Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Determination Methods
2.2.1. Physicochemical Indices of the Water
2.2.2. Zooplankton
2.3. Division of Zooplankton Functional Groups
2.4. Data Processing and Analysis
2.4.1. Calculation of Dominant Species
2.4.2. Biodiversity
2.4.3. Canonical Correspondence Analysis (CCA)
2.4.4. Bray–Curtis Similarity Analysis
2.4.5. Pearson Correlation Analysis
2.4.6. Prediction of New Random Forest Model
2.4.7. Collinear Network of Zooplankton Functional Groups
3. Results
3.1. Composition of Functional Groups of Zooplankton
3.2. The Spatiotemporal Heterogeneity and Similarity Coefficients of Functional Groups of Zooplankton
3.3. Study on the Analysis of Physical and Chemical Indexes of Water from a Multidimensional Perspective
3.4. Predictive Modeling and Quantitative Evaluation of Functional Group Niches
4. Discussion
4.1. Analysis of Composition and Diversity of Zooplankton Communities in Arid Areas
Classifications | Diversity Index (H′) | Richness Index (d) |
---|---|---|
High | >4.0 | >4.0 |
Good | 3.0~4.0 | >4.0 |
Moderate | 2.0~3.0 | 2.5~4.0 |
Poor | 1.0~2.0 | <2.5 |
Bad | 0.0~1.0 | <2.5 |
4.2. Changes in Functional Community Characteristics of Zooplankton
4.3. Interaction of Zooplankton Functional Groups and Their Relationship with Water Environmental Factors
4.4. Quantitative Evaluation of Functional Group Ecological Niche Contribution Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Liu, Q.; Xiao, Y.; Dai, W.; Li, L. Evolutionary Patterns of Meandering Morphology in the Middle Reaches of the Tarim River Main Stem Over the Past Decade. J. Yangtze River Sci. Res. Inst. 2025, 42, 27–35. [Google Scholar]
- Zhang, X.; Lou, J.; Du, X.; Wang, Y.; Wang, J. Variation Characteristics of Summer Precipitation in Tarim River Basin and Its Relationship with Sea Surface Temperature. Mt. Meteorol. J. 2024, 48, 5–50. [Google Scholar]
- Zuo, J.; Qian, C. Evaluation of historical and future precipitation changes in CMIP6 over the Tarim River Basin. Theor. Appl. Climatol. 2022, 150, 1659–1675. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Xu, C.; Hao, X. Effects of climate change on water resources in Tarim River Basin, Northwest China. J. Environ. Sci. 2007, 19, 488–493. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Chen, X. Seasonal changes of NDVI in the arid and semi-arid regions of Northwest China and its influencing factors. Arid Zone Res. 2023, 40, 1969–1981. [Google Scholar]
- Ma, R.; Li, Z.; Cai, C.; Wang, J. The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena 2014, 121, 279–287. [Google Scholar] [CrossRef]
- Sun, M.; Shen, X.; Xu, H.; Shajiang·Aili, A. Dynamics of ecosystem service values in the Tarim River Basin. Catena 2025, 12, 1484950. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, F.; Li, Y.; Wang, D. Study on the relationship between water resources utilization and economic growth in tarim river basin from the perspective of water footprint. Water 2022, 14, 1655. [Google Scholar] [CrossRef]
- Bai, T.; Feng, Q.; Liu, D.; Ju, C. Reservoir Risk Operation of ‘Domestic-Production-Ecology’ Water Supply Based on Runoff Forecast Uncertainty. Water Resour. Manag. 2024, 38, 3369–3388. [Google Scholar] [CrossRef]
- Hu, R.; Chang, J.; Guo, A.; Wang, Y. Ecosystem variation and ecological benefits analysis of the mainstream of Tarim River. Arid Land Geogr. 2024, 47, 622–633. [Google Scholar]
- Song, J.; Hou, C.; Liu, Q.; Wu, X.; Wang, Y.; Yi, Y. Spatial and temporal variations in the plankton community because of water and sediment regulation in the lower reaches of Yellow River. J. Clean. Prod. 2020, 261, 120972. [Google Scholar] [CrossRef]
- Chai, Z.; Wang, H.; Deng, Y.; Hu, Z.; Tang, Y. Harmful algal blooms significantly reduce the resource use efficiency in a coastal plankton community. Sci. Total Environ. 2020, 704, 135381. [Google Scholar] [CrossRef] [PubMed]
- Fintelman-Oliveira, E.; Kruk, C.W.C.; Lacerot, G.; Klippel, G.; Branco, C. Zooplankton functional groups in tropical reservoirs: Discriminating traits and environmental drivers. Hydrobiologia 2023, 850, 365–384. [Google Scholar] [CrossRef]
- da Silva Camilo, G.; de Freitas Terra, B.; Araújo, F.G. Using the relationship between taxonomic and functional diversity to assess functional redundancy in streams of an altered tropical watershed. Environ. Biol. Fishes 2018, 101, 1395–1405. [Google Scholar] [CrossRef]
- Malashenkov, D.; Zelalem, W. Phytoplankton Functional Groups and Size Diversity Reflect the Environmental Conditions and Trophic State in the High-Altitude Tropical Lake (Lake Tana, Ethiopia). SSRN: Rochester, NY, USA, 2022; p. 4060120. [Google Scholar] [CrossRef]
- Weithoff, G. The concepts of ‘plant functional types’ and ‘functional diversity’in lake phytoplankton–a new understanding of phytoplankton ecology? Freshw. Biol. 2003, 48, 9. [Google Scholar] [CrossRef]
- Adl, S.M.; Bass, D.; Lane, C.E.; Lukeš, J.; Schoch, C.L.; Smirnov, A.; Zhang, Q. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019, 66, 4–119. [Google Scholar] [CrossRef]
- Fiorendino, J.M.; Gaonkar, C.C.; Henrichs, D.W.; Campbell, L. Drivers of microplankton community assemblage following tropical cyclones. J. Plankton Res. 2023, 45, 205–220. [Google Scholar] [CrossRef]
- Chaffron, S.; Delage, E.; Budinich, M.; Vintache, D.; Henry, N.; Nef, C. Environmental vulnerability of the global ocean plankton community interactome. Sci. Adv. 2021, 7, 35. [Google Scholar] [CrossRef]
- Chen, W.; Ren, K.; Isabwe, A.; Chen, H.; Yang, J. Correction to: Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 2019, 7, 1. [Google Scholar] [CrossRef]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Ferrenberg, S. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar] [CrossRef]
- Zhang, Y. Intra-annual variation analysis of runoff in the headstream area of Tarim River basin. South-to-North Water Transf. Water 2014, 12, 124–128. [Google Scholar]
- Zhou, H.; Shen, M.; Chen, J.; Xia, J.; Hong, S. Trends of natural runoffs in the Tarim River Basin during the last 60 years. Arid Land Geogr. 2018, 41, 221–229. [Google Scholar]
- Wei, F. Water and Wastewater Monitoring and Analysis Methods, 4th ed.; China Environmental Science Press: Beijing, China, 2002; pp. 88–124. [Google Scholar]
- Jiang, X.; Du, N. Funa Sinica CRUSTACEA Freshwater Copepoda, 1st ed.; Science Press: Beijing, China, 1979; pp. 53–418. [Google Scholar]
- Jiang, X.; Du, N. Funa Sinica CRUSTACEA Freshwater Cladocera, 1st ed.; Science Press: Beijing, China, 1979; pp. 80–271. [Google Scholar]
- Wang, J. Chinese Freshwater Rotifers, 1st ed.; Science Press: Beijing, China, 1961; pp. 22–282. [Google Scholar]
- Huang, X. Application of a simple weighing method to common rotifer species in Lake Donghu, Wuhan. Acta Hydrobiol. Sin. 1981, 3, 409–416. [Google Scholar]
- Chen, X. Measurement of freshwater copepod biomass. Acta Hydrobiol. Sin. 1981, 3, 397–408. [Google Scholar]
- Dodson, S.I.; Arnott, S.E.; Cottingham, K.L. The relationship in lake communities between primary productivity and species richness. Ecology 2000, 81, 2662–2679. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, Y.; Hu, F.; Gu, G. Ecological study of zooplankton in the estuarine frontal zone of Yangtze River Estuary I: Biomass and horizontal distribution of dominant species. J. Fish. Sci. China 1995, 3, 49–58. [Google Scholar]
- Li, C.; Jia, X.; Cai, W. Diversity of marine zooplankton in the north of South China Sea. J. Fish. Sci. China 2004, 2, 52–59. [Google Scholar]
- Xiao, L.; Wang, T.; Hu, R.; Han, B.; Wang, S.; Qian, X. Succession of phytoplankton functional groups regulated by mon-soonal hydrology in a large canyon-shaped reservoir. Water Res. 2011, 45, 5099–5109. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Shang, S.; Jia, L.; Wang, S.; Yin, X.; Bai, H. Zooplankton functional groups and their response to water physiochemical factors in Jixi Wetland Park in Jinan. J. Hydroecol. 2023, 44, 113–121. [Google Scholar]
- Shi, X.; Sun, J.; Wang, J.; Lucas-Borja, M.; Pandey, A.; Wang, T.; Huang, Z. Tree species richness and functional composition drive soil nitrification through ammonia-oxidizing archaea in subtropical forests. Soil Biol. Biochem. 2023, 187, 8. [Google Scholar] [CrossRef]
- Annabi-Trabelsi, N.; Guermazi, W.; Leignel, V.; Al-Enezi, Y.; Karam, Q.; Ali, M.; Belmonte, G. Effects of eutrophication on plankton abundance and composition in the Gulf of Gabès (Mediterranean Sea, Tunisia). Water 2022, 14, 2230. [Google Scholar] [CrossRef]
- Tartarotti, B.; Rastl, N.; Sommer, F. Zooplankton Communities in Mountain Reservoirs of the Eastern Alps. Sci. Total Environ. 2025, 967, 178764. [Google Scholar] [CrossRef]
- Guermazi, W.; El-Khateeb, M.; Abu-Dalo, M.; Sallemi, I.; Al-Rahahleh, B.; Rekik, A.; Annabi-Trabelsi, N. Assessment of the zooplankton community and water quality in an artificial freshwater lake from a semi-arid area (Irbid, Jordan). Water 2023, 15, 2796. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Zhou, G.; Peng, B.; Ouyang, J. To analysis and survey on the plankton about Tarim River of the Duolang Reservoir. J. Tarim Univ. 2011, 23, 30–36. [Google Scholar]
- Venello, T.A.; Sastri, A.R.; Galbraith, M.D.; Dower, J.F. Zooplankton functional group responses to environmental drivers off the west coast of Vancouver Island, Canada. Prog. Oceanogr. 2021, 190, 102482. [Google Scholar] [CrossRef]
- Chen, F.; Xie, P. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake. J. Freshw. Ecol. 2003, 18, 97–104. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, G.; Qin, B.; Zhang, G.; Wang, L.; Gao, Y.; Zhong, C. Effect of the ingestion of metazooplankton on the formation of Microcystis blooms in summer in Lake Taihu. J. Lake Sci. 2013, 25, 398–405. [Google Scholar]
- Huang, F.; Wu, C. Regression equations of the Body weight to Body length for Common Freshwater Species of Cladocera. In Crustacean Zoology Papers, 1st ed.; Guan, G., Shi, L., Eds.; China Environmental Science Press: Beijing, China, 2002; pp. 147–158. [Google Scholar]
- Cottenie, K.; Nuytten, N.; Michels, E.; De Meester, L. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 2001, 442, 339–350. [Google Scholar] [CrossRef]
- Ning, X.; Lin, C.; Su, J.; Liu, C.; Hao, Q.; Le, F.; Tang, Q. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960–1996. Hydrobiologia 2010, 57, 1079–1091. [Google Scholar] [CrossRef]
- Chainho, P.; Costa, J.L.; Chaves, M.L.; Dauer, D.M.; Costa, M.J. Influence of seasonal variability in benthic invertebrate community structure on the use of biotic indices to assess the ecological status of a Portuguese estuary. Mar. Pollut. Bull. 2007, 54, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- He, W. Community structure of phytoplankton and its relationship with water environmental factors in Pangduo Reservoir, Xizang. J. Anhui Agric. Sci. 2025, 1–5. [Google Scholar]
- Wang, T.; Yang, Z. Study on the Perme ability of the four plain reservoir in Xinjiang production and construction corps the first division. J. Tarim Univ. 2009, 21, 110–116. [Google Scholar]
- Zhang, F.; Li, Q.; Zhou, X.; Zhang, J.; Shen, Y. Phytoplankton Community Structure and Biodiversity in the Chongqing Section of the Yangtze River Basin. J. Chongqing Norm. Univ. (Nat. Sci.) 2024, 41, 86–102. [Google Scholar]
- Martin, G.K.; Beisner, B.E.; Chain, F.J.; Cristescu, M.E.; Del Giorgio, P.A.; Derry, A.M. Freshwater zooplankton metapopulations and metacommunities respond differently to environmental and spatial variation. Ecology 2021, 102, e03224. [Google Scholar] [CrossRef]
- Puppin-Gonçalves, C.T.; Bento, D.M.; Perbiche-Neves, G.; Ferreira, R.L.; Souza-Silva, M.; Becker, V.; Dias, J.D. Exploring uncharted waters: Insights into groundwater zooplankton of the Brazilian semiarid region. Aquat. Sci. 2024, 86, 88. [Google Scholar] [CrossRef]
- Yousef, E.A.; El-Mallah, A.M.; Abdel-Baki, A.A.S.; Al-Quraishy, S.; Reyad, A.; Abdel-Tawab, H. Effect of Environmental Variables on Zooplankton in Various Habitats of the Nile River. Water 2024, 16, 915. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Epele, L.B.; Mayora, G.; Aquino, D.; Mora, C.; Quintana, R.; Mesa, L. Hydro-climatic changes promote shifts in zooplankton composition and diversity in wetlands of the Lower Paraná River Delta. Hydrobiologia 2022, 849, 3463–3480. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, L.; Zhu, X.; Huang, S.; Xue, J.; Wu, H. Ecological features of zooplankton community of Hongshan Reservoir in Xinjiang. Arid Land Geogr. 2011, 34, 1002–1008. [Google Scholar]
- Li, X.; Yu, H.; Ma, C. Zooplankton community structure in relation to environmental factors and ecological assessment of water quality in the Harbin Section of the Songhua River. Chin. J. Oceanol. Limnol. 2014, 32, 1344–1351. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Jeppesen, E.; Chen, Y.; Liu, X. Horizontal distribution of pelagic crustacean zooplankton biomass and body size in contrasting habitat types in Lake Poyang, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Liu, X.; Lu, Q.; Chen, J.; Liang, T.; Wang, W.; Ouyan, S.; Zhou, C.; Wu, X. Seasonal and spatial variability of zooplankton diversity in the Poyang Lake Basin using DNA metabarcoding. Ecol. Evol. 2022, 12, e8972. [Google Scholar] [CrossRef] [PubMed]
- Kruk, C.; Devercelli, M.; Huszar, V.L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 2021, 848, 113–129. [Google Scholar] [CrossRef]
- Lavaniegos, B.E.; Molina-González, O.; Murcia-Riaño, M. Zooplankton functional groups from the California Current and climate variability during 1997–2013. Cicimar Oceánides 2015, 30, 45–62. [Google Scholar] [CrossRef]
- Jantawong, N.; Padhye, S.M.; Maiphae, S. Biodiversity and species-environment relationships of freshwater zooplankton in tropical urban ponds. Urban Ecosyst. 2024, 27, 827–840. [Google Scholar] [CrossRef]
- Fernández de Puelles, M.L.; Gazá, M.; Cabanellas-Reboredo, M.; Santandreu, M.D.M.; Irigoien, X.; González-Gordillo, J.I.; Hernández-León, S. Zooplankton abundance and diversity in the tropical and subtropical ocean. Diversity 2019, 11, 203. [Google Scholar] [CrossRef]
- He, R.; Xiao, B.; Hu, R.; Tang, H.; Wei, J.; Wu, P. Niche and interspecific association of dominant zooplankton species near the Taishan coastal area in the South China Sea. Diversity 2025, 204, 106929. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Liu, Q.; Peng, S.; Mai, Y.; Lai, Z. Dominant zooplankton species and their ecological niches under different hydrologic regimes in rivers of the Pearl River Delta. J. Hydroecol. 2019, 40, 37–44. [Google Scholar]
- An, R. Effects of zooplankton functional groups on phytoplankton functional groups in Sanhuanpao Wetland. Prot. For. Sci. Technol. 2018, 8, 56–59. [Google Scholar]
- Liu, J.; Zou, H.; Deng, F.; Liu, Y.; Li, W.; Xu, J.; Liu, S.; Wu, Q.; Zhang, X.; Weng, F.; et al. Phytoplankton functional groups in Poyang Lake: Succession and driving factors. J. Oceanol. Limnol. 2024, 42, 1764–1776. [Google Scholar] [CrossRef]
- Joehnk, K.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.; Stroom, J. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef]
- Wang, J.; Huo, Z.; Guo, C.; Zhu, G.; Gong, Z.; Fan, Y.; Wang, J. Vertical distribution characteristics and influencing factors of phytoplankton community structure in Qiandao Lake. Environ. Sci. 2022, 43, 3575–3586. [Google Scholar]
- Evans, L.E.; Hirst, A.G.; Kratina, P.; Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 2020, 43, 581–590. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Li, F.; Liu, S.; You, Y.; Liu, C. Enhanced Assessment of Water Quality and Pollutant Source Apportionment Using APCS-MLR and PMF Models in the Upper Reaches of the Tarim River. Water 2024, 16, 21. [Google Scholar] [CrossRef]
- Bomfim, F.F.; Braghin, L.S.; Bonecker, C.C.; Lansac-Tôha, F.A. High food availability linked to dominance of small zooplankton in a subtropical floodplain. Int. Rev. Hydrobiol. 2018, 103, 26–34. [Google Scholar] [CrossRef]
- He, B.; He, J.; Wang, J.; Li, J.; Wang, F. Abnormal pH elevation in the Chaobai River, a reclaimed water intake area. Environ. Sci. Process. Impacts 2017, 19, 111–122. [Google Scholar] [CrossRef]
- Huang, G. Analysis of causes and countermeasures and measures for high pH value of Huilong Reservoir in Yanshan County. Environ. Sci. Surv. 2022, 41, 17–20. [Google Scholar]
- Dos Santos, N.G.; Dos Santos, E.F.; Morari, P.H.R.; Chiarelli, L.J.; Castilho-Noll, M.S.M. Total nitrogen and pH are key variables for functional structure of zooplanktonic communities in an agropastoral landscape. Int. Rev. Hydrobiol. 2023, 891, 164031. [Google Scholar] [CrossRef]
- Portinho, J.L.; Nogueira, M.G. Does artificial drawdown affect zooplankton structure in shallow lakes? A short-term study in a tropical reservoir. Hydrobiologia 2017, 797, 303–318. [Google Scholar] [CrossRef]
- Verspagen, J.M.; Van de Waal, D.B.; Finke, J.F.; Visser, P.M.; Van Donk, E.; Huisman, J. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 2014, 9, e104325. [Google Scholar] [CrossRef] [PubMed]
- Price, G.A.; Stauber, J.L.; Holland, A.; Koppel, D.J.; Van Genderen, E.J.; Ryan, A.C.; Jolley, D.F. The influence of pH on zinc lability and toxicity to a tropical freshwater microalga. Environ. Toxicol. Chem. 2021, 40, 2836–2845. [Google Scholar] [CrossRef]
- Hamilton, T.L.; Bennett, A.C.; Murugapiran, S.K.; Havig, J.R. Anoxygenic phototrophs span geochemical gradients and diverse morphologies in terrestrial geothermal springs. Msystems 2019, 4, 6. [Google Scholar] [CrossRef]
- An, R.; Liu, Y.; Pan, C.; Da, Z.; Zhang, P.; Qiao, N.; Ba, S. Water quality determines protist taxonomic and functional group composition in a high-altitude wetland of international importance. Sci. Total Environ. 2023, 880, 163308. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.; Paturej, E. Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol. Indic. 2020, 112, 106007. [Google Scholar] [CrossRef]
- Amaral, D.C.; Dunck, B.; Braghin, L.S.; Fernandes, U.L.; Bomfim, F.F.; Bonecker, C.C.; Lansac-Toha, F.A. Predation by an omnivorous fish and food availability alter zooplankton functional diversity: A microcosm approach. An. Acad. Bras. Ciênc. 2021, 93 (Suppl. S3), e20200778. [Google Scholar] [CrossRef] [PubMed]
- De Meester, L.; Declerck, S.; Stoks, R.; Louette, G.; Van De Meutter, F.; De Bie, T.; Brendonck, L. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 715–725. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, Y.; Huang, X.; Ni, P.; Wu, Y.; Deng, Y.; Zhan, A. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environ. Pollut. 2019, 245, 290–299. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Yang, C.; Jiao, Y.; Liao, M.; Xiong, W.; Zhao, Y. Metazooplankton community structure in Wushan Lake stocked densely with planktivorous filter-feeding bighead and silver carp. Resour. Environ. Yangtze Basin 2021, 30, 1848–1857. [Google Scholar]
- Xu, S.N.; Chen, Z.Z.; Li, S.Y. The habitat functions of man-groves for aquatic fauna and fisheries. Acta Ecol. 2010, 30, 186–196. [Google Scholar]
- Gong, S.; Li, X.; Wu, J.; Chai, Y.; Yang, D.; Tan, F.; Zhu, T. Characteristics of plankton functional groups and their main influencing factors in Changhu Lake of Hubei Province during summer and autumn. Acta Hydrobiol. Sin. 2022, 46, 707–717. [Google Scholar]
- Zhang, Y.; Yin, Z.; Wang, Y.; Li, G.; Zhang, D.; Yang, J.; Tian, T. Zooplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, Lushun, China. Sustainability 2024, 16, 8590. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhang, L.L.; Yin, R.; Luan, H.N.; Liu, Z.J.; Chen, J.; Jiang, R.J. Spatial niches of dominant zooplankton species in Yueqing Bay, Zhejiang Province. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2021, 32, 342–348. [Google Scholar]
- Makarewicz, J.C.; Likens, G.E.; Makarewicz, J.C.; Likens, G.E. Niche analysis of a zooplankton community. Science 1975, 190, 1000–1003. [Google Scholar] [CrossRef]
Functional Group | Size/mm | Feeding Habits |
---|---|---|
Rotifer filter feeders, RF * | - | They feed on bacteria, algae, and organic matter |
Rotifer carnivora, RC * | - | They feed on protozoa, other rotifers, and small crustaceans |
Rotifer predators, RP | - | They feed mainly on algae |
Small copepods and claocera filter feeders, SCF * | <0.7 | They feed on bacteria, algae, organic matter, and protozoa |
Small copepods and claocera carnivora, SCC | <0.7 | They feed on rotifers, cladocera, dipteran insects (larvae of mosquitoes), and oligochaetes |
Middle copepods and claocera filter feeders, MCF * | 0.7~1.5 | They feed on bacteria, algae, organic matter, and protozoa |
Middle copepods and claocera carnivora, MCC * | 0.7~1.5 | They feed on rotifers, cladocera, dipteran insects (larvae of mosquitoes), and oligochaetes |
Large copepods and claocera filter feeders, LCF | >1.5 | They feed on bacteria, algae, organic matter, and protozoa |
Large copepods and claocera carnivora, LCC | >1.5 | They feed on rotifers, cladocera, dipterans (larvae of midges), and oligochaetes |
Species | Class | Functional Groups | Figure 6 Code |
---|---|---|---|
Polyarthra trigla | Rotifera | RC | RC1 |
Asplanchna priodonta | Rotifera | RC | RC2 |
Keratella valga | Rotifera | RF | RF1 |
Keratella cochlearis | Rotifera | RF | RF2 |
Pedalia mira | Rotifera | RF | RF3 |
Brachionus angularis | Rotifera | RF | RF4 |
Brachionus quadridentatus | Rotifera | RF | RF5 |
Trichocerca similis | Rotifera | RF | RF6 |
Conochiloides dossuarius | Rotifera | RF | RF7 |
Brachionus forficula | Rotifera | RF | RF8 |
Euchlanis dilatata | Rotifera | RF | RF9 |
Brachionus urceus | Rotifera | RF | RF10 |
Euchlanis sp. | Rotifera | RF | RF11 |
Synchaeta atylata | Rotifera | RF | RF12 |
Brachionus calyciflorus | Rotifera | RF | RF13 |
Trichotria tetractis | Rotifera | RF | RF14 |
Filinia maior | Rotifera | RF | RF15 |
Calanoida larva | Copepoda | SCF | SCF1 |
Nauplius | Copepoda | SCF | SCF2 |
Cyclopoida larvae | Copepoda | MCC | MCC1 |
Harpacticidae | Copepoda | SCF | SCF3 |
Mesocyclops leuckarti | Copepoda | MCC | MCC2 |
Chydorus sphaerricus | Cladocera | SCF | SCF4 |
Alona rectangula | Cladocera | SCF | SCF5 |
Diaphanosoma brachyurum | Cladocera | MCF | MCF1 |
Daphnia galeata | Cladocera | SCF | SCF6 |
Bosmina longirostris | Cladocera | MCF | MCF2 |
Bosmina coregoni | Cladocera | SCF | SCF7 |
Bosmina fatalis | Cladocera | SCF | SCF8 |
Types of Water Pollution | Diversity Index (H′) | Richness Index (d) |
---|---|---|
Oligosaprobic | >4.0 | >4.0 |
Lightly polluted | >3.0~4.0 | >3~4.0 |
β-Mesosaprobic | >1.0~3.0 | 2~3 |
α-Mesosaprobic to polysaprobic | 0~1 | 0~2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Zi, F.; Yun, L.; Huo, Q.; Yang, L.; Song, Y.; Chen, S. Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China. Biology 2025, 14, 732. https://doi.org/10.3390/biology14060732
Qiu X, Zi F, Yun L, Huo Q, Yang L, Song Y, Chen S. Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China. Biology. 2025; 14(6):732. https://doi.org/10.3390/biology14060732
Chicago/Turabian StyleQiu, Xuelian, Fangze Zi, Long Yun, Qiang Huo, Liting Yang, Yong Song, and Shengao Chen. 2025. "Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China" Biology 14, no. 6: 732. https://doi.org/10.3390/biology14060732
APA StyleQiu, X., Zi, F., Yun, L., Huo, Q., Yang, L., Song, Y., & Chen, S. (2025). Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China. Biology, 14(6), 732. https://doi.org/10.3390/biology14060732