Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = Tarim River basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 16403 KB  
Article
Assessing Land Use Efficiency in the Tarim River Basin: A Coupling Coordination Degree and Gravity Model Approach
by Xia Ye, Anxin Ning, Yan Qin, Lifang Zhang and Yongqiang Liu
Land 2025, 14(11), 2237; https://doi.org/10.3390/land14112237 - 12 Nov 2025
Viewed by 326
Abstract
The Tarim River Basin, a core region for economic development and ecological security in China’s inland arid areas, faces the pressing challenge of synergistically improving land use efficiency to resolve human-land conflicts under water resource constraints and achieve sustainable development. Based on the [...] Read more.
The Tarim River Basin, a core region for economic development and ecological security in China’s inland arid areas, faces the pressing challenge of synergistically improving land use efficiency to resolve human-land conflicts under water resource constraints and achieve sustainable development. Based on the “economic-social-ecological” benefit coordination theory, this study constructs a land use efficiency evaluation system with 16 indicators and integrates the coupling coordination degree model and gravity model to quantitatively analyze the spatiotemporal differentiation patterns and coupling mechanisms of land use efficiency in the basin from 1990 to 2020. Results show that economic and social benefits of land use increased during this period, exhibiting a “high-north, low-south” spatial pattern, while ecological benefits remained relatively high but declined gradually. The coupling coordination degree of subsystem benefits displayed significant spatial heterogeneity, with an overall upward trend, where composite factors emerged as the primary constraint. Spatially, land use efficiency coupling coordination evolved from “core polarization” to “axial expansion” and finally “networked synergy,” with stronger linkages concentrated in oasis irrigation districts. These findings provide theoretical support for ecological conservation, water management, and policy-making in southern Xinjiang, offering pathways to synergize the “economic-social-ecological” system and promote sustainable development in arid regions. Full article
Show Figures

Figure 1

25 pages, 2447 KB  
Article
Niche Differentiation Characteristics of Phytoplankton Functional Groups in Arid Regions of Northwest China Based on Machine Learning
by Long Yun, Fangze Zi, Xuelian Qiu, Qi Liu, Jiaqi Zhang, Liting Yang, Yong Song and Shengao Chen
Biology 2025, 14(11), 1564; https://doi.org/10.3390/biology14111564 - 7 Nov 2025
Viewed by 278
Abstract
This study investigates the distribution patterns, interspecific relationships, and community stability mechanisms of phytoplankton functional groups, aiming to elucidate the ecological processes that drive phytoplankton communities in aquatic ecosystems of arid regions. We conducted seasonal sampling from 2023 to 2024 at four auxiliary [...] Read more.
This study investigates the distribution patterns, interspecific relationships, and community stability mechanisms of phytoplankton functional groups, aiming to elucidate the ecological processes that drive phytoplankton communities in aquatic ecosystems of arid regions. We conducted seasonal sampling from 2023 to 2024 at four auxiliary reservoirs in the Tarim River Basin, namely Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang Reservoir (DL), and Xinjingzi Reservoir (XJZ). In recent years, researchers have grouped phytoplankton into functional groups based on their shared morphological, physiological, and ecological characteristics—with these three types of traits serving as the core criteria for distinguishing different functional groups. A total of 18 functional groups were identified from the phytoplankton collected across four seasons, among which eight (A, D, H1, L0, M, MP, P, and S1) are dominant. Redundancy Analysis (RDA) indicated that environmental factors such as pH, electrical conductivity (COND), and dissolved oxygen (DO) are key driving factors affecting phytoplankton functional groups. Interspecific association analysis showed that the phytoplankton communities in DL, SL, and XJZ reservoirs were dominated by positive associations, reflecting stable community structures that are less prone to drastic fluctuations under stable environmental conditions. In contrast, the SY Reservoir was dominated by negative associations, indicating that it is in the early stage of succession with an unstable community. This may be related to intense human disturbance to the reservoir and its role in replenishing the Tarim River, which leads to significant water level fluctuations. The results of the Chi-square test and Pearson correlation analysis showed consistent trends but also differences: constrained by the requirement for continuous normal distribution, Pearson correlation analysis identified more pairs of negative associations, reflecting its limitations in analysing clumped-distributed species. Random forest models further indicated that functional groups M, MP, L0, and S1 are the main positive drivers of interspecific relationships. Among them, the increase in S1 can promote the growth of functional groups dominated by Navicula sp. and Chroococcus sp. by reducing resource competition. Conversely, the expansion of functional group H1 inhibits other groups, which is related to its adaptive strategy of resisting photo-oxidation in eutrophic environments. This study reveals the patterns of interspecific interactions and stability mechanisms of phytoplankton functional groups in arid-region reservoirs, providing a scientific basis for the management and conservation of aquatic ecosystems in similar extreme environments. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

18 pages, 1131 KB  
Article
Research on the Fallow Compensation Mechanism for Groundwater Overexploitation in the Tarim River Basin Under Bidirectional Collaboration
by Jiaxin Hao, Kangzheng Zhong, Liqiang Shen, Zengyi Cheng and Yuejian Wang
Agriculture 2025, 15(21), 2301; https://doi.org/10.3390/agriculture15212301 - 4 Nov 2025
Viewed by 348
Abstract
Exploring the differentiated fallow compensation (FC) standards in different regions is of great significance for formulating and improving the mechanism of fallow compensation and ensuring the sustainability of policies. The groundwater overexploitation area in the Tarim River Basin was selected as the research [...] Read more.
Exploring the differentiated fallow compensation (FC) standards in different regions is of great significance for formulating and improving the mechanism of fallow compensation and ensuring the sustainability of policies. The groundwater overexploitation area in the Tarim River Basin was selected as the research area; this study breaks through the perspective of a single subject and integrates the “opportunity cost” of the compensated subject and the “ecosystem service value” of the compensating subject into a unified analysis framework to obtain the fallow compensation standard, and the logistic model is used to analyze the influencing factors of farmers’ compensation method selection. The results are as follows: (1) The FC standards exhibit significant spatial heterogeneity. The range of FC standards in various counties is 5540.40 to 7770.53 CNY/hm2 (769.50 to 1079.24 USD/hm2), which is generally lower than the current standard. (2) There are three main compensation methods chosen by farmers, ranked in descending order of selection ratio: monetary compensation (72.06%) > physical compensation (19.37%) > technical compensation (8.57%). (3) The factors influencing the choice of compensation method are quite complex. The dependency ratio is the main influencing factor in the choice of monetary compensation (β = 0.738); the evaluation of economic conditions has a significant negative correlation with the choice of physical compensation (β = −0.562), and nonfarm household income is the main influencing factor for choosing technical compensation (β = 0.747). This study provides a new perspective for determining FC standards and aims to provide a theoretical basis for local governments to improve their fallow policies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

32 pages, 9525 KB  
Article
Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin
by Yuxin Cen, Li He, Zhengwei He, Fang Luo, Yang Zhao, Jie Gan, Wenqian Bai and Xin Chen
Remote Sens. 2025, 17(21), 3511; https://doi.org/10.3390/rs17213511 - 22 Oct 2025
Viewed by 677
Abstract
Monitoring ecosystem dynamics in arid regions requires robust indicators that can capture spatial heterogeneity and diverse ecological drivers. In this study, we introduce and evaluate two novel ecological indices: the Arid-region Remote Sensing Ecological Index (ARSEI), specifically designed for desert environments, and the [...] Read more.
Monitoring ecosystem dynamics in arid regions requires robust indicators that can capture spatial heterogeneity and diverse ecological drivers. In this study, we introduce and evaluate two novel ecological indices: the Arid-region Remote Sensing Ecological Index (ARSEI), specifically designed for desert environments, and the Composite Remote Sensing Ecological Index (CoRSEI), which integrates both desert and non-desert systems. These indices are compared with the traditional Remote Sensing Ecological Index (RSEI) in the Tarim River Basin from 2000 to 2023. Principal component analysis (PCA) revealed that RSEI maintained the highest structural compactness (average PCA1 = 87.49%). In contrast, ARSEI (average PCA1 = 78.62%) enhanced sensitivity to albedo and vegetation (NDVI) in arid environments. Spearman correlation analysis further demonstrated that ARSEI was more strongly correlated with NDVI (ρ = 0.49) and precipitation (ρ = 0.62) than RSEI, confirming its improved responsiveness under water-limited conditions. CoRSEI exhibited higher internal consistency and spatial adaptability (mean values ranging from 0.45 to 0.56), with slight ecological improvements observed between 2000 and 2023. Ecological drivers varied across habitat types. In desert areas, evapotranspiration, precipitation, and soil moisture were the main determinants of ecological status, showing high coupling and synchrony. In non-desert regions, soil moisture and precipitation remained dominant, but vegetation indices and disturbance factors (e.g., fire density) exerted stronger long-term influences. Partial dependence analyses further confirmed nonlinear, region-specific responses, such as the threshold effects of precipitation on vegetation growth. Overall, our findings highlight the importance of differentiated ecological modeling. ARSEI enhances sensitivity in desert ecosystems, whereas CoRSEI captures landscape-scale variability across desert and non-desert regions. Both indices contribute to more accurate long-term ecological assessments in hyper-arid environments. Full article
Show Figures

Figure 1

18 pages, 4155 KB  
Article
Spatial–Temporal Patterns of Methane Emissions from Livestock in Xinjiang During 2000–2020
by Qixiao Xu, Yumeng Li, Yongfa You, Lei Zhang, Haoyu Zhang, Zeyu Zhang, Yuanzhi Yao and Ye Huang
Sustainability 2025, 17(20), 9021; https://doi.org/10.3390/su17209021 - 11 Oct 2025
Viewed by 542
Abstract
Livestock represent a significant source of methane (CH4) emissions, particularly in pastoral regions. However, in Xinjiang—a pivotal pastoral region of China—the spatiotemporal patterns of livestock CH4 emissions remain poorly characterized, constraining regional mitigation actions. Here, a detailed CH4 emissions [...] Read more.
Livestock represent a significant source of methane (CH4) emissions, particularly in pastoral regions. However, in Xinjiang—a pivotal pastoral region of China—the spatiotemporal patterns of livestock CH4 emissions remain poorly characterized, constraining regional mitigation actions. Here, a detailed CH4 emissions inventory for livestock in Xinjiang spanning the period 2000–2020 is compiled. Eight livestock categories were covered, gridded livestock maps were developed, and the dynamic emission factors were built by using the IPCC 2019 Tier 2 approaches. Results indicate that the CH4 emissions increased from ~0.7 Tg in 2000 to ~0.9 Tg in 2020, a 28.5% increase over the past twenty years. Beef cattle contributed the most to the emission increase (59.6% of total increase), followed by dairy cattle (35.7%), sheep (13.9%), and pigs (4.3%). High-emission hotspots were consistently located in the Ili River Valley, Bortala, and the northwestern margins of the Tarim Basin. Temporal trend analysis revealed increasing emission intensities in these regions, reflecting the influence of policy shifts, rangeland dynamics, and evolving livestock production systems. The high-resolution map of CH4 emissions from livestock and their temporal trends provides key insights into CH4 mitigation, with enteric fermentation showing greater potential for emission reduction. This study offers the first long-term, high-resolution CH4 emission inventory for Xinjiang, providing essential spatial insights to inform targeted mitigation strategies and enhance sustainable livestock management in arid and semi-arid ecosystems. Full article
(This article belongs to the Special Issue Geographical Information System for Sustainable Ecology)
Show Figures

Figure 1

18 pages, 12948 KB  
Article
Optimal Phenology Windows for Discriminating Populus euphratica and Tamarix chinensis in the Tarim River Desert Riparian Forests with PlanetScope Data
by Zhen Wang, Xiang Chen and Shuai Zou
Forests 2025, 16(10), 1560; https://doi.org/10.3390/f16101560 - 10 Oct 2025
Viewed by 370
Abstract
The desert riparian forest oasis, dominated by Populus euphratica and Tamarix chinensis, is an important barrier to protect the economic production and habitat of the Tarim River Basin. However, there is still a lack of high-precision spatial distribution data of desert ri-parian [...] Read more.
The desert riparian forest oasis, dominated by Populus euphratica and Tamarix chinensis, is an important barrier to protect the economic production and habitat of the Tarim River Basin. However, there is still a lack of high-precision spatial distribution data of desert ri-parian forest species below 10 m. The recently launched PlanetScope CubeSat constella-tion, which provides daily earth observation imagery with a resolution of 3 m, offers a highly favorable dataset for mapping the high-resolution distribution of P. euphratica and T. chinensis and an unprecedented opportunity to explore the optimal phenology window to distinguish between them. In this study, time-series PlanetScope images were first used to extract phenological metrics of P. euphratica, dividing the annual life cycle into four phenology windows: duration of leaf expansion (DLE), duration of leaf maturity (DLM), duration of leaf fall (DLF), and duration of the dormancy period (DDP). The random forest model was used to obtain the classification accuracy of 16 phenological window combinations. Results indicate that after gap filling of vegetation index time series, the identification accuracy for P. euphratica and T. chinensis exceeded 0.90. Among individual phenology windows, the DLE window exhibited the highest classification accuracy (average F1-score 0.87). Among the two phenology window combinations, the DLE-DLF and DLE-DLM windows have the highest classification accuracy (average F1-score 0.90). Among the three phenology window combinations, DLE-DLM-DLF displayed the highest classification accuracy (average F1-score 0.91). Nevertheless, the inclusion of features within the DDP window led to a decrease in accuracy by 1–2% points, which was unfavorable for discriminating tree species. Additionally, features observed during the phenology asynchrony period were found to be more valuable for distinguishing between tree species. Our findings highlight the potential of PlanetScope constellation imagery in tree species classification, offering guidance for selecting optimal image acquisition timing and identifying the most valuable images within time series data for future large-scale tree mapping. Full article
Show Figures

Figure 1

24 pages, 8814 KB  
Article
Are There Differences in the Response of Lake Areas at Different Altitudes in Xinjiang to Climate Change?
by Kangzheng Zhong, Chunpeng Chen, Liping Xu, Jiang Li, Linlin Cui and Guanghui Wei
Sustainability 2025, 17(19), 8705; https://doi.org/10.3390/su17198705 - 27 Sep 2025
Viewed by 484
Abstract
Lakes account for approximately 87% of the Earth’s surface water resources and serve as sensitive indicators of climate and environmental change. Understanding how lake areas respond to climate change across different elevation gradients is crucial for guiding sustainable water resource management in Xinjiang. [...] Read more.
Lakes account for approximately 87% of the Earth’s surface water resources and serve as sensitive indicators of climate and environmental change. Understanding how lake areas respond to climate change across different elevation gradients is crucial for guiding sustainable water resource management in Xinjiang. We utilized Landsat series remote sensing imagery (1990–2023) on the Google Earth Engine (GEE) platform to extract the temporal dynamics of natural lakes larger than 10 km2 in Xinjiang, China (excluding reservoirs). We analyzed the relationships between lake area dynamics, climatic factors, and human activities to assess the sensitivity of lakes at different altitudinal zones to environmental change. The results showed that (1) the total area of Xinjiang lakes increased by 1188.36 km2 over the past 34 years, with an average annual area of 5998.54 km2; (2) plain lakes experienced fluctuations, reaching their maximum in 2000 and their minimum in 2015, alpine lakes peaked in 2016, and plateau lakes continued to expand, with the maximum recorded in 2020 and the minimum in 1995; and (3) human activities such as urban and agricultural water use were the primary causes of shrinking plain lakes, while an increased PET accelerates evaporation, alpine lakes were influenced by both climate variability and human disturbance, and plateau lakes were highly sensitive to climate change, with rising temperatures increasing snowmelt and glacial runoff into lakes, which were the main drivers of their expansion. These findings highlight the importance of incorporating elevation-specific lake responses into climate adaptation strategies and sustainable water management policies in arid regions. Full article
Show Figures

Figure 1

18 pages, 5089 KB  
Article
The Synergistic Effects of Climate Change and Human Activities on Wetland Expansion in Xinjiang
by Jiaorong Qian, Yaning Chen, Yonghui Wang, Yupeng Li, Zhi Li, Gonghuan Fang, Chuanxiu Liu, Yihan Wang and Zhixiong Wei
Land 2025, 14(9), 1889; https://doi.org/10.3390/land14091889 - 15 Sep 2025
Viewed by 664
Abstract
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data [...] Read more.
Wetlands function as crucial transitional zones between land and water ecosystems worldwide, contributing significantly to the stability of local ecosystems. However, there is limited research on landscape changes in Xinjiang’s arid interior regions and the factors driving these changes. This study uses data reanalysis techniques to examine the spatial and temporal evolution and landscape patterns of wetlands, as well as their driving forces, in Xinjiang between 1990 and 2023. The results show that over the past three decades, the wetland area in Xinjiang has grown from 18,427 km2 in 1990 to 21,532 km2 in 2023, with an annual increase of about 94 km2. The greatest growth in wetlands, particularly lakes, marshes, and rivers, has occurred around the periphery of the Tarim Basin and the Ili River Basin, while mountainous areas have seen slight reductions. The distribution pattern shows higher wetland coverage in southern Xinjiang and less coverage in the north, with the largest proportion of wetlands found in the south. Additionally, wetland expansion has led to improvements in the number, density, aggregation, and connectivity of wetland patches, while the complexity of their shapes has decreased. The overall habitat quality of wetlands has also improved over time. Attribution analysis highlights that the rise in runoff due to temperature increases over the past 30 years is a major driver of wetland expansion, with warming accounting for the largest share of expansion in lakes (36%) and in rivers (47.9%). Furthermore, the implementation of large-scale engineering measures, such as ecological water diversion, water-saving irrigation, and reservoir management, has contributed significantly to wetland expansion and ecological restoration. These results provide useful insights for the long-term conservation and management of wetland resources in the arid areas of Xinjiang. Full article
Show Figures

Figure 1

12 pages, 24023 KB  
Article
Histological Study on Digestive System of Triplophysa yarkandensis in Saline-Alkali and Freshwater Environments: Adaptive Mechanisms
by Zhengwei Wang, Yichao Hao, Yinsheng Chen, Qing Ji, Tao Ai, Shijing Zhang, Jie Wei, Zhaohua Huang and Zhulan Nie
Biology 2025, 14(9), 1187; https://doi.org/10.3390/biology14091187 - 3 Sep 2025
Viewed by 826
Abstract
Triplophysa yarkandensis, a unique saline-alkali tolerant fish in the Tarim River Basin, exhibits unclear adaptive mechanisms of its digestive system to saline-alkali stressors. This study compared the histological characteristics of the digestive system in fish reared in saline-alkali water (salinity 5.89, alkalinity [...] Read more.
Triplophysa yarkandensis, a unique saline-alkali tolerant fish in the Tarim River Basin, exhibits unclear adaptive mechanisms of its digestive system to saline-alkali stressors. This study compared the histological characteristics of the digestive system in fish reared in saline-alkali water (salinity 5.89, alkalinity 125.60) and freshwater. Histological characteristics were analyzed using hematoxylin-eosin staining, and parameters were quantified via Image-Pro Plus software, with statistical comparisons performed using independent sample t-tests. Key findings included a 2.7-fold increase in oropharyngeal club cell density (48.50 ± 2.68 vs. 17.80 ± 2.04, p < 0.01) with denser stratified squamous epithelium in the saline-alkali group; a 74% increase in esophageal goblet cells (104.42 ± 6.67 vs. 59.94 ± 4.68, p < 0.01) alongside a 39% reduction in mucosal fold height; 87%, 24%, and 51% increases in villi number across the foregut, midgut, and hindgut, respectively, with an 84% elevation in midgut goblet cells (p < 0.01); and mild vacuolization in the hepatopancreas. Results indicate that T. yarkandensis adapts via synergistic strategies of enhanced digestive mucus secretion, epithelial structural optimization, and hepatopancreatic metabolic reprogramming. The coordinated villi proliferation and mucus secretion enhance nutrient absorption and osmotic barrier function, providing a theoretical basis for saline-alkali aquaculture. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

14 pages, 1435 KB  
Article
The Attribution Identification of Runoff Changes in the Kriya River Based on the Budyko Hypothesis Provides a Basis for the Sustainable Management of Water Resources in the Basin
by Sihai Liu and Kun Xing
Sustainability 2025, 17(17), 7882; https://doi.org/10.3390/su17177882 - 1 Sep 2025
Viewed by 567
Abstract
Identifying the impact of climate change and changes in underlying surface conditions on river runoff changes is critical for sustainable water resource use and watershed management in arid regions. The Kriya River is not only a key support for water resources in the [...] Read more.
Identifying the impact of climate change and changes in underlying surface conditions on river runoff changes is critical for sustainable water resource use and watershed management in arid regions. The Kriya River is not only a key support for water resources in the arid environment of the Tarim Basin, but also a solid foundation for the survival and development of agricultural oases. In this study, the Kriya River Basin in Xinjiang, China, was taken as the research object, and the Mann–Kendall, Sen’s Slope, Cumulative Sum, and other methods were used to systematically analyze the temporal evolution law and multi-modal characteristics of runoff in the basin. Based on the Budyko hydrothermal coupling equilibrium equation, the contribution of temperature, evaporation, and the underlying surface to runoff variation was quantitatively interpreted. The study found that the annual runoff depth of the Kriya River Basin has shown a significant positive evolution trend in the past 60 years, with an increase rate of 0.5189 mm/a (p ≤ 0.01). Through the identification of mutation points, the runoff time series of the Kriya River was divided into the base period 1957–1999 and the change period 2000–2015. Without considering the supply of snowmelt runoff, the contribution rate of precipitation to runoff change was 75.23%, followed by the change in underlying surface (23.08%), and the potential evapotranspiration was only 1.69%. The results of this study provide a good scientific reference for water resources management and environmental governance in the Kriya River Basin. Full article
Show Figures

Figure 1

18 pages, 2882 KB  
Article
Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin
by Wenyin Huang, Qifei Han and Haitao Wang
Sustainability 2025, 17(17), 7854; https://doi.org/10.3390/su17177854 - 31 Aug 2025
Cited by 1 | Viewed by 916
Abstract
Climate change significantly alters vegetation distribution patterns in arid regions, while ecological water conveyance serves as a critical intervention to modify these patterns by augmenting water availability. As a keystone species in Central Asia’s water-stressed ecosystems, Populus euphratica plays a pivotal role in [...] Read more.
Climate change significantly alters vegetation distribution patterns in arid regions, while ecological water conveyance serves as a critical intervention to modify these patterns by augmenting water availability. As a keystone species in Central Asia’s water-stressed ecosystems, Populus euphratica plays a pivotal role in maintaining arid ecosystem stability, making the investigation of its habitat suitability under combined climate change and ecological water conveyance imperative. This study selected 12 variables associated with the spatial distribution of P. euphratica, including bioclimate, groundwater resources, available water storage capacity, elevation, distance to rivers, and stocking rate. Using the maximum entropy (MaxEnt) model, we projected habitat distributions of P. euphratica across the Tarim River Basin with three scenarios: no climate change, climate change, and ecological water conveyance. The study indicated that (1) distance to rivers has the significant effect on the distribution of P. euphratica; (2) although climate change is expected to reduce the habitat suitable for P. euphratica, the implementation of ecological water conveyance is expected to lead to an expansion of its habitat; (3) the implementation of ecological water conveyance is expected to cause the habitat suitable for P. euphratica to shift toward the southeast, suggesting that this initiative has increased groundwater resources in the southeastern part of the watershed. These findings provide a scientific foundation for protecting P. euphratica and formulating effective ecological water conveyance strategies. Full article
Show Figures

Figure 1

20 pages, 2922 KB  
Article
A Comparative Study on the Spatio-Temporal Evolution and Driving Factors of Oases in the Tarim River Basin and the Heihe River Basin During the Historical Period
by Luchen Yao, Donglei Mao, Jie Xue, Shunke Wang and Xinxin Li
Sustainability 2025, 17(17), 7742; https://doi.org/10.3390/su17177742 - 28 Aug 2025
Viewed by 880
Abstract
Oases are the core carriers of societal development in arid regions, and their spatial patterns have changed significantly, driven by climate change and anthropogenic activities. This study integrates historical documents, archeological materials, maps, and remote sensing data. The changes in the temperature, precipitation, [...] Read more.
Oases are the core carriers of societal development in arid regions, and their spatial patterns have changed significantly, driven by climate change and anthropogenic activities. This study integrates historical documents, archeological materials, maps, and remote sensing data. The changes in the temperature, precipitation, settlements, war frequency, and oasis area were identified by combining quantitative and qualitative methods, and the partial least squares path model (PLS-PM) was utilized to quantify the natural and human driving factors. The results show that the oasis development in the Tarim and Heihe River Basins exhibits distinct spatio-temporal variability and phased characteristics and is comprehensively shaped by both natural and anthropogenic drivers. The Tarim Basin’s natural oases demonstrate a “fluctuating recovery” pattern. The cultivated oases gradually expanded. The natural oases within the Heihe River Basin have persistently decreased, and cultivated oases show a “U”-shaped evolution pattern. This reflects the strong intervention of human reclamation in the cultivated oases. The introverted social ecosystem has endowed the Tarim River Basin with the ability to self-repair and achieve a periodic recovery. The Heihe River Basin serves as a strategic corridor for national external engagement, relying on regime stability. A regime collapse led to its lack of a stable recovery period. The PLS-PM reveals that the Tarim River Basin oasis evolution is predominantly driven by climate fluctuations. The path coefficient of natural factors for artificial oases is 0.63, and extreme drought leads to natural oasis contraction. The human influence dominates the Heihe River Basin, with a −0.93 path coefficient linking the cultivated oasis area to human factors. The frequency of wars (load 0.74) and changes in settlements (load −0.92) are the key factors. This study provides a powerful case for the analysis of the evolution and driving mechanism of future oases in drylands. Full article
Show Figures

Figure 1

14 pages, 6195 KB  
Article
Analysis of Groundwater Chemical Characteristics and Boron Sources in the Oasis Area of the Cherchen River Basin in Xinjiang, China
by Jiangwei Dong, Fuxiang Gao, Jinlong Zhou, Jiang Li and Yinzhu Zhou
Water 2025, 17(16), 2397; https://doi.org/10.3390/w17162397 - 14 Aug 2025
Cited by 1 | Viewed by 741
Abstract
The oasis area of the Cherchen River Basin (OACRB) is located in the southeast edge of the Tarim Basin in Xinjiang, China. High boron (B) groundwater is observed in the OACRB according to 40 groundwater samples collected in May 2023. Identification of the [...] Read more.
The oasis area of the Cherchen River Basin (OACRB) is located in the southeast edge of the Tarim Basin in Xinjiang, China. High boron (B) groundwater is observed in the OACRB according to 40 groundwater samples collected in May 2023. Identification of the chemical characteristics and B sources of groundwater in the OACRB is of great significance for the sustainable development and utilization of groundwater resources and the protection of animals, plants and human health. To explore the chemical characteristics and main B sources of groundwater, Piper three-line diagram, Gibbs diagram, correlation analysis, hydrogeochemical simulation and absolute principal component analysis (PCA-APCS-MLR) were used for analysis. The contribution of different factors to groundwater B was quantitatively evaluated. The results showed that the groundwater is weakly alkaline (with an average pH of 7.94) and mainly brackish water and saline water with Cl and Na+ as the main anions and cations. The groundwater is dominated by SO4 · Cl-Na type. The average concentration (ρ) of groundwater B in the study area was 1.48 mg·L−1 with the over-standard rate was 45.0%. The APCS-MLR receptor model analysis revealed that groundwater chemical components including B were mainly derived from leaching-enrichment, human activity, primary geological factors, and unknown sources. Groundwater B is obviously greater than the standard limit, which is mainly due to agricultural activities (fertilizers and pesticides) and unknown sources. Full article
Show Figures

Figure 1

22 pages, 4248 KB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 - 1 Aug 2025
Viewed by 520
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

27 pages, 22085 KB  
Article
Sedimentary Characteristics and Petroleum Geological Significance of the Middle–Upper Triassic Successions in the Wushi Area, Western Kuqa Depression, Tarim Basin
by Yahui Fan, Mingyi Hu, Qingjie Deng and Quansheng Cai
Appl. Sci. 2025, 15(14), 7895; https://doi.org/10.3390/app15147895 - 15 Jul 2025
Viewed by 706
Abstract
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. [...] Read more.
As a strategic replacement area for hydrocarbon exploration in the Tarim Basin, the Kuqa Depression has been the subject of relatively limited research on the sedimentary characteristics of the Triassic strata within its western Wushi Sag, which constrains exploration deployment in this region. This study focuses on the Wushi Sag, systematically analyzing the sedimentary facies types, the evolution of sedimentary systems, and the distribution patterns of the Triassic Kelamayi and Huangshanjie formations. This analysis integrates field outcrops, drilling cores, wireline logs, and 2D seismic data, employing methodologies grounded in foreland basin theory and clastic sedimentary petrology. The paleo-geomorphology preceding sedimentation was reconstructed through balanced section restoration to investigate the controlling influence of foreland tectonic movements on the distribution of sedimentary systems. By interpreting key seismic profiles and analyzing vertical facies successions, the study classifies and evaluates the petroleum accumulation elements and favorable source–reservoir-seal assemblages, culminating in the prediction of prospective exploration areas. The research shows that: (1) The Triassic in the Wushi Sag mainly develops fan-delta, braided-river-delta, and lacustrine–shallow lacustrine sedimentary systems, with strong planar distribution regularity. The exposed strata in the northern part are predominantly fan-delta and lacustrine systems, while the southern part is dominated by braided-river-delta and lacustrine systems. (2) The spatial distribution of sedimentary systems was demonstrably influenced by tectonic activity. Paleogeomorphological reconstructions indicate that fan-delta and braided-river-delta sedimentary bodies preferentially developed within zones encompassing fault-superposition belts, fault-transfer zones, and paleovalleys. Furthermore, Triassic foreland tectonic movements during its deposition significantly altered basin configuration, thereby driving lacustrine expansion. (3) The Wushi Sag exhibits favorable hydrocarbon accumulation configurations, featuring two principal source–reservoir assemblages: self-sourced structural-lithologic gas reservoirs with vertical migration pathways, and lower-source-upper-reservoir structural-lithologic gas reservoirs with lateral migration. This demonstrates substantial petroleum exploration potential. The results provide insights for identifying favorable exploration targets within the Triassic sequences of the Wushi Sag and western Kuqa Depression. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop