystallization mechanism. Microcracks initiate throughout the shear bands; during inward propagation, they may terminate upon encountering matrix microvoids or deflect and continue when linking with internal microcracks. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Figure 1

13 pages, 3345 KiB  
Article
Grinding Deformation Behavior of a Lamellar γ-TiAl Alloy
by Jiale Qin, Mengxi Xu, Renci Liu, Yingying Shen, Zhiqiang Shan, Zuohai Zhu, Dong Liu, Yuyou Cui and Rui Yang
Materials 2025, 18(13), 3114; https://doi.org/10.3390/ma18133114 - 1 Jul 2025
Viewed by 311
Abstract
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy [...] Read more.
γ-TiAl alloys are susceptible to surface damage during grinding, deteriorating their mechanical properties during service. However, the underlying mechanism of surface microstructure deformation during grinding remains incompletely understood. This work systematically investigated the deformation behavior of surface lamellae in a Ti-45Al-2Nb-2Mn-1B (at.%) alloy during grinding. The surface lamellae exhibit bending after grinding, with the degree of bending angle φ depending on the orientation of the lamellae. The bending angle φ depends on both the angle between the lamellae interface normal and the grinding direction, and the angle between the lamellae interface normal and the grinding surface normal. The lamellar deformation depth h is primarily governed by the grinding depth. The surface of the sample after grinding can be divided into three distinct layers: a surface fine-equiaxed grain zone, a bending lamella zone, and a near-surface deformation zone. The deformation in the bending lamella zone primarily results from slip bands and stacking faults, whereas the near-surface deformation zone contains extensive dislocation tangles. The results offer fundamental insights into the deformation mechanism of surface lamellar colonies during grinding and provide theoretical guidance for the machining of γ-TiAl alloy components. Full article
(This article belongs to the Special Issue New Advances in High-Temperature Structural Materials)
Show Figures

Figure 1

16 pages, 4887 KiB  
Article
Composition Design of a Novel High-Temperature Titanium Alloy Based on Data Augmentation Machine Learning
by Xinpeng Fu, Boya Li, Binguo Fu, Tianshun Dong and Jingkun Li
Materials 2025, 18(13), 3099; https://doi.org/10.3390/ma18133099 - 30 Jun 2025
Viewed by 411
Abstract
The application fields of high-temperature titanium alloys are mainly concentrated in the aerospace, defense and military industries, such as the high-temperature parts of rocket and aircraft engines, missile cases, tail rudders, etc., which can greatly reduce the weight of aircraft while resisting high [...] Read more.
The application fields of high-temperature titanium alloys are mainly concentrated in the aerospace, defense and military industries, such as the high-temperature parts of rocket and aircraft engines, missile cases, tail rudders, etc., which can greatly reduce the weight of aircraft while resisting high temperatures. However, traditional high-temperature titanium alloys containing multiple types of elements (more than six) have a complex impact on the solidification, deformation, and phase transformation processes of the alloys, which greatly increases the difficulty of casting and deformation manufacturing of aerospace and military components. Therefore, developing low-component high-temperature titanium alloys suitable for hot processing and forming is urgent. This study used data augmentation (Gaussian noise) to expedite the development of a novel quinary high-temperature titanium alloy. Utilizing data augmentation, the generalization abilities of four machine learning models (XGBoost, RF, AdaBoost, Lasso) were effectively improved, with the XGBoost model demonstrating superior prediction accuracy (with an R2 value of 0.94, an RMSE of 53.31, and an MAE of 42.93 in the test set). Based on this model, a novel Ti-7.2Al-1.8Mo-2.0Nb-0.4Si (wt.%) alloy was designed and experimentally validated. The UTS of the alloy at 600 °C was 629 MPa, closely aligning with the value (649 MPa) predicted by the model, with an error of 3.2%. Compared to as-cast Ti1100 and Ti6242S alloy (both containing six elements), the novel quinary alloy has considerable high-temperature (600 °C) mechanical properties and fewer components. The microstructure analysis revealed that the designed alloy was an α+β type alloy, featuring a typical Widmanstätten structure. The fracture form of the alloy was a mixture of brittle and ductile fracture at both room and high temperatures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

20 pages, 8782 KiB  
Article
Laser Powder Bed Fusion of a Ti-16Nb-Based Alloy: Processability, Microstructure, and Mechanical Properties
by Azim Gökçe, Vamsi Krishna Balla, Subrata Deb Nath, Arulselvan Arumugham Akilan and Sundar V. Atre
Metals 2025, 15(7), 728; https://doi.org/10.3390/met15070728 - 29 Jun 2025
Viewed by 281
Abstract
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium [...] Read more.
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium alloys with lower elastic modulus are under development. In this study, Ti-based multi-element alloy with 16 wt.% Nb samples were fabricated using laser powder bed fusion (L-PBF) from a premixed powder blend of Ti6Al4V and Nb-Hf-Ti. Processing high-melting Nb-based alloys via L-PBF poses challenges, which were mitigated through optimized parameters, including a maximum laser power of 100 W. Eleven parameter sets were employed to evaluate printability, microstructure, and mechanical properties. Microstructural analysis revealed Widmanstätten structures composed of α and β phases, along with isolated spherical pores. Reduced hatch spacing and slower laser speed led to increased hardness. The highest hardness (~43 HRC) was observed at the highest energy density (266 J/mm3), while the lowest (~28 HRC) corresponded to 44 J/mm3. Elastic modulus values ranged from 30 to 35 GPa, closely matching that of bone. These results demonstrate the potential of the developed Ti-based alloy containing 16 wt.% Nb as a promising candidate for load-bearing biomedical implants. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

16 pages, 18636 KiB  
Article
Irradiation Performance of a Multiphase MoNbTiVZr Refractory High-Entropy Alloy: Role of Zr-Rich Phase Precipitation
by Liqiu Yong, Yilong Zhong, Hongyang Xin, An Li, Dongsheng Xie, Lu Wu and Jijun Yang
Metals 2025, 15(7), 720; https://doi.org/10.3390/met15070720 - 27 Jun 2025
Viewed by 323
Abstract
Body-centered cubic (BCC) refractory high-entropy alloys (RHEAs) demonstrate significant potential as nuclear structural materials due to their exceptional mechanical properties and radiation tolerance. While Zr-containing RHEAs often develop multiphase structures through Zr-rich phase precipitation to enhance high-temperature mechanical performance, their irradiation response mechanisms [...] Read more.
Body-centered cubic (BCC) refractory high-entropy alloys (RHEAs) demonstrate significant potential as nuclear structural materials due to their exceptional mechanical properties and radiation tolerance. While Zr-containing RHEAs often develop multiphase structures through Zr-rich phase precipitation to enhance high-temperature mechanical performance, their irradiation response mechanisms remain poorly understood. This study investigated the microstructure evolution and radiation damage behavior in equiatomic MoNbTiVZr RHEA under Au-ion irradiation at fluences of 2 × 1015, 4 × 1015, and 1 × 1016 ions/cm2. Microstructural characterization revealed that the annealed alloy primarily consisted of near-equiatomic BCC1 phase, Zr-rich BCC2 phase, (Mo,V)Zr Laves phase, and ordered Zr2C phase. Post-irradiation analysis showed distinct defect evolution patterns: the BCC1 phase developed fine dislocation loops, while the Zr-rich BCC2 and Zr2C phases exhibited dislocation clusters and dense dislocation networks, respectively. BCC1 phase exhibited the most pronounced irradiation hardening corresponding to its fine, dispersed dislocation loop characteristics. Phase separation induced by Zr precipitation reduced chemical complexity, accelerating irradiation defect evolution. These findings demonstrated that Zr-rich phase precipitation detrimentally impacted the radiation resistance of BCC-structured RHEAs, suggesting that single-phase stability should be prioritized in nuclear material design. Full article
Show Figures

Figure 1

18 pages, 561 KiB  
Article
A New Insight into the Electronic Structure Property Relationships in Glassy Ti-Zr-Nb-(Cu,Ni,Co) Alloys
by Marko Kuveždić, Mario Basletić, Emil Tafra, Krešo Zadro, Ramir Ristić, Damir Starešinić, Ignacio Alejandro Figueroa and Emil Babić
Metals 2025, 15(7), 719; https://doi.org/10.3390/met15070719 - 27 Jun 2025
Viewed by 428
Abstract
In this work we revisit a vast amount of existing data on physical properties of Ti-Zr-Nb-(Cu,Ni,Co) glassy alloys over a broad range of concentrations (from the high-entropy range to that of conventional Cu-, Ni- or Co-rich alloys). By using our new approach based [...] Read more.
In this work we revisit a vast amount of existing data on physical properties of Ti-Zr-Nb-(Cu,Ni,Co) glassy alloys over a broad range of concentrations (from the high-entropy range to that of conventional Cu-, Ni- or Co-rich alloys). By using our new approach based on the total content of late transition metal(s), we derive a number of physical parameters of a hypothetical amorphous TiZrNb alloy: lattice parameter a=(3.42±0.02) Å, Sommerfeld coefficient γ=6.2mJ/molK2, density of states at N(EF)=2.6(ateV)1, magnetic susceptibility (2.00±0.05)mJ/T2mol, superconducting transition temperature Tc=(8±1)K, upper critical field μ0Hc2(0)=(20±5)T, and coherence length ξ(0)=(40±3)Å. We show that our extrapolated results for the amorphous TiZrNb alloy would be similar to that of crystalline TiZrNb, except for superconducting properties (most notably the upper critical field Hc2(0)), which might be attributed to the strong topological disorder of the amorphous phase. Also, we offer an explanation of the discrepancy between the variations in Tc with the average number of valency electrons in neighboring alloys of 4d transition metals and some high-entropy alloys. Overall, we find that our novel method of systematic analysis of results is rather general, as it can provide reliable estimates of the properties of any alloy which has not been prepared as yet. Full article
(This article belongs to the Special Issue Manufacture, Properties and Applications of Light Alloys)
Show Figures

Figure 1

18 pages, 9256 KiB  
Article
Effect of Rare Earth Element Ce on Nanoscale (Ti, Nb) C Precipitates and Mechanical Properties of High-Strength Low-Alloy Weathering Steel
by Yunlong Wang, Rui Zhu, Hairui Ma, Guohua Ding, Limeng Liang, Weiwei Sun and Yongxia Wang
Materials 2025, 18(13), 3033; https://doi.org/10.3390/ma18133033 - 26 Jun 2025
Viewed by 300
Abstract
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. [...] Read more.
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. The results demonstrate that the addition of Ce promotes coarsening of nanoscale precipitates, thereby diminishing their precipitation strengthening effect. At a 0.11% Ce content, an increase in inclusions was observed, leading to crack formation during hot deformation. However, Ce addition also refines inclusion size and modifies inclusion types, contributing to steel purification. Through austenite recrystallization zone rolling combined with an isothermal process, a high-strength ferritic weathering steel with nanoscale precipitates was fabricated, exhibiting a yield strength of 635 MPa, tensile strength of 750 MPa, and elongation of 21.2%. Precipitation strengthening plays a critical role in enhancing the room-temperature strength of ferritic steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 4204 KiB  
Article
Electrochemical Evaluation of New Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride: Implications for Dental Implant Applications
by Hanine Slama, Qanita Tayyaba, Mariya Kadiri and Hendra Hermawan
Materials 2025, 18(13), 2973; https://doi.org/10.3390/ma18132973 - 23 Jun 2025
Viewed by 466
Abstract
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be [...] Read more.
Based on their high mechanical strength, Ti-based high-entropy alloys (HEAs) are of great potential as materials for high-performance reduced-diameter dental implants. Despite previous studies demonstrating their corrosion resistance in various simulated body fluids, their resistance in simulated buccal conditions has yet to be confirmed. In this work, the corrosion behavior of two Ti-based HEAs, TiZrHfNb, and TiZrHfNbTa was evaluated in comparison to CP-Ti and Ti-6Al-4V in artificial saliva (AS) solution and in AS with fluoride ion content (ASF). A set of electrochemical tests (electrochemical impedance spectroscopy, cyclic polarization, and Mott–Schottky) was employed and complemented with surface characterization analyses (scanning electron microscopy and atomic force microscopy) to determine dissolution and passivation mechanisms of the alloys. In general, the HEAs exhibited a far superior corrosion resistance compared to CP-Ti and Ti-6Al-4V alloys in both solutions. In the AS solution, the TiZrHfNb exhibited the highest polarization resistance and pitting potential, indicating a high corrosion resistance due to the formation of a robust passive layer. Whilst in the ASF solution, the TiZrHfNbTa showed a greater corrosion resistance due to the synergistic effect of Nb and Ta oxides that enhanced passive film stability. This finding emphasizes the role of Ta in elevating the corrosion resistance of Ti-based HEAs in the presence of fluoride ions and confirms the importance of chemical composition optimization in the development of next-generation dental alloys. Based on its electrochemical corrosion behavior, TiZrHfNbTa HEAs are promising new materials for high-performance reduced-diameter dental implants. Full article
(This article belongs to the Special Issue Novel Dental Materials Design and Application)
Show Figures

Figure 1

14 pages, 3487 KiB  
Article
Additive Manufacturing of Ceramic-Reinforced Inconel 718: Microstructure and Mechanical Characterization
by Yang Qi, Bo Hu, Lei Wang, Yanwei Ma, Mei Yang, Yihang Ma and Pengfei Li
Crystals 2025, 15(7), 585; https://doi.org/10.3390/cryst15070585 - 20 Jun 2025
Viewed by 404
Abstract
This study investigates the microstructure and mechanical properties of Inconel 718, a nickel-based alloy, reinforced with ceramic phases via additive manufacturing. Two reinforcement strategies were explored: in situ formation of ceramic phases through titanium powder addition, and direct incorporation of Cr2O [...] Read more.
This study investigates the microstructure and mechanical properties of Inconel 718, a nickel-based alloy, reinforced with ceramic phases via additive manufacturing. Two reinforcement strategies were explored: in situ formation of ceramic phases through titanium powder addition, and direct incorporation of Cr2O3 and TiO2 ceramic particles. Both approaches significantly modified the alloy’s microstructure and elemental distribution. The in situ formation method produced leaf-like Ti-rich precipitates (up to 70.13 wt%), while direct ceramic addition suppressed the preferred orientation of the Laves phase and promoted the formation of NbC precipitates. Microhardness increased by 19.4% with titanium addition, compared to a modest 1.3% improvement with direct ceramic addition. Tensile testing revealed that titanium powder enhanced ultimate tensile strength but reduced elongation, whereas direct ceramic addition led to decreases in both strength and ductility. Wear resistance evaluation showed that direct ceramic addition yielded superior performance, evidenced by the lowest friction coefficient (0.514) and smallest wear volume (16,290,782 μm3). These findings demonstrate the effectiveness of ceramic reinforcement strategies in optimizing the mechanical and tribological behavior of additively manufactured Inconel 718, and offer valuable guidance for the development of wear-resistant components such as those used in hydraulic support systems. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

Back to TopTop