Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity
Abstract
:1. Introduction
2. Preliminary
2.1. An Overview of Besov Spaces and Their Properties
- Assuming then
- Assuming , and then .
- The space admits a continuous embedding into the space of bounded continuous functions (which decay at infinity if further ).
- If and , then for all and
- Assuming and , then for any and
2.2. Some Nonlinear Estimates Involving Besov Gevrey Regularity
3. Reformulation of System (2) and Main Results
4. The Proof of Theorem 1
4.1. The Linearized System
4.2. Global Estimates in for System (13)
4.3. The First Part of the Proof of Theorem 1
4.4. A Priori Estimates for Gevrey Regularity
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.Z.; He, L.; Zhao, H.J. Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data. Z. Angew. Math. Phys. 2017, 68, 79. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Zhao, H.J. Existence and nonlinear stability solutions to the full compressible Navier-Stokes-Korteweg system. J. Math. Pures Anal. 2014, 101, 330–371. [Google Scholar] [CrossRef]
- Hou, X.F.; Peng, H.J.; Zhu, C.J. Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Anal. Real World Appl. 2018, 43, 18–53. [Google Scholar] [CrossRef]
- Hou, X.F.; Yao, L.; Zhu, C.J. Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system. J. Math. Anal. Appl. 2017, 448, 421–446. [Google Scholar] [CrossRef]
- Sha, K.J.; Li, Y.P. Low Mach number limit of the three-dimensional full compressible Navier-Stokes-Korteweg equations. Z. Angew. Math. Phys. 2019, 70, 169. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Z. Decay estimates of the Non-isentropic compressible fluid model of Korteweg type in R3. Commun. Math. Sci. 2014, 12, 1437–1456. [Google Scholar] [CrossRef]
- Łebek, M.; Panfil, M. Navier-Stokes equations for nearly integrable quantum gases. Phys. Rev. Lett. 2025, 134, 010405. [Google Scholar] [CrossRef]
- Jüngel, A. Global weak solutions to compressible Navier-Stokes equationsfor quantum fluids. SIAM J. Math. Anal. 2011, 42, 1025–1045. [Google Scholar] [CrossRef]
- Jüngel, A.; Milisic, J.P. Quantum Navier-Stokes equations. In Progress in Industrial Mathematics at ECMI 2010; Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M., Eds.; Springer: Berlin, Germany, 2012; pp. 427–439. [Google Scholar]
- Van der Waals, J.F. Thermodynamische theorie der kapillarität unter voraussetzung stetiger dichteänderung. Phys. Chem. 1894, 13, 657–725. [Google Scholar]
- Korteweg, D.J. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité. Arch. Néer. Sci. Exactes Nat. 1901, 6, 1–24. [Google Scholar]
- JDunn, E.; Serrin, J. On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 1985, 88, 95–133. [Google Scholar]
- Keim, J.; Munz, C.-D.; Christian, R. A relaxation model for the non-isothermal Navier-Stokes-Korteweg equations in confined domains. J. Comput. Phys. 2023, 474, 111830. [Google Scholar] [CrossRef]
- Wu, G.C.; Zhang, Y.H.; Zou, L. Optimal large-time behavior of the two-phase fluid model in the whole space. SIAM J. Math. Anal. 2020, 52, 5748–5774. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhu, C.J. Global existence and optimal convergence rates for the strong solutions in H2 to the 3D viscous liquid-gas two-phase flow model. J. Differ. Equ. 2015, 258, 2315–2338. [Google Scholar] [CrossRef]
- Hattori, H.; Li, D.N. The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J. Partial Differ. Equ. 1996, 9, 323–342. [Google Scholar]
- Kotschote, M. Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 2010, 12, 473–484. [Google Scholar] [CrossRef]
- Kotschote, M. Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 2014, 63, 21–51. [Google Scholar] [CrossRef]
- Li, Y.P. Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force. J. Math. Anal. Appl. 2012, 388, 1218–1232. [Google Scholar] [CrossRef]
- Wang, W.J.; Wang, W.K. Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force. Discrete Contin. Dyn. Syst. 2015, 35, 513–536. [Google Scholar] [CrossRef]
- Li, Y.P.; Liu, H.Y.; Yin, R. Large-time behavior of solutions to outflow problem of full compressible Navier-Stokes-Korteweg equations. Nonlinear Anal. Real World Appl. 2025, 82, 104248. [Google Scholar] [CrossRef]
- Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Grundlehren der mathematischen Wissenschaften; Springer: Berlin, Germany, 2011; Volume 343. [Google Scholar]
- Wang, Y.Z.; Wang, Y.X. Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space. Math. Methods Appl. Sci. 2018, 41, 9592–9606. [Google Scholar] [CrossRef]
- Danchin, R.; Desjardins, B. Existence of solutions for compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré Anal. Nonlinear 2001, 18, 97–133. [Google Scholar] [CrossRef]
- Charve, F.; Danchin, R.; Xu, J. Gevrey and decay for the compressible Navier-Stokes system with capillarity. Indiana Univ. Math. J. 2021, 70, 1903–1944. [Google Scholar] [CrossRef]
- Kawashima, S.; Shibata, Y.; Xu, J. The Lp energy methods and decay for the compressible Navier-Stokes equations with capillarity. J. Math. Pure. Appl. 2021, 154, 146–184. [Google Scholar] [CrossRef]
- Chikami, N.; Kobayashi, T. Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces. J. Math. Fluid Mech. 2019, 21, 31. [Google Scholar] [CrossRef]
- Zhang, S.H. A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces. J. Evol. Equ. 2020, 20, 1531–1561. [Google Scholar] [CrossRef]
- Song, Z.H. Global dynamics of large solution for the compressible Navier-Stokes-Korteweg equations. Calc. Var. Partial Differ. Equ. 2024, 63, 112. [Google Scholar] [CrossRef]
- Haspot, B. Existence of strong solutions for nonisothermal Korteweg system. Ann. Math. Blaise Pascal 2009, 16, 431–481. [Google Scholar] [CrossRef]
- Vishik, M.M. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. De L’école Norm. Supérieure 1999, 32, 769–812. [Google Scholar] [CrossRef]
- Chemin, J.-Y. Théorèmes d’unicité pour le systèm de Navier-Stokes tridimensionnel. J. Amal. Math. 1999, 77, 27–50. [Google Scholar]
- Chemin, J.-Y.; Lerner, N. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 1995, 121, 314–328. [Google Scholar] [CrossRef]
- Chen, Q.L.; Miao, C.X.; Zhang, Z.F. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Commun. Pur. Appl. Math. 2010, 63, 1173–1224. [Google Scholar] [CrossRef]
- Danchin, R.; Xu, J. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Rational Mech. Anal. 2017, 224, 53–90. [Google Scholar] [CrossRef]
- Xu, J. A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations. Commun. Math. Phys. 2019, 371, 525–560. [Google Scholar] [CrossRef]
- Shi, W.X.; Xu, J. A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical Lp framework. J. Differ. Equ. 2019, 266, 6426–6458. [Google Scholar] [CrossRef]
- Xin, Z.P.; Xu, J. Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. J. Differ. Equ. 2021, 274, 543–575. [Google Scholar] [CrossRef]
- Shi, W.X.; Xu, J. The large-time behavior of solutions in the critical Lp framework for compressible viscous and heat-conductive gas flows. J. Math. Phys. 2020, 61, 061516. [Google Scholar] [CrossRef]
- Haspot, B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal. 2011, 202, 427–460. [Google Scholar] [CrossRef]
- Hoff, D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 1995, 120, 215–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shi, W.; Han, M. Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity. Axioms 2025, 14, 411. https://doi.org/10.3390/axioms14060411
Zhang J, Shi W, Han M. Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity. Axioms. 2025; 14(6):411. https://doi.org/10.3390/axioms14060411
Chicago/Turabian StyleZhang, Jianzhong, Weixuan Shi, and Minggang Han. 2025. "Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity" Axioms 14, no. 6: 411. https://doi.org/10.3390/axioms14060411
APA StyleZhang, J., Shi, W., & Han, M. (2025). Global Analysis of Compressible Navier–Stokes–Korteweg Equations: Well-Posedness and Gevrey Analyticity. Axioms, 14(6), 411. https://doi.org/10.3390/axioms14060411