A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
3. Results
3.1. Climate Extreme Changes in Xinjiang
3.2. Flood–Drought Changes in Xinjiang
3.3. Impacts of Climate Extremes on Flood–Drought Severity
4. Discussion
4.1. Fluctuation in Climate Extremes and the Spatiotemporal Variabilities of Flood–Drought Severity
4.2. Flood–Drought Shift in Xinjiang
4.3. Potential Driving Factors of the Changes in Flood–Drought Severity
4.4. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IPCC. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2021—The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- LeComte, D. US weather highlights 2010: A year of extremes. Weather Power Beauty Excit. 2011, 64, 13–20. [Google Scholar] [CrossRef]
- Blake, E.; Kimberlain, T.; Berg, R.; Cangialosi, J.; Beven, J., II. Tropical Cyclone Report: Hurricane Sandy; Rep. AL182012; National Hurricane Center: Miami, FL, USA, 2013. [Google Scholar]
- Lin, I.I.; Pun, I.F.; Lien, C.C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Hoerling, M.; Wolter, K.; Perlwitz, J.; Quan, X.; Eischeid, J.; Wang, H.; Schubert, S.; Diaz, H.; Dole, R. Northeast Colorado Extreme Rains Interpreted in a Climate Change Context. Bull. Am. Meteorol. Soc. 2014, 95, S15–S18. [Google Scholar]
- Ma, F.; Ye, A.; You, J.; Duan, Q. 2015–2016 floods and droughts in China, and its response to the strong El Niño. Sci. Total Environ. 2018, 627, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhou, T.; Zhang, L.; Zhang, W.; Chen, X. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn. 2020, 54, 543–560. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Gao, C.; Zhai, J.-Q.; Li, X.-C.; Su, B.-D.; Hartmann, H. Spatio-temporal changes of exposure and vulnerability to floods in China. Adv. Clim. Change Res. 2014, 5, 197–205. [Google Scholar] [CrossRef]
- Guan, X.; Zang, Y.; Meng, Y.; Liu, Y.; Lv, H.; Yan, D. Study on spatiotemporal distribution characteristics of flood and drought disaster impacts on agriculture in China. Int. J. Disaster Risk Reduct. 2021, 64, 102504. [Google Scholar] [CrossRef]
- Wang, N.; Hou, J.; Du, Y.; Jing, H.; Wang, T.; Xia, J.; Gong, J.; Huang, M. A dynamic, convenient and accurate method for assessing the flood risk of people and vehicle. Sci. Total Environ. 2021, 797, 149036. [Google Scholar] [CrossRef]
- Asmara, L.Y.; Sagala, S.; Azhari, D.; Rianawati, E. Public risk perception and public acceptance of the existing flood and drought mitigation measure in Bandung city. IOP Conf. Ser. Earth Environ. Sci. 2022, 986, 012044. [Google Scholar] [CrossRef]
- Schneiderbauer, S.; Fontanella Pisa, P.; Delves, J.L.; Pedoth, L.; Rufat, S.; Erschbamer, M.; Thaler, T.; Carnelli, F.; Granados-Chahin, S. Risk perception of climate change and natural hazards in global mountain regions: A critical review. Sci. Total Environ. 2021, 784, 146957. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Change 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Yao, J.; Mao, W.; Chen, J.; Dilinuer, T. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China. J. Geogr. Sci. 2021, 31, 1283–1298. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.-M.; Qin, D.-H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Tang, Q.; Yun, X.; Tang, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, G.; Zhang, Y.; Zhang, Y. Wetting trend in Northwest China reversed by warmer temperature and drier air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.; Liu, L.; Zhang, Y.; Lu, C.; Zhang, W. High mountains becoming wetter while deserts getting drier in xinjiang, china since the 1980s. Land 2021, 10, 1131. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, C.; Dong, S.; Hu, J.; Tong, X.; Zheng, X. Spatiotemporal changes of the aridity index in Xinjiang over the past 60 years. Environ. Earth Sci. 2023, 82, 392. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Liu, D.; He, P.; Li, Z.; Shi, M.; Xu, J. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960–2019. Environ. Sci. Pollut. Res. 2023, 30, 57316–57330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-based evaluation of drought events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-H.; Park, T.-W.; Jun, S.-Y.; Lee, M.-H.; Park, C.-E.; Kim, J.; Lee, S.-J.; Hong, Y.-D.; Song, C.-K.; Lee, J.-B. A projection of extreme climate events in the 21 st century over east Asia using the community climate system model 3. Asia-Pac. J. Atmos. Sci. 2011, 47, 329. [Google Scholar] [CrossRef]
- Kim, I.-W.; Oh, J.; Woo, S.; Kripalani, R.H. Evaluation of precipitation extremes over the Asian domain: Observation and modelling studies. Clim. Dyn. 2019, 52, 1317–1342. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, A.; Di Vittorio, A. Evaluating and projecting of climate extremes using a variable-resolution global climate model (VR-CESM). Weather Clim. Extrem. 2022, 38, 100496. [Google Scholar] [CrossRef]
- Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S.E.; Prabhat; Pal, C. ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Adv. Neural Inf. Process. Syst. 2016, 30, 3405–3416. [Google Scholar]
- Yousefi, S.; Pourghasemi, H.R.; Emami, S.N.; Pouyan, S.; Eskandari, S.; Tiefenbacher, J.P. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci. Rep. 2020, 10, 12144. [Google Scholar] [CrossRef]
- Eyring, V.; Collins, W.D.; Gentine, P.; Barnes, E.A.; Barreiro, M.; Beucler, T.; Bocquet, M.; Bretherton, C.S.; Christensen, H.M.; Dagon, K.; et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 2024, 14, 916–928. [Google Scholar] [CrossRef]
- Mansfield, L.A.; Nowack, P.J.; Kasoar, M.; Everitt, R.G.; Collins, W.J.; Voulgarakis, A. Predicting global patterns of long-term climate change from short-term simulations using machine learning. NPJ Clim. Atmos. Sci. 2020, 3, 44. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 674–690. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Tan, Q.; Fu, M.; Wang, Z.; Yuan, H.; Sun, J. A real-time early warning classification method for natural gas leakage based on random forest. Reliab. Eng. Syst. Saf. 2024, 251, 110372. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. Chin. Ed. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Yao, S.; Jiang, D.; Zhang, Z. Moisture Sources of Heavy Precipitation in Xinjiang Characterized by Meteorological Patterns. J. Hydrometeorol. 2021, 22, 2213–2225. [Google Scholar] [CrossRef]
- Li, J.; Mao, J. Impact of the Boreal Summer 30–60-day Intraseasonal Oscillation over the Asian Summer Monsoon Region on Persistent Extreme Rainfall over Eastern China. Chin. J. Atmos. Sci. 2019, 43, 796–812. (In Chinese) [Google Scholar] [CrossRef]
- Luo, Y.; Xu, C.; Chu, Z.; Sun, Q.; Chen, L. Application of CN05.1 meteorological data in watershed hydrological simulation: A case study in the upper reaches of Kaidu River basin. Clim. Change Res. 2020, 16, 287–295. (In Chinese) [Google Scholar]
- Dong, D.; Tao, H.; Zhang, Z. Projected population exposure to heatwaves in Xinjiang Uygur autonomous region, China. Sci. Rep. 2024, 14, 4570. [Google Scholar] [CrossRef]
- Bucchignani, E.; Zollo, A.L.; Cattaneo, L.; Montesarchio, M.; Mercogliano, P. Extreme weather events over China: Assessment of COSMO-CLM simulations and future scenarios. Int. J. Climatol. 2017, 37, 1578–1594. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J.; Giorgi, F.; Chen, Z.H.; Yu, D.F. Climate effects of the Three Gorges Reservoir as simulated by a high resolution double nested regional climate model. Quat. Int. 2012, 282, 27–36. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) user manual. Clim. Res. Branch Environ. Can. 2004, 22, 13–14. [Google Scholar]
- Ju, X.; Yang, X.; Chen, L.; Wang, Y. Research on Determination of Station Indexes and Division of Regional Flood/Drought Grades in China. J. Appl. Meteorol. Sci. 1997, 8, 26. [Google Scholar]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Wang, S.; Wang, L. Increase in flood and drought disasters during 1500–2000 in Southwest China. Nat. Hazards 2015, 77, 1853–1861. [Google Scholar] [CrossRef]
- Ling, H.B.; Deng, X.Y.; Long, A.H.; Gao, H.F. The multi-time-scale correlations for drought-flood index to runoff and North Atlantic Oscillation in the headstreams of Tarim River, Xinjiang, China. Hydrol. Res. 2017, 48, 253–264. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, P. Climate Change in Drought over Northern China during 1950–2000. Acta Geogr. Sin. 2003, 58, 61–68. [Google Scholar]
- Morlet, J.; Arens, G.; Fourgeau, E.; Giard, D. Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics 1982, 47, 222–236. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Lee, T.C.K.; Zwiers, F.W.; Hegerl, G.C.; Zhang, X.; Tsao, M. A Bayesian Climate Change Detection and Attribution Assessment. J. Clim. 2005, 18, 2429–2440. [Google Scholar] [CrossRef]
- Ruggieri, E. A Bayesian approach to detecting change points in climatic records. Int. J. Climatol. 2013, 33, 520–528. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Tran, D.; Xu, D.; Dang, V.; Alwah, A.A.Q. Predicting Urban Waterlogging Risks by Regression Models and Internet Open-Data Sources. Water 2020, 12, 879. [Google Scholar] [CrossRef]
- Liu, D.; Fan, Z.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.; Zhang, L.; Khan, M.I. Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm. J. Clean. Prod. 2020, 250, 119468. [Google Scholar] [CrossRef]
- Yu, X. Disaster prediction model based on support vector machine for regression and improved differential evolution. Nat. Hazards 2017, 85, 959–976. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Safarrad, T.; Shahabi, H. Drought sensitivity mapping using two one-class support vector machine algorithms. Atmos. Res. 2017, 193, 73–82. [Google Scholar] [CrossRef]
- Greenshtein, E. Best subset selection, persistence in high-dimensional statistical learning and optimization under l1 constraint. Ann. Stat. 2006, 34, 2367–2386+2320. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- McClarren, R.G. (Ed.) Decision Trees and Random Forests for Regression and Classification. In Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 55–82. [Google Scholar]
- Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sens. 2021, 13, 1535. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, J.; Ge, X.; Huang, S.; Han, L. Soil salinity estimation: Effects of microwave dielectric spectroscopy and important frequencies. Land Degrad. Dev. 2023, 34, 1725–1739. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Tan, M.L.; Chan, N.W.; Shi, J.; Liu, C.; Wang, W. Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning. Comput. Electron. Agric. 2022, 196, 106862. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Jin, X.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena 2022, 212, 106054. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Fitting a Straight Line by Least Squares. In Applied Regression Analysis; Wiley Online Library: Hoboken, NJ, USA, 1998; pp. 15–46. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Taylor & Francis: Abingdon, UK, 1995. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Drucker, H.; Surges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. [Google Scholar]
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wang, X.; Chen, B.; Chen, J.; Wang, J.; Huang, M.; Wang, Z.; Ma, L.; Wang, P.; et al. Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods. Comput. Electron. Agric. 2022, 192, 106612. [Google Scholar] [CrossRef]
- Al-Mejibli, I.S.; Alwan, J.K.; Abd, D.H. The effect of gamma value on support vector machine performance with different kernels. Int. J. Electr. Comput. Eng 2020, 10, 5497–5506. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Wu, Y.; Bake, B.; Zhang, J.; Rasulov, H. Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index. J. Arid Land 2015, 7, 527–543. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Y. Spatial and temporal characteristics of flood and rainstorm disaster in Xinjiang. Arid Land Geogr. 2021, 44, 1515–1524. (In Chinese) [Google Scholar]
- Yao, J.; Zhao, Y.; Yu, X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015. PeerJ 2018, 6, e4926. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hu, Q. How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett. 2008, 35, L01707. [Google Scholar] [CrossRef]
- Goswami, B.N.; Madhusoodanan, M.S.; Neema, C.P.; Sengupta, D. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett. 2006, 33, L02706. [Google Scholar] [CrossRef]
- Zou, S.; Duan, W.; Christidis, N.; Nover, D.; Abuduwaili, J.; Maeyer, P.D.; Voorde, T.V.D. An extreme rainfall event in summer 2018 of Hami city in eastern Xinjiang, China. Adv. Clim. Change Res. 2021, 12, 795–803. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, S.; Ren, L.; Xiao, W.; Yuan, F.; Wang, M.; Wei, L. Dynamics and potential synchronization of regional precipitation concentration and drought-flood abrupt alternation under the influence of reservoir climate. J. Hydrol. Reg. Stud. 2022, 42, 101147. [Google Scholar] [CrossRef]
- You, Q.; Jiang, Z.; Yue, X.; Guo, W.; Liu, Y.; Cao, J.; Li, W.; Wu, F.; Cai, Z.; Zhu, H.; et al. Recent frontiers of climate changes in East Asia at global warming of 1.5 °C and 2 °C. npj Clim. Atmos. Sci. 2022, 5, 80. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Ullah, S.; Chen, C.; Shen, L.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci. Total Environ. 2023, 876, 162822. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Huang, M.-H.; Fielding, E.J.; Booth, A.M.; Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 2019, 9, 1569. [Google Scholar] [CrossRef]
- Ablikim, A.; Chunyan, C.; Abdula, Y. The temporal and spatial distribution features of snowmelt flood events in Xinjiang from 2001 to 2012. J. Glaciol. Geocryol. 2015, 37, 226–232. (In Chinese) [Google Scholar]
- Wang, S.-Y.S.; Zhao, L.; Gillies, R.R. Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophys. Res. Lett. 2016, 43, 11805–11814. [Google Scholar] [CrossRef]
- Coelho, G.d.A.; Ferreira, C.M.; Johnston, J.; Kinter III, J.L.; Dollan, I.J.; Maggioni, V. Potential Impacts of Future Extreme Precipitation Changes on Flood Engineering Design Across the Contiguous United States. Water Resour. Res. 2022, 58, e2021WR031432. [Google Scholar] [CrossRef]
- Swain, D.L.; Wing, O.E.J.; Bates, P.D.; Done, J.M.; Johnson, K.A.; Cameron, D.R. Increased Flood Exposure Due to Climate Change and Population Growth in the United States. Earth’s Future 2020, 8, e2020EF001778. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Wang, J.; Chen, Y.; Qiu, H.; Zhang, J.; Wei, X. A novel multi-scale standardized index analyzing monthly to sub-seasonal drought-flood abrupt alternation events in the Yangtze River basin. J. Hydrol. 2024, 633, 130999. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T. Agricultural drought over water-scarce Central Asia aggravated by internal climate variability. Nat. Geosci. 2023, 16, 154–161. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Zou, S.; Abuduwaili, J.; Duan, W.; Ding, J.; De Maeyer, P.; Van De Voorde, T.; Ma, L. Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Sci. Rep. 2021, 11, 15032. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, Y.; Li, Y.; Liu, X.; Hou, Y.; Wang, X.; Kulaixi, Z.; Sun, F. Increased Compound Droughts and Heatwaves in a Double Pack in Central Asia. Remote Sens. 2022, 14, 2959. [Google Scholar] [CrossRef]
Indicator Name | Definitions | Units |
---|---|---|
Summer days (SU) | Annual count when daily maximum (TX) > 25 °C | days |
Tropical nights (TR) | Annual count when daily minimum (TN) > 20 °C | days |
Warm spell duration indicator (WSDI) | Annual count of days with at least six consecutive days when TX > 90th percentile | days |
Ice days (ID) | Annual count when TX < 0 °C | days |
Frost days (FD) | Annual count when TN < 0 °C | days |
Cold spell duration indicator (CSDI) | Annual count of days with at least six consecutive days when TN < 10th percentile | days |
Number of heavy precipitation days (R10MM) | Annual count of days when precipitation (PRCP) ≥ 10 mm | days |
Number of very heavy precipitation days (R20MM) | Annual count of days when PRCP ≥ 20 mm | days |
Number of extremely heavy precipitation days (R25MM) | Annual count of days when PRCP ≥ 25 mm | days |
Consecutive dry days (CDD) | Maximum number of consecutive days with the daily precipitation amount (RR) < 1 mm | days |
Consecutive wet days (CWD) | Maximum number of consecutive days with RR ≥ 1 mm | days |
Simple daily intensity index (SDII) | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | mm/days |
Very wet days (R95P) | Annual total PRCP when RR > 95th percentile | mm |
Extremely wet days (R99P) | Annual total PRCP when RR > 99th percentile | mm |
Annual total wet day precipitation (PRCPTOT) | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
Grade | Flood–Drought Index | Flood–Drought Types |
---|---|---|
L 1 | Z > 1.6485 | Extreme flood |
L 2 | 1.0364 < Z ≤ 1.6485 | Serious flood |
L 3 | 0.5244 < Z ≤ 1.0364 | Light flood |
L 4 | −0.5244 < Z ≤ 0.5244 | Normal |
L 5 | −1.0364 < Z ≤ −0.5244 | Light drought |
L 6 | −1.6485 < Z ≤ −1.0364 | Serious drought |
L 7 | Z ≤ −1.6485 | Extreme drought |
Indicator Name | 1961–1980 | 1981–2000 | 2001–2020 |
---|---|---|---|
CDD | 132.92 (25.08) | 129.16 (19.82) | 113.65 (24.4) |
CWD | 5.58 (0.34) | 5.75 (0.45) | 5.95 (0.62) |
R95P | 15.11 (4.41) | 22.07 (8.97) | 24.91 (10.62) |
R99P | 4.64 (2.51) | 6.68 (3.57) | 7.43 (5.2) |
PRCPTOT | 100.93 (11.53) | 116.57 (20.64) | 124.31 (20.46) |
R10MM | 0.61 (0.22) | 0.89 (0.38) | 1.03 (0.48) |
R20MM | 0.04 (0.04) | 0.07 (0.05) | 0.07 (0.07) |
R25MM | 0.01 (0.02) | 0.02 (0.02) | 0.02 (0.03) |
SDII | 2.60 (0.17) | 2.75 (0.26) | 2.78 (0.23) |
SU | 83.49 (3.69) | 84.25 (4.29) | 90.16 (3.53) |
TR | 10.86 (0.78) | 11.66 (1.43) | 13.97 (1.49) |
WSDI | 5.40 (4.46) | 6.28 (4.61) | 12.20 (6.34) |
ID | 88.15 (7.43) | 85.39 (5.2) | 82.22 (5.63) |
FD | 197.80 (3.88) | 194.3 (4.8) | 182.11 (3.66) |
CSDI | 12.12 (7.84) | 5.29 (5.31) | 2.86 (4.07) |
Z index | −0.37 (0.43) | 0.17 (0.57) | 0.22 (0.61) |
Method | Frequency > 30% | Frequency > 40% | Frequency > 50% |
---|---|---|---|
RF+LM | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR, WSDI | CDD, FD, PRCPTOT, R95P, SDII | PRCPTOT, R95P, SDII |
BSS+LM | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR, WSDI | CDD, CSDI, FD, ID, PRCPTOT, R95P, SDII | PRCPTOT, SDII |
RF+RF | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR | CDD, FD, PRCPTOT, R95P, SDII | PRCPTOT, R95P, SDII |
BSS+RF | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR, WSDI | CDD, CSDI, FD, ID, PRCPTOT, R95P, SDII | PRCPTOT, SDII |
RF+SVR | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR, WSDI | CDD, FD, PRCPTOT, R95P, SDII | PRCPTOT, R95P, SDII |
BSS+SVR | CDD, CSDI, CWD, FD, ID, PRCPTOT, R95P, R99P, SDII, TR, WSDI | CDD, CSDI, FD, ID, PRCPTOT, R95P, SDII | PRCPTOT, SDII |
Method | Mean R2 | Mean MSE |
---|---|---|
RF+LM | 0.24 | 0.71 |
BSS+LM | 0.29 | 0.66 |
RF+RF | 0.70 | 0.27 |
BSS+RF | 0.70 | 0.28 |
RF+SVR | 0.51 | 0.46 |
BSS+SVR | 0.50 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naibi, S.; Bao, A.; Yuan, Y.; Bao, J.; Hamdi, R.; Yu, T.; Huang, X.; Wang, T.; Li, T.; Jin, J.; et al. A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China. Remote Sens. 2025, 17, 1746. https://doi.org/10.3390/rs17101746
Naibi S, Bao A, Yuan Y, Bao J, Hamdi R, Yu T, Huang X, Wang T, Li T, Jin J, et al. A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China. Remote Sensing. 2025; 17(10):1746. https://doi.org/10.3390/rs17101746
Chicago/Turabian StyleNaibi, Sulei, Anming Bao, Ye Yuan, Jiayu Bao, Rafiq Hamdi, Tao Yu, Xiaoran Huang, Ting Wang, Tao Li, Jingyu Jin, and et al. 2025. "A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China" Remote Sensing 17, no. 10: 1746. https://doi.org/10.3390/rs17101746
APA StyleNaibi, S., Bao, A., Yuan, Y., Bao, J., Hamdi, R., Yu, T., Huang, X., Wang, T., Li, T., Jin, J., Long, G., & Termonia, P. (2025). A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China. Remote Sensing, 17(10), 1746. https://doi.org/10.3390/rs17101746