Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = Stokes problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4907 KB  
Article
The Development of a Mesh-Free Technique for the Fractional Model of the Inverse Problem of the Rayleigh–Stokes Equation with Additive Noise
by Farzaneh Safari and Xingya Feng
Fractal Fract. 2025, 9(8), 551; https://doi.org/10.3390/fractalfract9080551 - 21 Aug 2025
Viewed by 120
Abstract
We are especially interested in the general framework and ability of a semi-analytic method (SAM) to use the trigonometric basis function (TBF) in different domains. Moreover, the stabilizing effect of increasing boundary nodes on the convergence of the method when a level of [...] Read more.
We are especially interested in the general framework and ability of a semi-analytic method (SAM) to use the trigonometric basis function (TBF) in different domains. Moreover, the stabilizing effect of increasing boundary nodes on the convergence of the method when a level of noise is added to the boundary data of the inverse boundary value problem for the nonlinear Rayleigh–Stokes (R-S) equation is investigated. The solution of the ill-conditioned Rayleigh–Stokes equation which the equation is reduced to the linear system [C]= with corrupted boundary data by quasilinearization technical on nonlinear source terms relies on TBFs and radial basis functions (RBFs). Finally, the implementation of the scheme is supported by the numerical experiments. Full article
Show Figures

Figure 1

17 pages, 327 KB  
Review
Renormalization Group and Effective Field Theories in Magnetohydrodynamics
by Amir Jafari
Fluids 2025, 10(8), 188; https://doi.org/10.3390/fluids10080188 - 23 Jul 2025
Viewed by 343
Abstract
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder [...] Read more.
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder singular; (ii) the breakdown of Laplacian determinism of classical physics (spontaneous stochasticity or super chaos) in turbulence; and (iii) the possibility of eliminating the notion of magnetic field lines in magnetized plasmas, using instead magnetic path lines as trajectories of Alfvénic wave packets. These methodologies are then exemplified with their application to the problem of magnetic reconnection—rapid change in magnetic field pattern that accelerates plasma—a ubiquitous phenomenon in astrophysics and laboratory plasmas. Renormalizing rough velocity and magnetic fields on any finite scale l in turbulence inertial range, to remove singularities, implies that magnetohydrodynamic equations should be regarded as effective field theories with running parameters depending upon the scale l. A high wave-number cut-off should also be introduced in fluctuating equations of motion, e.g., Navier–Stokes, which makes them effective, low-wave-number field theories rather than stochastic differential equations. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
18 pages, 1709 KB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 362
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

32 pages, 3446 KB  
Article
Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
by Shahid Hussain, Xinlong Feng, Arafat Hussain and Ahmed Bakhet
Fractal Fract. 2025, 9(7), 445; https://doi.org/10.3390/fractalfract9070445 - 4 Jul 2025
Viewed by 554
Abstract
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and [...] Read more.
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and P2P1) for spatial discretization of velocity and pressure. This approach addresses the key challenges of fractional models, including nonlocality and memory effects, while maintaining stability in the presence of the nonlinear damping term γ|u|r2u, for r2. We prove unconditional stability for both semi-discrete and fully discrete schemes and derive optimal error estimates for the velocity and pressure components. Numerical experiments validate the theoretical results. Convergence tests using exact solutions, along with benchmark problems such as backward-facing channel flow and lid-driven cavity flow, confirm the accuracy and reliability of the method. The computed velocity contours and streamlines show close agreement with analytical expectations. This scheme is particularly effective for capturing anomalous diffusion in Newtonian and turbulent flows, and it offers a strong foundation for future extensions to viscoelastic and biological fluid models. Full article
Show Figures

Figure 1

25 pages, 2703 KB  
Article
Strategy Analysis of Seamlessly Resolving Turbulent Flow Simulations
by Stefan Heinz
Aerospace 2025, 12(7), 597; https://doi.org/10.3390/aerospace12070597 - 30 Jun 2025
Viewed by 282
Abstract
Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy simulation (DES) and [...] Read more.
Modeling of wall-bounded turbulent flows, in particular the hybridization of the Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods, has faced serious questions for decades. Specifically, there is continuous research of how usually applied methods such as detached eddy simulation (DES) and wall-modeled LES (WMLES) can be made more successful in regard to complex, high-Reynolds-number (Re) flow simulations. The simple question is how it is possible to enable reliable and cost-efficient predictions of high-Re wall-bounded turbulent flows in particular under conditions where data for validation are unavailable. This paper presents a strict analysis of strategies for the design of seamlessly resolving turbulent flow simulations for a wide class of turbulence models. The essential conclusions obtained are the following ones: First, by construction, usually applied methods like DES are incapable of systematically spanning the range from modeled to resolved flow simulations, which implies significant disadvantages. Second, a strict solution for this problem is given by novel continuous eddy simulation (CES) methods, which perform very well. Third, the design of a computational simplification of CES that still outperforms DES appears to be very promising. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3233 KB  
Article
Mathematical Modeling of the Influence of Electrical Heterogeneity on the Processes of Salt Ion Transfer in Membrane Systems with Axial Symmetry Taking into Account Electroconvection
by Ekaterina Kazakovtseva, Evgenia Kirillova, Anna Kovalenko and Mahamet Urtenov
Inventions 2025, 10(4), 50; https://doi.org/10.3390/inventions10040050 - 30 Jun 2025
Viewed by 257
Abstract
This article proposes a 3D mathematical model of the influence of electrical heterogeneity of the ion exchange membrane surface on the processes of salt ion transfer in membrane systems with axial symmetry; in particular, we investigate an annular membrane disk in the form [...] Read more.
This article proposes a 3D mathematical model of the influence of electrical heterogeneity of the ion exchange membrane surface on the processes of salt ion transfer in membrane systems with axial symmetry; in particular, we investigate an annular membrane disk in the form of a coupled system of Nernst–Planck–Poisson and Navier–Stokes equations in a cylindrical coordinate system. A hybrid numerical–analytical method for solving the boundary value problem is proposed, and a comparison of the results for the annular disk model obtained by the hybrid method and the independent finite element method is carried out. The areas of applicability of each of these methods are determined. The proposed model of an annular disk takes into account electroconvection, which is understood as the movement of an electrolyte solution under the action of an external electric field on an extended region of space charge formed at the solution–membrane boundary under the action of the same electric field. The main regularities and features of the occurrence and development of electroconvection associated with the electrical heterogeneity of the surface of the membrane disk of the annular membrane disk are determined; namely, it is shown that electroconvective vortices arise at the junction of the conductivity and non-conductivity regions at a certain ratio of the potential jump and angular velocity and flow down in the radial direction to the edge of the annular membrane. At a fixed potential jump greater than the limiting one, the formed electroconvective vortices gradually decrease with an increase in the angular velocity of rotation until they disappear. Conversely, at a fixed value of the angular velocity of rotation, electroconvective vortices arise at a certain potential jump, and with its subsequent increase gradually increase in size. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

18 pages, 606 KB  
Article
Two-Way Conversion Between Fifth-Order Stokes Wave Theories
by Hsien-Kuo Chang, Yang-Yih Chen and Jin-Cheng Liou
AppliedMath 2025, 5(3), 78; https://doi.org/10.3390/appliedmath5030078 - 27 Jun 2025
Viewed by 288
Abstract
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a [...] Read more.
Stokes wave is a classical problem in physics. Various Stokes wave theories in different forms have been developed to help us better understand their characteristics and for engineering applications. Exploring whether these Stokes wave theories can be converted into each other is a mathematical issue. We select three Stokes wave theories with different expansion parameters, all expressed in terms of water depth measured from the mean water level (MWL). Using series reversion to convert between the different expansions, we successfully transform the expressions for the velocity potential, wave profile, and dynamic properties between two of the Stokes wave theories. Through this conversion, we identify an incorrect expression for the water level in one Stokes wave theory. Full article
Show Figures

Figure 1

24 pages, 11046 KB  
Article
A Theoretical Analysis of the Effects That the Glycocalyx and the Internal Elastic Lamina Have on Nitric Oxide Concentration Gradients in the Arterial Wall
by Yaroslav R. Nartsissov and Irena P. Seraya
Antioxidants 2025, 14(6), 747; https://doi.org/10.3390/antiox14060747 - 17 Jun 2025
Viewed by 566
Abstract
Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) [...] Read more.
Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) in the endothelium. Then, it diffuses into the smooth muscle wall causing a vasodilatation, and it can also be diluted in a lumen blood stream. In the present study, we analyzed a convectional reaction–diffusion of NO in a 3D digital phantom of a short segment of small arteries. NO concentrations were analyzed by applying numerical solutions to the boundary problems, which included the Navier–Stokes equation, Darcy’s law, varying consumption of NO, and the dependence of NOS activity on shear stress. All the boundary problems were evaluated using COMSOL Multiphysics software ver. 5.5. The role of two diffusive barriers surrounding the endothelium producing NO was theoretically proven. When the eNOS rate remains unchanged, an increase in the fenestration of the internal elastic lamina (IEL) and a decrease in the diffusive permeability of a thin layer of endothelial surface glycocalyx (ESG) lead to a notable rise in the NO concentration in the vascular wall. The alterations in pore count in IEL and the viscosity of ESG are considered to be involved in the physiological and pathological regulation of NO concentrations. Full article
(This article belongs to the Special Issue Nitric Oxide and Redox Mechanisms)
Show Figures

Figure 1

20 pages, 7607 KB  
Article
An Aeroelastic Solution Method Using an Implicit Dynamic Approach
by Weiji Wang, Wei Qian, Zheng Chen and Xinyu Ai
Aerospace 2025, 12(6), 546; https://doi.org/10.3390/aerospace12060546 - 16 Jun 2025
Cited by 1 | Viewed by 451
Abstract
This paper presents an innovative aeroelastic solution method called the implicit dynamic approach (IDA). The IDA is a novel technique implemented to address the complexities of structural displacement and fluid–structure interactions. At the core of this method lie the Navier–Stokes equations, which are [...] Read more.
This paper presents an innovative aeroelastic solution method called the implicit dynamic approach (IDA). The IDA is a novel technique implemented to address the complexities of structural displacement and fluid–structure interactions. At the core of this method lie the Navier–Stokes equations, which are pivotal for resolving the unsteady aerodynamic forces for studying aeroelasticity. This paper develops a time-step-coupling data-solving interface that bridges the structural dynamic and fluid dynamic domains, ensuring a seamless integration of these two critical aspects of aeroelastic analysis. To substantiate the credibility of the IDA, the aeroelastic responses of a two-dimensional wing and the benchmark supercritical wing (BSCW) are analyzed. The results obtained from these models demonstrate the IDA’s credibility and stability. The IDA proves to be reliable in predicting aeroelastic responses and offers a powerful tool for analyzing aeroelastic problems. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Graphical abstract

21 pages, 12520 KB  
Article
Stress Estimation in Viscous Flows Using an Iterative Tikhonov Regularized Stokes Inverse Model
by Yuanhao Gao, Yang Wang and Jizhou Zhang
Mathematics 2025, 13(11), 1884; https://doi.org/10.3390/math13111884 - 4 Jun 2025
Viewed by 349
Abstract
In this paper, we propose and develop a stationary Stokes Inverse Model (SIM) to estimate the stress distributions that are difficult to measure directly in flows. We estimate the driving stresses from the velocities by solving the inverse problem governed by Stokes equations [...] Read more.
In this paper, we propose and develop a stationary Stokes Inverse Model (SIM) to estimate the stress distributions that are difficult to measure directly in flows. We estimate the driving stresses from the velocities by solving the inverse problem governed by Stokes equations under iterative Tikhonov (IT) regularization. We investigate the heuristic L-curve criterion to determine the proper regularization parameter. The solution existence and uniqueness for the Stokes inverse problem have been analyzed. We also conducted convergence analysis and error estimation for perturbed data, providing a fast and stable convergence. The finite element method is applied to the numerical approach. Following the theoretical investigation and formulation, we validate the model and demonstrate that the velocity data closely match the velocity fields that were reconstructed using the computed stress distributions. In particular, the proposed SIM can be used to reliably derive the stress distributions for the flows governed by the Stokes equations with small Reynolds number. Additionally, the model is robust to a certain number of perturbations, which enables the precise and effective estimation of the stress distributions. The proposed stationary SIM may be widely applicable in the estimation of stresses from experimental velocity fields in engineering and biological applications. Full article
(This article belongs to the Special Issue Mathematical Modeling for Fluid Mechanics)
Show Figures

Figure 1

11 pages, 288 KB  
Article
Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces
by Muhammad Zainul Abidin and Abid Khan
Fractal Fract. 2025, 9(6), 360; https://doi.org/10.3390/fractalfract9060360 - 29 May 2025
Viewed by 417
Abstract
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild [...] Read more.
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild solution for small and divergence-free initial data. Moreover, our approach is based on proving sharp bilinear convolution estimates in critical Sobolev norms, which in turn guarantee the uniform analyticity of both the velocity and magnetic fields with respect to time. Furthermore, leveraging the decay properties of the associated fractional heat semigroup and a bootstrap argument, we derived algebraic decay rates and established the long-time dissipative behavior of FrMHD solutions. These results extended the existing literature on fractional Navier–Stokes equations by fully incorporating magnetic coupling and Coriolis effects within a unified fractional-dissipation framework. Full article
28 pages, 400 KB  
Article
Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity
by Jianzhong Zhang, Weixuan Shi and Minggang Han
Axioms 2025, 14(6), 411; https://doi.org/10.3390/axioms14060411 - 28 May 2025
Viewed by 313
Abstract
This paper investigates the Cauchy problem for the full compressible Navier–Stokes–Korteweg equations, which model fluid dynamics with capillary properties in Rd(d3). And the global well-posedness and Gevrey analytic of strong solutions for the system are established [...] Read more.
This paper investigates the Cauchy problem for the full compressible Navier–Stokes–Korteweg equations, which model fluid dynamics with capillary properties in Rd(d3). And the global well-posedness and Gevrey analytic of strong solutions for the system are established in the L2Lp type critical hybrid Besov space with 2p2dd2 and p<d. Full article
15 pages, 1957 KB  
Article
General Solutions for Magnetohydrodynamic Unidirectional Motions of a Class of Fluids with Power-Law Dependence of Viscosity on Pressure Through a Planar Channel
by Constantin Fetecau and Dumitru Vieru
Mathematics 2025, 13(11), 1800; https://doi.org/10.3390/math13111800 - 28 May 2025
Viewed by 247
Abstract
An analytical study is conducted on unsteady, one-directional magnetohydrodynamic (MHD) flows of electrically conducting, incompressible, and viscous fluids, where the viscosity varies with pressure following a power-law relationship. The flow takes place within a planar channel and is driven by the lower plate, [...] Read more.
An analytical study is conducted on unsteady, one-directional magnetohydrodynamic (MHD) flows of electrically conducting, incompressible, and viscous fluids, where the viscosity varies with pressure following a power-law relationship. The flow takes place within a planar channel and is driven by the lower plate, which moves along its own plane with an arbitrary, time-dependent speed. The effects of gravitational acceleration are also considered. General exact formulas are derived for both the dimensionless velocity of the fluid and the resulting non-zero shear stress. Moreover, these are the only general solutions for the MHD motions of the fluids considered, and they can produce precise solutions for any motion of this type for respective fluids. The proposed analytical method leads to simple forms of analytical solutions and can be useful in the study of other cases of fluids with viscosity depending on pressure. As an example, solutions related to the modified Stokes’ second problem are presented and confirmed through graphical validation. These solutions also help highlight the impact of the magnetic field on fluid dynamics and determine the time needed for the system to achieve a steady state. Graphical representations indicate that a steady state is reached more quickly and the fluid moves more slowly when a magnetic field is applied. Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

18 pages, 656 KB  
Article
Sustainability Accounting and Reporting: An Ablative Reflexive Thematic Analysis of Climate Crisis via Conservative or Radical Reform Paradigms
by Simon Huston
Sustainability 2025, 17(11), 4943; https://doi.org/10.3390/su17114943 - 28 May 2025
Viewed by 702
Abstract
Despite the climate crisis, a significant barrier to sustainability is limitations to the current accounting and reporting system. These deficiencies, mean the global financial system continues to invest trillions of dollars annually in environmentally sub-optimal projects. To catalyze the economic transition away from [...] Read more.
Despite the climate crisis, a significant barrier to sustainability is limitations to the current accounting and reporting system. These deficiencies, mean the global financial system continues to invest trillions of dollars annually in environmentally sub-optimal projects. To catalyze the economic transition away from fossil-fuel and plastic configurations to more sustainable ones, sustainability accounting and reporting (SAR) is imperative. However, theoretical contention, pragmatic concerns, and costs stoke strong resistance to SAR. The research used ablative thematic analysis to apply hermeneutic phenomenology. First, it scanned the backdrop to the SAR problem and identified a corpus of recent literature from key associated institutions. The initial interpretation of the texts disentangled SAR’s conflicting threads and generated three themes of ‘climate crisis’ and ‘conservative’ or more ‘radical’ SAR reform paradigms. Iteratively harnessing these thematic lenses, the investigation re-examined the SAR literature corpus. The textual ‘dialogue’ generated understanding of the fragmented SAR responses to the climate crisis. Accordingly, the research reformulated its first theme to ‘dystopic climate crisis fragmentation’ and refined the other themes to take account of materiality and the split between Anglo-Saxon (IFRS, SSAB) or global (UN) and continental European accounting institutions (EU, GRI). Conservatives retain a single materiality investor-focus and concede only incremental standard improvements. Radicals seek to implement double materiality with a broader spectrum of stakeholders in mind. Both approaches have theoretical as well as pragmatic advantages and disadvantages, so the SAR contention rumbles on. Whilst the standard-setting landscape is evolving, disagreements remain. Its roots of contention are philosophical and pragmatic. Philosophically, radicals strive to temper libertarian anarcho-capitalist proclivities and broaden firm responsibility. Pragmatically, social, or environmental externalities are problematic to assign or measure. Given vested interests in the destructive status quo, it would be naïve to expect a harmonious SAR Ithaca to emerge anytime soon. Yet the challenges impel an intensification of SAR dialogue and concrete actions. Rather than a scientifically nomothetic contribution, the paper provides a qualitative, artful interpretation of a complex, contentious but crucial field. Full article
Show Figures

Figure 1

29 pages, 2543 KB  
Article
A Finite Element–Finite Volume Code Coupling for Optimal Control Problems in Fluid Heat Transfer for Incompressible Navier–Stokes Equations
by Samuele Baldini, Giacomo Barbi, Giorgio Bornia, Antonio Cervone, Federico Giangolini, Sandro Manservisi and Lucia Sirotti
Mathematics 2025, 13(11), 1701; https://doi.org/10.3390/math13111701 - 22 May 2025
Viewed by 500
Abstract
In this work, we present a numerical approach for solving optimal control problems for fluid heat transfer applications with a mixed optimality system: an FEM code to solve the adjoint solution over a precise restricted admissible solution set and an open-source well-known code [...] Read more.
In this work, we present a numerical approach for solving optimal control problems for fluid heat transfer applications with a mixed optimality system: an FEM code to solve the adjoint solution over a precise restricted admissible solution set and an open-source well-known code for solving the state problem defined over a different one. In this way, we are able to decouple the optimality system and use well-established and validated numerical tools for the physical modeling. Specifically, two different CFD codes, OpenFOAM (finite volume-based) and FEMuS (finite element-based), have been used to solve the optimality system, while the data transfer between them is managed by the external library MEDCOUPLING. The state equations are solved in the finite volume code, while the adjoint and the control are solved in the finite element code. Two examples taken from the literature are implemented in order to validate the numerical algorithm: the first one considers a natural convection cavity resulting from a Rayleigh–Bénard configuration, and the second one is a conjugate heat transfer problem between a fluid and a solid region. Full article
Show Figures

Figure 1

Back to TopTop