The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Overview of the Study Area
2.2. Data and Preprocessing
2.3. The Research Methodology
2.3.1. The Land-Use Change Simulation
- The FLUS model
- 1.
- Suitability probability calculation based on an artificial neural network
- 2.
- The adaptive inertia coefficient
- 3.
- Neighborhood factors and weights
- Multi-scenario setting
- Accuracy verification
2.3.2. Projections of ESs
- Habitat quality
- Carbon stock
- Soil conservation
2.3.3. The Correlation Analysis
3. Results
3.1. Changes in the TRB’s Land Usage Throughout Time and Space
3.1.1. Changes in Land Usage Throughout Time and Space, 2000–2023
3.1.2. Land-Use Changes in 2035 for Different Scenarios
3.2. The Changes in ESs Under Different Scenarios in the TRB in 2035
3.2.1. Changes in Habitat Quality
3.2.2. Variations in the Carbon Stock
3.2.3. Changes in Soil Conservation
3.3. The Correlation Between Land-Use Types and ESs
4. Discussion
4.1. Analysis of Land-Use Change Attributions
4.2. A Comparative Analysis of the Land-Use and ESs Under Different Scenario
5. Conclusions
- The land-use in the TRB was dominated by barren land (55.12%) and grassland (30.28%) during the study period. Furthermore, the land-use pattern evolved significantly, showing a trend of decreasing barren land and the expansion of other types of land-use. Construction land experienced the fastest growth rate (653.54%), while cropland had a net growth rate of 8486.5 km2. Both forest land and grassland ecosystems showed a trend of positive recovery, but barren land area shrank by 15,627.25 km2.
- According to the prediction results of the FLUS model, the land-use in 2020–2035 under the three scenarios shows different trends. Under the EPS, ecological land-use expands (with increases in forest by 424.75 km2, grassland by 358.75 km2, and water by 409.5 km2) while the other land-use types decrease (a shrinkage of 1193 km2). Under the NDS, the trend is decreasing water, grassland, and impervious surfaces (decreases of 1162.25 km2, 4360.5 km2, and 137.5 km2, respectively) but increasing cropland, forest, and barren land (increases of 989 km2, 6 km2, and 4665.25 km2, respectively). Under the CPS, the area of ecological land expands, and the trend of growth in cropland and barren land is strengthened (expansions of 1163.5 km2 and 4677.25 km2, respectively).
- For 2020, HQ and carbon stock showed a pattern of “high at the edge and low in the center”, with the area of high soil conservation being located at the northern edge of the basin. According to the coupled FLUS-InVEST model, the value of ESs under the EPS increased compared with that in 2020 (a 3.37 × 106 t increase in carbon stock and a 18.54 × 106 t increase in soil conservation), while the trend of diminishing carbon stocks and soil conservation was reduced more under the CPS than the NDS, but the trend of reduced HQ was intensified (a 0.39 × 106 t reduction in carbon stock reductions and 70.18 × 106 t reduction in soil conservation). These findings indicate that of the three scenarios, the EPS is optimal for the sustainable development of the TRB. This suggests that future policy design needs to embed ecological restoration into the red line control for cropland. Synergistic gains in production and ecological functions should also be realized by constructing a composite ecosystem of cropland–forest–grassland.
- With positive correlations between habitat quality (r = 0.787), carbon stock (r = 0.527), and soil conservation (r = 0.477), grassland changes dominated the ecosystem service response under the NDS in the analysis of the correlation between land-use types and ecosystem services. The synergistic expansion of grassland and water under the EPS has a certain positive regulating effect on ecosystem functioning in terms of habitat quality (r = 0.446 for grassland; r = 0.47 for water); in the CPS, while the expansion of cropland improves soil conservation (r = 0.462), it worsens grassland degradation, and the correlation between habitat quality and grassland increases to 0.765, highlighting the conflict between trade-offs between ecological functions. This implies that improving the function of regional ecosystem services and achieving sustainable development can be accomplished through land-use optimization focused on ecological conservation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Ma, S.; Wen, Z. Optimization of land use structure to balance economic benefits and ecosystem services under uncertainties: A case study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, X. Dominant transition probability: Combining CA-Markov model to simulate land use change. Environ. Dev. Sustain. 2023, 25, 6829–6847. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Van Dessel, W.; Van Rompaey, A.; Szilassi, P. Sensitivity analysis of logistic regression parameterization for land use and land cover probability estimation. Int. J. Geogr. Inf. Sci. 2011, 25, 489–508. [Google Scholar] [CrossRef]
- Çağlıyan, A.; Dağlı, D. Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey. Sustainability 2022, 14, 9180. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, H. Understanding Arable Land change patterns and driving forces in Major Grain-Producing areas: A case study of Sichuan Province using the PLUS Model. Land 2023, 12, 1443. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhang, J.; Wang, J.; Wang, G.; Shan, Y.; Zheng, H. Simulation of wetland distribution in the Yellow River Basin based on an improved Markov-FLUS model. Environ. Res. Lett. 2024, 19, 104001. [Google Scholar] [CrossRef]
- Li, H.; Fang, C.; Xia, Y.; Liu, Z.; Wang, W. Multi-scenario simulation of production-living-ecological space in the Poyang Lake area based on remote sensing and RF-Markov-FLUS model. Remote Sens. 2022, 14, 2830. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow River Basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Villa, F.; Ceroni, M.; Bagstad, K.; Johnson, G.; Krivov, S. ARIES (Artificial Intelligence for Ecosystem Services): A new tool for ecosystem services assessment, planning, and valuation. In Proceedings of the 11th Annual BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity, Venice, Italy, 21–22 September 2009. [Google Scholar]
- Zhang, J.; Zhang, Z.; Liu, L.; Cao, Y.; Zhang, M.; Yuan, Z.; Ma, R.; Liu, X.; Liu, Y. Scaling effects of ecosystem service trade-off and synergy in arid inland river basins: A case study of the Manas River Basin of Xinjiang, China. Ecol. Indic. 2025, 173, 113358. [Google Scholar] [CrossRef]
- Han, P.; Yang, G.; Wang, Z.; Liu, Y.; Chen, X.; Zhang, W.; Zhang, Z.; Wen, Z.; Shi, H.; Lin, Z. Driving Factors and Trade-Offs/Synergies Analysis of the Spatiotemporal Changes of Multiple Ecosystem Services in the Han River Basin, China. Remote Sens. 2024, 16, 2115. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, M.; Tan, Z.; Zhu, L.; Guo, Y.; Li, Y.; Wu, C. Ecosystem service trade-offs and synergies relationships and their driving factor analysis based on the Bayesian belief Network: A case study of the Yellow River Basin. Ecol. Indic. 2024, 163, 112070. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Z.; Lin, J.; Wang, H.; Zheng, S.; Yang, S. Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2024, 12, 298–312. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Liang, E.; Ni, J. Structural Characteristics of Endorheic Rivers in the Tarim Basin. Remote Sens. 2022, 14, 4502. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xia, T.; Li, Y.; Li, Z. Land-use function evolution and eco-environmental effects in the tarim river basin from the perspective of production–living–ecological space. Front. Environ. Sci. 2022, 10, 1004274. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Chen, Y.N.; Sun, C.J.; Xiang, Y.Y.; Hao, H.C. Changes in Water Storage and Oasis Ecological Security Assessment in the Tarim River Basin. Arid. Land Geogr. 2024, 47, 1–14. [Google Scholar]
- Aishan, T.; Halik, Ü.; Betz, F.; Tiyip, T.; Ding, J.; Nuermaimaiti, Y. Stand structure and height-diameter relationship of a degraded Populus euphratica forest in the lower reaches of the Tarim River, Northwest China. J. Arid. Land 2015, 7, 544–554. [Google Scholar] [CrossRef]
- Tang, H.; Wang, L.; Wang, Y. Spatial and Temporal Variation Characteristics of Vegetation Cover in the Tarim River Basin, China, and Analysis of the Driving Factors. Sustainability 2025, 17, 1414. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Li, J. Impact of climate change on water resources in the Tarim River basin. Water Resour. Manag. 2004, 18, 439–458. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Tao, H.; Jiang, T.; Chen, Y.D. Climate changes and their impacts on water resources in the arid regions: A case study of the Tarim River basin, China. Stoch. Environ. Res. Risk Assess. 2010, 24, 349–358. [Google Scholar] [CrossRef]
- Guo, H.; Cai, Y.; Yang, Z.; Zhu, Z.; Ouyang, Y. Dynamic simulation of coastal wetlands for Guangdong-Hong Kong-Macao Greater Bay area based on multi-temporal Landsat images and FLUS model. Ecol. Indic. 2021, 125, 107559. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating remote sensing and a markov-FLUS model to simulate future land use changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, P.; Xiong, P.; Li, C.; Quan, B. Spatial pattern simulation of land use based on FLUS model under ecological protection: A case study of Hengyang City. Sustainability 2021, 13, 10458. [Google Scholar] [CrossRef]
- Zhang, X.R.; Li, A.N.; Nan, X.; Lei, G.; Wang, C. Multi-scenario simulation of land use changes in the China-Pakistan Economic Corridor based on coupled FLUS and SD models. J. Geo-Inf. Sci. 2020, 22, 2393–2409. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Spatio-temporal evolution and multi-scenario prediction of ecosystem carbon storage in Chang-Zhu-Tan Urban agglomeration based on the FLUS-InVEST Model. Sustainability 2024, 16, 7025. [Google Scholar] [CrossRef]
- Jeong, A.; Kim, M.; Lee, S. Analysis of priority conservation areas using habitat quality models and MaxEnt models. Animals 2024, 14, 1680. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, Z.; Wang, H.; Xue, X.; Hu, J.; Yang, Y. Characterization and Multi-Scenario Prediction of Habitat Quality Evolution in the Bosten Lake Watershed Based on the InVEST and PLUS Models. Sustainability 2024, 16, 4202. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Wang, Y.; Jia, X.; Hao, L.; Jin, K.; Song, J. Urban bird diversity conservation plan based on the MaxEnt model and InVEST model: A case study of Jinan, China. Ecol. Indic. 2025, 174, 113463. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide. In The Natural Captial Projest; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis-Saint Paul, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Gland, Switzerland, 2017. [Google Scholar]
- Zhang, X.; Li, M.; Wu, J.; He, Y.; Niu, B. Alpine grassland aboveground biomass and theoretical livestock carrying capacity on the Tibetan Plateau. J. Resour. Ecol. 2022, 13, 129–141. [Google Scholar]
- Fu, W.; Xia, W.H.; Fan, T.S.; Zhou, Z.; Huo, Y. Scenario projection analysis of ecosystem carbon stocks in the Tarim River Basin. Arid. Land Geogr. 2024, 47, 634–647. [Google Scholar]
- Jian, Z.; Sun, Y.; Wang, F.; Zhou, C.; Pan, F.; Meng, W.; Sui, M. Soil conservation ecosystem service supply-demand and multi scenario simulation in the Loess Plateau, China. Glob. Ecol. Conserv. 2024, 49, e02796. [Google Scholar] [CrossRef]
- Wang, X.; Lin, M.; Ding, Z.; Zhou, J.; Wang, C.; Chen, J. Ecological health assessment of Kaikong River Basin based on automatic screening of indicators in Xinjiang. Acta Ecol. Sin. 2020, 40, 4302–4315. [Google Scholar]
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, H.; Deng, S.; Zhou, X.; Nie, S. Spatiotemporal variation of ecosystem services value and its response to land use change in the Yangtze river basin, China. Int. J. Environ. Res. 2024, 18, 17. [Google Scholar] [CrossRef]
- Sun, G.L.; Lu, H.Y.; Zheng, J.X.; Liu, Y.Y.; Ran, Y.J. Spatial-temporal evolution and driving forces of ecological vulnerability in Xinjiang. Arid. Zone Res. 2022, 39, 258–269. [Google Scholar] [CrossRef]
- Xia, X.X.; Zhu, L.; Yang, A.M.; Jin, H.; Zhang, Q.Q. Evaluation of the Positive and Negative Values of Ecosystem Services Based on the Mountain-Oasis-Desert System (MODS): A Case Study of the Manas River Basin in Xinjiang. Acta Ecol. Sin. 2020, 40, 3921–3934. [Google Scholar]
- Fu, B. Ecological and environmental effects of land-use changes in the Loess Plateau of China. Chin. Sci. Bull. 2022, 67, 3769–3779. [Google Scholar] [CrossRef]
- Cao, C.; Luo, Y.; Xu, L.; Xi, Y.; Zhou, Y. Construction of ecological security pattern based on InVEST-Conefor-MCRM: A case study of Xinjiang, China. Ecol. Indic. 2024, 159, 111647. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Gou, A. Research on the evolution characteristics, driving mechanisms and multi-scenario simulation of habitat quality in the Guangdong-Hong Kong-Macao Greater Bay based on multi-model coupling. Sci. Total Environ. 2024, 924, 171263. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, L.; Chen, Z.; Wu, T.; Chen, X.; Li, Y. The impact of land use change on carbon storage and multi-scenario prediction in Hainan Island using InVEST and CA-Markov models. Front. For. Glob. Change 2024, 7, 1349057. [Google Scholar] [CrossRef]
- Qi, M. Study on Ecosystem Service Functions in Inner Mongolia Autonomous Region Based on PLUS-InVEST Model. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.Y.; Xu, L.; Gao, W.X. Response of Habitat Quality to Land Use Change and Driving Forces in the Tarim River Basin. Arid. Zone Res. 2024, 41, 2132–2142. [Google Scholar] [CrossRef]
- Xia, W.; Ma, Y.; Gao, Y.; Huo, Y.; Su, X. Spatial-temporal pattern and spatial convergence of carbon emission intensity of rural energy consumption in China. Environ. Sci. Pollut. Res. 2024, 31, 7751–7774. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Wang, R.; Zheng, P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J. Clean. Prod. 2018, 172, 1529–1534. [Google Scholar] [CrossRef]
Data Type | Data Name | Data Sources |
---|---|---|
Land-use data | Annual China Land Cover Dataset | http://www.chinasem.cn/clcd (accessed on 16 February 2025) |
Data on land-use change drivers | Digital Elevation Model (DEM) | http://www.gscloud.cn/ (accessed on 16 February 2025) |
Calculated Slope | ||
Slope Direction | ||
Normalized Difference Vegetation Index (NDVI) | http://www.resdc.cn/ (accessed on 16 February 2025) | |
Average Annual Temperature | ||
Average Annual Precipitation | ||
Population Density | ||
Gross Domestic Product (GDP) | ||
Potential Evapotranspiration (PET) | ||
Distance from a Road | http://www.dsac.cn/ (accessed on 16 February 2025) | |
Distance from a Train | ||
Soil Data | http://www.ncdc.ac.cn (accessed on 16 February 2025) |
Land-Use Type | Cropland | Forest | Grassland | Water | Barren | Impervious |
---|---|---|---|---|---|---|
Weight of neighborhood | 0.7 | 0.4 | 0.4 | 0.4 | 0.5 | 1 |
Type | NDS | EPS | CPS | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
e | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
Threat Factor | Max_Distance (km) | Weight | Type of Spatial Decay |
---|---|---|---|
Cropland | 4 | 0.6 | linear |
Impervious surfaces | 7 | 0.7 | exponential |
Barren land | 4 | 0.3 | linear |
Land-Use Type | Habitat Quality | Impervious Surface | Cropland | Barren Land |
---|---|---|---|---|
Cropland | 0.35 | 0.64 | 0 | 0.36 |
Forest | 1 | 0.7 | 0.6 | 0.45 |
Grassland | 0.9 | 0.7 | 0.6 | 0.6 |
Water | 0.95 | 0.6 | 0.5 | 0.3 |
Barren land | 0.15 | 0 | 0.1 | 0 |
Impervious surface | 0 | 0 | 0 | 0 |
Land-Use Type | Aboveground Carbon | Underground Carbon | Soil Carbon | Dead Organic Carbon |
---|---|---|---|---|
Cropland | 3.4705 | 4.1202 | 86.215 | 1.24 |
Forest | 36.9664 | 10.9131 | 121.3471 | 2.48 |
Grassland | 0.5839 | 5.1317 | 85.0168 | 0.22 |
Water | 0.7648 | 0.5428 | 0 | 0 |
Barren land | 0.5428 | 1.0362 | 43.3855 | 0 |
Impervious surfaces | 1.8833 | 1.7352 | 0 | 0 |
Change in Area Unit: km2 | Rate of Change Unit: % | |||||
---|---|---|---|---|---|---|
2000 | 2010 | 2023 | 2000–2010 | 2010–2023 | 2000–2023 | |
Cropland | 20,168.75 | 25,204.5 | 28,655.25 | 24.97% | 13.69% | 42.08% |
Forest | 859 | 924 | 1183.75 | 7.57% | 28.11% | 37.81% |
Grassland | 105,356 | 105,892.75 | 109,997.75 | 0.51% | 3.88% | 4.41% |
Water | 20,704 | 23,366.75 | 20,845.75 | 12.86% | −10.79% | 0.68% |
Barren land | 215,861.5 | 205,956 | 200,234.25 | −4.59% | −2.78% | −7.24% |
Impervious surfaces | 311 | 1129.75 | 2343.5 | 263.26% | 51.79% | 653.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, X.; Wang, Y.; Xia, T. The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios. Sustainability 2025, 17, 5607. https://doi.org/10.3390/su17125607
Xue X, Wang Y, Xia T. The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios. Sustainability. 2025; 17(12):5607. https://doi.org/10.3390/su17125607
Chicago/Turabian StyleXue, Xuan, Yang Wang, and Tingting Xia. 2025. "The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios" Sustainability 17, no. 12: 5607. https://doi.org/10.3390/su17125607
APA StyleXue, X., Wang, Y., & Xia, T. (2025). The Simulation of Coupled “Natural–Social” Systems in the Tarim River Basin: Spatial and Temporal Variability in the Soil–Habitat–Carbon Under Multiple Scenarios. Sustainability, 17(12), 5607. https://doi.org/10.3390/su17125607