Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = The Pamirs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5932 KiB  
Article
Surface Elevation Dynamics of Lake Karakul from 1991 to 2020 Inversed by ICESat, CryoSat-2 and ERS-1/2
by Zihui Zhang, Ping Ma, Xiaofei Wang, Jiayu Hou, Qinqin Zhang, Yuchuan Guo, Zhonglin Xu, Yao Wang and Kayumov Abdulhamid
Remote Sens. 2025, 17(16), 2816; https://doi.org/10.3390/rs17162816 - 14 Aug 2025
Viewed by 151
Abstract
High-altitude lakes are sensitive indicators of climate change, reflecting the hydrological impacts of global warming in alpine regions. This study investigates the long-term dynamics of the water level and surface area of Lake Karakul on the eastern Pamir Plateau from 1991 to 2020 [...] Read more.
High-altitude lakes are sensitive indicators of climate change, reflecting the hydrological impacts of global warming in alpine regions. This study investigates the long-term dynamics of the water level and surface area of Lake Karakul on the eastern Pamir Plateau from 1991 to 2020 using integrated satellite altimetry data from ERS-1/2, ICESat, and CryoSat-2. A multi-source fusion approach was applied to generate a continuous time series, overcoming the temporal limitations of individual missions. The results show a significant upward trend in both water level and area, with an average lake level rise of 8 cm per year and a surface area increase of approximately 13.2 km2 per decade. The two variables exhibit a strong positive correlation (r = 0.84), and the Mann–Kendall test confirms the significance of the trends at the 95% confidence level. The satellite-derived water levels show high reliability, with an RMSE of 0.15 m when compared to reference data. These changes are primarily attributed to increased glacial meltwater inflow, driven by regional warming and accelerated glacier retreat, with glacier area shrinking by over 10% from 1978 to 2001 in the eastern Pamir. This study highlights the value of integrating multi-sensor satellite data for monitoring inland waters and provides critical insights into the climatic drivers of hydrological change in high-altitude endorheic basins. Full article
Show Figures

Figure 1

24 pages, 3436 KiB  
Article
Peculiarities of 222Radon and 238Uranium Behavior in Mineral Waters of Highland Terrains
by George Chelnokov, Vasilii Lavrushin, Natalya Kharitonova, Andrey Pavlov and Farid Salikhov
Water 2025, 17(15), 2211; https://doi.org/10.3390/w17152211 - 24 Jul 2025
Viewed by 250
Abstract
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to [...] Read more.
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to assess the potential health risk associated with 238U and 222Rn. It was found that in mineral waters of the Pamir, the concentrations of 238U (0.004–13.3 µg/L) and activity of 222Rn (8–130 Bq/L) are higher than in the Elbrus area: 0.04–3.74 µg/L and 6–33 Bq/L, respectively. Results indicate that uranium mobility in water is strongly influenced by T, pH, and Eh, but is less affected by the age of host rocks or springs′ elevation, whereas radon activity in waters depends on the age of rocks, spring elevation, 238U content, and values of δ18O and δ2H in water. This study reveals fundamental geological distinctions governing uranium and radon sources in the mineral waters of these regions. Isotopic evidence (222Rn and 3He/4He) demonstrates crustal radon sources prevail in Pamir, whereas the Elbrus system suggests mantle-derived components. The U concentrations do not exceed 30 µg/L, and most water samples (94%) showed 222Rn activities below 100 Bq/L, complying with the drinking water exposure limits recommended by the World Health Organization and European Union Directive. However, in intermountain depressions of the Pamirs, at low absolute elevations (~2300 m), radon concentrations in water can increase significantly, which requires special attention and study. Full article
Show Figures

Figure 1

14 pages, 7931 KiB  
Article
Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau
by Dai-Ping Zhang, Wen-Bo Gu, Ali Esamdin, Chun-Hai Bai, Hu-Biao Niu, Li-Yong Liu and Ji-Cheng Zhang
Atmosphere 2025, 16(8), 897; https://doi.org/10.3390/atmos16080897 - 23 Jul 2025
Viewed by 246
Abstract
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study [...] Read more.
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study the characteristics of the surface temperature inversion and its effect on astronomical seeing at the site. The results show the following: The temperature inversion at the Muztagh-Ata site is highly pronounced at night; it is typically distributed below a height of about 18 m; it weakens and disappears gradually after sunrise, while it forms gradually after sunset and remains stable during the night; and it is weaker in spring and summer but stronger in autumn and winter. Correlation studies with meteorological parameters show the following: increases in both cloud coverage and humidity weaken temperature inversion; the distribution of inversion with wind speed exhibits a bimodal distribution; southwesterly winds prevail at a frequency of 73.76% and are typically accompanied by strong temperature inversions. Finally, by statistical patterns, we found that strong temperature inversion at the Muztagh-Ata site usually bring better seeing by suppressing atmospheric optical turbulence. Full article
Show Figures

Figure 1

18 pages, 11737 KiB  
Article
MoHiPr-TB: A Monthly Gridded Multi-Source Merged Precipitation Dataset for the Tarim Basin Based on Machine Learning
by Ping Chen, Junqiang Yao, Jing Chen, Mengying Yao, Liyun Ma, Weiyi Mao and Bo Sun
Remote Sens. 2025, 17(14), 2483; https://doi.org/10.3390/rs17142483 - 17 Jul 2025
Viewed by 280
Abstract
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a [...] Read more.
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a feedforward neural network (FNN). FNN, which was found to be superior to the other models, was used to integrate eight precipitation datasets spanning from 1990 to 2022 across the Tarim Basin, resulting in a new monthly high-resolution (0.1°) precipitation dataset named MoHiPr-TB. This dataset was subsequently bias-corrected by the China Land Data Assimilation System version 2.0 (CLDAS2.0). Validation results indicate that the corrected MoHiPr-TB not only accurately reflects the spatial distribution of precipitation but also effectively simulates its intensity and interannual and seasonal variations. Moreover, MoHiPr-TB is capable of detecting the precipitation–elevation relationship in the Pamir Plateau, where precipitation initially increases and then decreases with elevation, as well as the synchronous variation of precipitation and elevation in the Tianshan region. Collectively, this study delivers a high-accuracy precipitation dataset for the Tarim Basin, which is anticipated to have extensive applications in meteorological, hydrological, and ecological research. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

17 pages, 9983 KiB  
Article
Integrated Multi-Omics of the Longissimus Dorsal Muscle Transcriptomics and Metabolomics Reveals Intramuscular Fat Accumulation Mechanism with Diet Energy Differences in Yaks
by Jingying Deng, Pengjia Bao, Ning Li, Siyuan Kong, Tong Wang, Minghao Zhang, Qinran Yu, Xinyu Cao, Jianlei Jia and Ping Yan
Biomolecules 2025, 15(7), 1025; https://doi.org/10.3390/biom15071025 - 16 Jul 2025
Viewed by 325
Abstract
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition [...] Read more.
IMF (intramuscular fat, IMF), as a key index for evaluating meat quality traits (shear force and cooking loss, etc.), and its deposition process are jointly regulated by nutritional and genetic factors. In this study, we analyzed the molecular regulation mechanism of IMF deposition in the LD (longissimus dorsal muscle, LD) by dietary energy level in Pamir yaks. Meat quality assessment showed that the meat quality of the High-energy diet group (1.53 MJ/Kg, G) and the Medium-energy diet group (1.38 MJ/Kg, Z) were significantly improved compared with that of the Low-energy diet group (0.75 MJ/Kg, C), in which IMF content in the LD of yaks in G group was significantly higher (p < 0.05) compared with Z and C groups. Further analysis by combined transcriptomics and lipid metabolomics revealed that the differences in IMF deposition mainly originated from the metabolism of lipids, such as TG (triglycerides, TG), PS (phosphatidylserine, PS), and LPC (lysophosphatidylcholine, LPC), and were influenced by SFRP4, FABP4, GADD45A, PDGFRA, RBP4, and DGAT2 genes, further confirming the importance of lipid–gene interactions in IMF deposition. This study reveals the energy-dependent epigenetic regulatory mechanism of IMF deposition in plateau ruminants, which provides molecular targets for optimizing yak nutritional strategies and quality meat production, while having important theoretical and practical value for the sustainable development of livestock husbandry on the Tibetan Plateau. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 453
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

24 pages, 11020 KiB  
Article
Monitoring and Assessment of Slope Hazards Susceptibility Around Sarez Lake in the Pamir by Integrating Small Baseline Subset InSAR with an Improved SVM Algorithm
by Yang Yu, Changming Zhu, Majid Gulayozov, Junli Li, Bingqian Chen, Qian Shen, Hao Zhou, Wen Xiao, Jafar Niyazov and Aminjon Gulakhmadov
Remote Sens. 2025, 17(13), 2300; https://doi.org/10.3390/rs17132300 - 4 Jul 2025
Viewed by 443
Abstract
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and [...] Read more.
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and practical value. In this study, we processed 220 Sentinel-1A SAR images acquired between 12 March 2017 and 2 August 2024, using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to extract time-series deformation data with millimeter-level precision. These deformation measurements were combined with key environmental factors to construct a susceptibility evaluation model based on the Information Value and Support Vector Machine (IV-SVM) methods. The results revealed a distinct spatial deformation pattern, characterized by greater activity in the western region than in the east. The maximum deformation rate along the shoreline increased from 280 mm/yr to 480 mm/yr, with a marked acceleration observed between 2022 and 2023. Geohazard susceptibility in the Sarez Lake area exhibits a stepped gradient: the proportion of area classified as extremely high susceptibility is 15.26%, decreasing to 29.05% for extremely low susceptibility; meanwhile, the density of recorded hazard sites declines from 0.1798 to 0.0050 events per km2. The spatial configuration is characterized by high susceptibility on both flanks, a central low, and convergence of hazardous zones at the front and distal ends with a central expansion. These findings suggest that mitigation efforts should prioritize the detailed monitoring and remediation of steep lakeside slopes and fault-associated fracture zones. This study provides a robust scientific and technical foundation for the emergency warning and disaster management of high-altitude barrier lakes, which is applicable even in data-limited contexts. Full article
Show Figures

Figure 1

26 pages, 10731 KiB  
Article
Lactobacillus Supplementation Modulates Rumen Microbiota and Metabolism in Yaks Under Fattening Feeding Conditions: A Comprehensive Multi-Omics Analysis
by Jianlei Jia, Pengjia Bao, Ning Li, Siyuan Kong, Min Chu, Qian Chen and Ping Yan
Animals 2025, 15(12), 1681; https://doi.org/10.3390/ani15121681 - 6 Jun 2025
Viewed by 494
Abstract
The rumen is a critical organ that facilitates nutrient digestion in ruminant animals. However, the biological mechanisms by which rumen microbiota and its metabolites enable Lactobacillus to modulate rumen structure and maintain functional homeostasis under fattening feeding conditions remain poorly understood. In this [...] Read more.
The rumen is a critical organ that facilitates nutrient digestion in ruminant animals. However, the biological mechanisms by which rumen microbiota and its metabolites enable Lactobacillus to modulate rumen structure and maintain functional homeostasis under fattening feeding conditions remain poorly understood. In this study, 80 male Pamir yaks were selected, and a 170-day data collection phase was implemented. Correlation phenotypic data and multi-omics analyses (rumen microbial sequencing and rumen epithelial metabolomics) were conducted to investigate the regulatory effects of Lactobacillus supplementation on rumen microbiota and metabolic processes in a concentrate-based rearing yak model. The results demonstrated that feeding a high-energy diet may impair yak ruminal histomorphology, microbiota composition, and function while negatively modulating rumen microbiota–metabolic profiles associated with specific ruminal microbial communities and functions. Lactobacillus intervention treatment optimized the yak ruminal microbiome composition (mucous layer maturation was promoted, Prevotella and Ruminococcus abundance were reduced, and Fibrobacter and Muribaculaceae abundance were increased), thereby altering metabolite concentrations involved in various metabolic pathways under a high-energy feeding pattern (fatty acid metabolism pathways were upregulated). These alterations elucidated the beneficial impacts of the Lactobacillus supplementation strategy on yak ruminal health without compromising the high-energy intensive rearing pattern. Furthermore, the regulated ruminal microbiome metabolites may serve as potential biomarkers for future investigations into the functional impacts of Lactobacillus intervention treatment on healthy feeding strategies for yaks. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

17 pages, 6362 KiB  
Article
Glacier and Snow Cover Dynamics and Their Affecting Factors on the Pamir Plateau Section of the China–Pakistan Economic Corridor
by Yonglong Han, Yonghui Wang, Xiaofei Ma and Yanjun Shang
Land 2025, 14(4), 880; https://doi.org/10.3390/land14040880 - 16 Apr 2025
Viewed by 643
Abstract
The China–Pakistan economic corridor (CPEC) traverses the ecologically fragile and geologically hazardous Pamir plateau (PP), where glacier dynamics are critical for water resources and ecological stability. This study analyzes glacier changes in the PP segment of CPEC from 2000 to 2022 using Google [...] Read more.
The China–Pakistan economic corridor (CPEC) traverses the ecologically fragile and geologically hazardous Pamir plateau (PP), where glacier dynamics are critical for water resources and ecological stability. This study analyzes glacier changes in the PP segment of CPEC from 2000 to 2022 using Google Earth engine (GEE) and an improved glacier and snow cover extraction method. Results show that before CPEC’s initiation (2000–2014), glacier area fluctuated with an annual increase of 422 km2, peaking in 2010. After 2015, glacier area declined continuously at 1000 km2 per year, reaching a minimum in 2022. Snow cover also declined, especially post-2015. Glacier retreat was most severe in low-altitude regions, particularly in the eastern and southern PP, while higher altitudes (5000–7000 m) exhibited slower retreat. Climatic analysis reveals a strengthening negative correlation between temperature, evapotranspiration, and glacier area, indicating accelerated retreat due to global warming. These findings provide scientific support for ecological protection, water resource management, and geological hazard mitigation along CPEC. Full article
Show Figures

Figure 1

20 pages, 10146 KiB  
Review
Earthquake Risk Severity and Urgent Need for Disaster Management in Afghanistan
by Noor Ahmad Akhundzadah
GeoHazards 2025, 6(1), 9; https://doi.org/10.3390/geohazards6010009 - 19 Feb 2025
Viewed by 2243
Abstract
Afghanistan is located on the Eurasian tectonic plate’s edge, a highly seismically active region. It is bordered by the northern boundary of the Indian plate and influenced by the collisional Arabian plate to the south. The Hindu Kush and Pamir Mountains in Afghanistan [...] Read more.
Afghanistan is located on the Eurasian tectonic plate’s edge, a highly seismically active region. It is bordered by the northern boundary of the Indian plate and influenced by the collisional Arabian plate to the south. The Hindu Kush and Pamir Mountains in Afghanistan are part of the western extension of the Himalayan orogeny and have been uplifted and sheared by the convergence of the Indian and Eurasian plates. These tectonic activities have generated numerous active deep faults across the Hindu Kush–Himalayan region, many of which intersect Afghanistan, resulting in frequent high-magnitude earthquakes. This tectonic interaction produces ground shaking of varying intensity, from high to moderate and low, with the epicenters often located in the northeast and extending southwest across the country. This study maps Afghanistan’s tectonic structures, identifying the most active geological faults and regions with heightened seismicity. Historical earthquake data were reviewed, and recent destructive events were incorporated into the national earthquake dataset to improve disaster management strategies. Additionally, the study addresses earthquake hazards related to building and infrastructure design, offering potential solutions and directions to mitigate risks to life and property. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity—2nd Edition)
Show Figures

Figure 1

22 pages, 17353 KiB  
Article
Crustal Structure of Northwestern Iran on the Basis of Regional Seismic Tomography Data
by Amir Talebi, Irina Medved and Ivan Koulakov
Geosciences 2025, 15(2), 55; https://doi.org/10.3390/geosciences15020055 - 7 Feb 2025
Cited by 1 | Viewed by 1355
Abstract
This study presents a 3D seismic velocity model of the crust beneath northwestern Iran. The data include arrival times of 76,589 P-waves and 10,796 S-waves from 7245 events recorded by 233 stations. The seismic velocity model presented in this research provides a detailed [...] Read more.
This study presents a 3D seismic velocity model of the crust beneath northwestern Iran. The data include arrival times of 76,589 P-waves and 10,796 S-waves from 7245 events recorded by 233 stations. The seismic velocity model presented in this research provides a detailed understanding of the crustal structure and tectonic processes shaping northwestern Iran. The interplay between volcanism, fault activity and mantle dynamics has produced a complex velocity structure. The findings in the region offer new insights into the geodynamic evolution of this tectonically active area. Understanding these features is crucial for assessing the region’s seismic hazard and geothermal potential, particularly in light of its active tectonic faults and volcanic systems. Moreover, the crust of northwestern Iran represents a two-layered structure: a high P-velocity upper crust and low-velocity lower crust. The authors documented a similar structure on the basis of tomographic data of different collision regions, such as Eastern Anatolia, Tien Shan and Pamir–Hindu Kush. The structure concerned is supposed to be due to delamination processes in the upper mantle. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

25 pages, 27385 KiB  
Article
Response of Natural Forests and Grasslands in Xinjiang to Climate Change Based on Sun-Induced Chlorophyll Fluorescence
by Jinrun He, Jinglong Fan, Zhentao Lv and Shengyu Li
Remote Sens. 2025, 17(1), 152; https://doi.org/10.3390/rs17010152 - 4 Jan 2025
Cited by 1 | Viewed by 1201
Abstract
In arid regions, climatic fluctuations significantly affect vegetation structure and function. Sun-induced chlorophyll fluorescence (SIF) can quantify certain physiological parameters of vegetation but has limitations in characterizing responses to climate change. This study analyzed the spatiotemporal differences in response to climate change across [...] Read more.
In arid regions, climatic fluctuations significantly affect vegetation structure and function. Sun-induced chlorophyll fluorescence (SIF) can quantify certain physiological parameters of vegetation but has limitations in characterizing responses to climate change. This study analyzed the spatiotemporal differences in response to climate change across various ecological regions and vegetation types from 2000 to 2020 in Xinjiang. According to China’s ecological zoning, R1 (Altai Mountains-Western Junggar Mountains forest-steppe) and R5 (Pamir-Kunlun Mountains-Altyn Tagh high-altitude desert grasslands) represent two ecological extremes, while R2–R4 span desert and forest-steppe ecosystems. We employed the standardized precipitation evapotranspiration index (SPEI) at different timescales to represent drought intensity and frequency in conjunction with global OCO-2 SIF products (GOSIF) and the normalized difference vegetation index (NDVI) to assess vegetation growth conditions. The results show that (1) between 2000 and 2020, the overall drought severity in Xinjiang exhibited a slight deterioration, particularly in northern regions (R1 and R2), with a gradual transition from short-term to long-term drought conditions. The R4 and R5 ecological regions in southern Xinjiang also displayed a slight deterioration trend; however, R5 remained relatively stable on the SPEI24 timescale. (2) The NDVI and SIF values across Xinjiang exhibited an upward trend. However, in densely vegetated areas (R1–R3), both NDVI and SIF declined, with a more pronounced decrease in SIF observed in natural forests. (3) Vegetation in northern Xinjiang showed a significantly stronger response to climate change than that in southern Xinjiang, with physiological parameters (SIF) being more sensitive than structural parameters (NDVI). The R1, R2, and R3 ecological regions were primarily influenced by long-term climate change, whereas the R4 and R5 regions were more affected by short-term climate change. Natural grasslands showed a significantly stronger response than forests, particularly in areas with lower vegetation cover that are more structurally impacted. This study provides an important scientific basis for ecological management and climate adaptation in Xinjiang, emphasizing the need for differentiated strategies across ecological regions to support sustainable development. Full article
Show Figures

Figure 1

19 pages, 12502 KiB  
Article
Quantifying Spatiotemporal Changes in Supraglacial Debris Cover in Eastern Pamir from 1994 to 2024 Based on the Google Earth Engine
by Hehe Liu, Zhen Zhang, Shiyin Liu, Fuming Xie, Jing Ding, Guolong Li and Haoran Su
Remote Sens. 2025, 17(1), 144; https://doi.org/10.3390/rs17010144 - 3 Jan 2025
Cited by 3 | Viewed by 1110
Abstract
Supraglacial debris cover considerably influences sub-debris ablation patterns and the surface morphology of glaciers by modulating the land–atmosphere energy exchange. Understanding its spatial distribution and temporal variations is crucial for analyzing melting processes and managing downstream disaster mitigation efforts. In recent years, the [...] Read more.
Supraglacial debris cover considerably influences sub-debris ablation patterns and the surface morphology of glaciers by modulating the land–atmosphere energy exchange. Understanding its spatial distribution and temporal variations is crucial for analyzing melting processes and managing downstream disaster mitigation efforts. In recent years, the overall slightly positive mass balance or stable state of eastern Pamir glaciers has been referred to as the “Pamir-Karakoram anomaly”. It is important to note that spatial heterogeneity in glacier change has drawn widespread research attention. However, research on the spatiotemporal changes in the debris cover in this region is completely nonexistent, which has led to an inadequate understanding of debris-covered glacier variations. To address this research gap, this study employed Landsat remote sensing images within the Google Earth Engine platform, leveraging the Random Forest algorithm to classify the supraglacial debris cover. The classification algorithm integrates spectral features from Landsat images and derived indices (NDVI, NDSI, NDWI, and BAND RATIO), supplemented by auxiliary factors such as slope and aspect. By extracting the supraglacial debris cover from 1994 to 2024, this study systematically analyzed the spatiotemporal variations and investigated the underlying drivers of debris cover changes from the perspective of mass conservation. By 2024, the area of supraglacial debris in eastern Pamir reached 258.08 ± 20.65 km2, accounting for 18.5 ± 1.55% of the total glacier area. It was observed that the Kungey Mountain region demonstrated the largest debris cover rate. Between 1994 and 2024, while the total glacier area decreased by −2.57 ± 0.70%, the debris-covered areas expanded upward at a rate of +1.64 ± 0.10% yr−1. The expansion of debris cover is driven by several factors in the context of global warming. The rising temperature resulted in permafrost degradation, slope destabilization, and intensified weathering on supply slopes, thereby augmenting the debris supply. Additionally, the steep supply slope in the study area facilitates the rapid deposition of collapsed debris onto glacier surfaces, with frequent avalanche events accelerating the mobilization of rock fragments. Full article
(This article belongs to the Special Issue Earth Observation of Glacier and Snow Cover Mapping in Cold Regions)
Show Figures

Graphical abstract

19 pages, 32077 KiB  
Article
Present-Day Tectonic Deformation Characteristics of the Northeastern Pamir Margin Constrained by InSAR and GPS Observations
by Junjie Zhang, Xiaogang Song, Donglin Wu and Xinjian Shan
Remote Sens. 2024, 16(24), 4771; https://doi.org/10.3390/rs16244771 - 21 Dec 2024
Viewed by 1061
Abstract
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long [...] Read more.
The Pamir is located on the northwestern margin of the Tibetan Plateau, which is an area of intense continental deformation and part of the famous India–Himalaya collision zone. The dominant structural deformation in the eastern Pamir is characterized by a 250 km long east–west extensional fault system, known as the Kongur Shan extensional system (KSES), which has developed a series of faults with different orientations and characteristics, resulting in highly complex structural deformation and lacking sufficient geodetic constraints. We collected Sentinel-1 SAR data from December 2016 to March 2023, obtained high-resolution ascending and descending LOS velocities and 3D deformation fields, and combined them with GPS data to constrain the current motion characteristics of the northeastern Pamirs for the first time. Based on the two-dimensional screw dislocation model and using the Bayesian Markov chain Monte Carlo (MCMC) inversion method, the kinematic parameters of the fault were calculated, revealing the fault kinematic characteristics in this region. Our results demonstrate that the present-day deformation of the KSES is dominated by nearly E–W extension, with maximum extensional motion concentrated in its central segment, reaching peak extension rates of ~7.59 mm/yr corresponding to the Kongur Shan. The right-lateral Muji fault at the northern end exhibits equivalent rates of extensional motion with a relatively shallow locking depth. The strike-slip rate along the Muji fault gradually increases from west to east, ranging approximately between 4 and 6 mm/yr, significantly influenced by the eastern normal fault. The Tahman fault (TKF) at the southernmost end of the KSES shows an extension rate of ~1.5 mm/yr accompanied by minor strike-slip motion. The Kashi anticline is approaching stability, while the Mushi anticline along the eastern Pamir frontal thrust (PFT) remains active with continuous uplift at ~2 mm/yr, indicating that deformation along the Tarim Basin–Tian Shan boundary has propagated southward from the South Tian Shan thrust (STST). Overall, this study demonstrates the effectiveness of integrated InSAR and GPS data in constraining contemporary deformation patterns along the northeastern Pamir margin, contributing to our understanding of the region’s tectonic characteristics. Full article
Show Figures

Figure 1

13 pages, 9172 KiB  
Technical Note
Surge Mechanisms of Garmo Glacier: Integrating Multi-Source Data for Insights into Acceleration and Hydrological Control
by Kunpeng Wu, Jing Feng, Pingping Cheng, Tobias Bolch, Zongli Jiang, Shiyin Liu and Adnan Ahmad Tahir
Remote Sens. 2024, 16(24), 4619; https://doi.org/10.3390/rs16244619 - 10 Dec 2024
Cited by 1 | Viewed by 1094
Abstract
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that [...] Read more.
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that the glacier surged between 27 April and 30 September 2022, with peak speeds reaching 8.3 ± 0.03 m d−1. During April 2020 and September 2022, the receiving zone thickened by 37.9 ± 0.55 m, while the reservoir zone decreased by 35.2 ± 0.55 m on average. The velocity decomposition suggests that this meltwater gradually warmed the glacier bed, accelerating the glacier during the pre-surge phase. During the surge, substantial drainage events coincided with sharp deceleration, ultimately halting the surge and suggesting hydrological control. Extreme climate events may not immediately trigger glacial surges; they can substantially impact glacial surging processes over an extended period. Full article
Show Figures

Graphical abstract

Back to TopTop