Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau
Abstract
1. Introduction
2. Data Sources
2.1. Equipment Introduction
2.2. Data Processing
3. Result
3.1. Spatiotemporal Distribution
3.2. Temperature Inversion with Meteorology
3.3. Temperature Inversion with Seeing
3.4. Discussion with Related Research on Other Observatory Sites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyman, R.; Cherubini, T.; Businger, S. Forecasting seeing for the Maunakea Observatories. Mon. Not. R. Astron. Soc. 2020, 496, 4734–4748. [Google Scholar] [CrossRef]
- Otarola, A.; De Breuck, C.; Travouillon, T.; Matsushita, S.; Nyman, L.Å.; Wootten, A.; Radford, S.J.E.; Sarazin, M.; Kerber, F.; Pérez-Beaupuits, J.P. Precipitable Water Vapor, Temperature, and Wind Statistics At Sites Suitable for mm and Submm Wavelength Astronomy in Northern Chile. Publ. Astron. Soc. Pac. 2019, 131, 045001. [Google Scholar] [CrossRef]
- Ma, B.; Shang, Z.; Hu, Y.; Hu, K.; Wang, Y.; Yang, X.; Ashley, M.C.B.; Hickson, P.; Jiang, P. Night-time measurements of astronomical seeing at Dome A in Antarctica. Nature 2020, 583, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, H.; Zhang, L.; Duan, X.; Lu, X.; Liu, Y.; Li, X.; Sun, G.; Weng, N. Astronomical seeing and ground-level optical turbulence at Delingha observatory on the northern Tibetan Plateau. Mon. Not. R. Astron. Soc. 2023, 525, 3236–3247. [Google Scholar] [CrossRef]
- Roggemann, M.C.; Welsh, B.M.; Fugate, R.Q. Improving the resolution of ground-based telescopes. Rev. Mod. Phys. 1997, 69, 437–505. [Google Scholar] [CrossRef]
- Ji, H.; Li, J.; Dai, S.; Yu, H.; Zhang, S.; Chen, Y.; Pan, J.; Xu, Q.; Zhu, Y.; Hu, Z. A new spectrograph of bi-channel with ultrawide band and high flux for MOST (SCUTUM) telescope. In Ground-Based and Airborne Instrumentation for Astronomy X; Bryant, J.J., Motohara, K., Vernet, J.R.D., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2024; Volume 13096, pp. 562–576. [Google Scholar] [CrossRef]
- Rui, G.; Zheng, W.; He, Z.; Shu, Y.; Er, X.; Li, G.; Hu, B. Forecast of gravitationally lensed Type Ia supernovae time delay measurement by Muztage-Ata 1.93m Synergy Telescope. arXiv 2025, arXiv:2501.05303. [Google Scholar] [CrossRef]
- Xu, J.; Feng, G.J.; Pu, G.X.; Wang, L.T.; Cao, Z.H.; Ren, L.Q.; Zhang, X.; Ma, S.G.; Bai, C.H.; Esamdin, A.; et al. Site-testing at the Muztagh-ata Site V. Nighttime Cloud Amount during the Last Five Years. Res. Astron. Astrophys. 2023, 23, 045015. [Google Scholar] [CrossRef]
- Xu, J.; Esamdin, A.; Hao, J.X.; Bai, J.M.; Yang, J.; Zhou, X.; Yao, Y.Q.; Hou, J.L.; Pu, G.X.; Feng, G.J.; et al. Site testing at Muztagh-ata site II: Seeing statistics. Res. Astron. Astrophys. 2020, 20, 087. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Esamdin, A.; Niu, H.; Gao, J.; Zibibula, R.; Bai, C.; Zhang, X.; Feng, G.; Lin, L.; et al. Astronomical seeing with DIMM and wind-speed distributions with ERA5 data at the Muztagh-Ata site on the Pamir Plateau. Mon. Not. R. Astron. Soc. 2025, 539, 2077–2087. [Google Scholar] [CrossRef]
- R. M. Young Company. Model 81000 Ultrasonic Anemometer Technical Manual; R. M. Young Company: Traverse City, MI, USA; Available online: https://www.youngusa.com/wp-content/uploads/2008/01/81000-9028I29.pdf (accessed on 26 June 2025).
- R. M. Young Company. Model 41342 Platinum Temperature Probe Instruction Manual; R. M. Young Company: Traverse City, MI, USA; Available online: https://www.youngusa.com/wp-content/uploads/2008/01/41342-9028c29.pdf (accessed on 26 June 2025).
- R. M. Young Company. Model 61302 Barometric Pressure Sensor Technical Manual; R. M. Young Company: Traverse City, MI, USA; Available online: https://www.fondriest.com/pdf/rm_young_61302_manual.pdf (accessed on 26 June 2025).
- R. M. Young Company. Model 41382VC Relative Humidity/Temperature Probe Instruction Manual; R. M. Young Company: Traverse City, MI, USA; Available online: https://www.youngusa.com/wp-content/uploads/2008/01/41382VC-9028F29.pdf (accessed on 26 June 2025).
- Pietroni, I.; Argentini, S.; Petenko, I. One Year of Surface-Based Temperature Inversions at Dome C, Antarctica. Bound.-Layer Meteorol. 2014, 150, 131–151. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Bian, X.; Zhong, S. Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Meteorol. 1999, 38, 1103–1117. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Pospichal, B.; Eisenbach, S.; Weihs, P.; Clements, C.B.; Steinacker, R.; Mursch-Radlgruber, E.; Dorninger, M. Inversion breakup in small Rocky Mountain and Alpine basins. J. Appl. Meteorol. 2004, 43, 1069–1082. [Google Scholar] [CrossRef]
- Huang, Q.; Chu, Y.; Li, Q. Climatology of low-level temperature inversions over China based on high-resolution radiosonde measurements. Theor. Appl. Climatol. 2021, 144, 415–429. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. 2010, 115, D16113. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A. Analysis of thermal inversions in the Khareef Salalah region in the Sultanate of Oman. J. Geophys. Res. 2003, 108, 4274. [Google Scholar] [CrossRef]
- Skidmore, W.; Schöck, M.; Magnier, E.; Walker, D.; Feldman, D.; Riddle, R.; Els, S.; Travouillon, T.; Bustos, E.; Seguel, J.; et al. Using All Sky Cameras to determine cloud statistics for the Thirty Meter Telescope candidate sites. Ground-Based Airborne Telesc. II 2008, 7012, 701224. [Google Scholar] [CrossRef]
- Gu, W.B.; Xu, J.; Feng, G.J.; Zhang, X.; Wang, L.T.; Wang, X.L.; Esamdin, A.; Shen, L.X. An Analysis of the Fragmentation of Observing Time At the Muztagh-Ata Site. Res. Astron. Astrophys. 2024, 24, 035003. [Google Scholar] [CrossRef]
- Sedlar, J.; Tjernström, M. Stratiform cloud–inversion characterization during the Arctic melt season. Bound.-Layer Meteorol. 2009, 132, 455–474. [Google Scholar] [CrossRef]
- Ruman, C.J.; Monahan, A.H.; Sushama, L. Climatology of Arctic temperature inversions in current and future climates. Theor. Appl. Climatol. 2022, 150, 121–134. [Google Scholar] [CrossRef]
- Stoy, P.C.; Roh, J.; Bromley, G.T. It’s the heat and the humidity: The complementary roles of temperature and specific humidity to recent changes in the energy content of the near-surface atmosphere. Geophys. Res. Lett. 2021, 48, e2021GL096628. [Google Scholar] [CrossRef]
- Hudson, S.R.; Brandt, R.E. A look at the surface-based temperature inversion on the Antarctic Plateau. J. Clim. 2005, 18, 1673–1696. [Google Scholar] [CrossRef]
- Mahrt, L.J.; Schwerdtfeger, W. Ekman spirals for exponential thermal wind. Bound.-Layer Meteorol. 1970, 1, 137–145. [Google Scholar] [CrossRef]
- Stiperski, I.; Holtslag, A.A.M.; Lehner, M.; Hoch, S.W.; Whiteman, C.D. On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. Q. J. R. Meteorol. Soc. 2020, 146, 1206–1231. [Google Scholar] [CrossRef] [PubMed]
- Farina, S.; Zardi, D. Understanding Thermally Driven Slope Winds: Recent Advances and Open Questions. Bound.-Layer Meteorol. 2023, 189, 5–52. [Google Scholar] [CrossRef]
- Cao, G.; Giambelluca, T.W.; Stevens, D.E.; Schroeder, T.A. Inversion Variability in the Hawaiian Trade Wind Regime. J. Clim. 2007, 20, 1145–1160. [Google Scholar] [CrossRef]
- Cherubini, T.; Businger, S.; Lyman, R.; Chun, M. Modeling Optical Turbulence and Seeing over Mauna Kea. J. Appl. Meteorol. Climatol. 2008, 47, 1140–1155. [Google Scholar] [CrossRef]
- Steinbring, E.; Carlberg, R.; Croll, B.; Fahlman, G.; Hickson, P.; Ivanescu, L.; Leckie, B.; Pfrommer, T.; Schoeck, M. First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites. Publ. Astron. Soc. Pac. 2010, 122, 1092. [Google Scholar] [CrossRef]
Type | Model | Installed Height (m) | Resolution | Frequency (Hz) |
---|---|---|---|---|
Ultrasonic Anemometer | Young 81000 [11] | 6, 12, 18, 24, 30 | 0.01 m/s | 20 |
Temperature Sensor | Young 41342 [12] | 6, 12, 18, 24, 30 | 0.01 °C | 1/30 |
Barometric Pressure Sensor | Young 61302v [13] | 2 | 0.2 hPa | 1/30 |
Relative Humidity Sensor | Young 41382vc [14] | 6 | 0.1% RH | 1/30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.-P.; Gu, W.-B.; Esamdin, A.; Bai, C.-H.; Niu, H.-B.; Liu, L.-Y.; Zhang, J.-C. Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau. Atmosphere 2025, 16, 897. https://doi.org/10.3390/atmos16080897
Zhang D-P, Gu W-B, Esamdin A, Bai C-H, Niu H-B, Liu L-Y, Zhang J-C. Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau. Atmosphere. 2025; 16(8):897. https://doi.org/10.3390/atmos16080897
Chicago/Turabian StyleZhang, Dai-Ping, Wen-Bo Gu, Ali Esamdin, Chun-Hai Bai, Hu-Biao Niu, Li-Yong Liu, and Ji-Cheng Zhang. 2025. "Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau" Atmosphere 16, no. 8: 897. https://doi.org/10.3390/atmos16080897
APA StyleZhang, D.-P., Gu, W.-B., Esamdin, A., Bai, C.-H., Niu, H.-B., Liu, L.-Y., & Zhang, J.-C. (2025). Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau. Atmosphere, 16(8), 897. https://doi.org/10.3390/atmos16080897