Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces
Abstract
1. Introduction
2. Preliminaries
- (1)
- For all zero-divergence test functions , the following distributional identities hold:
- (2)
- The energy inequality holds for all :
- (3)
- The scaling property demonstrates that, if denotes a solution for any with the scaled functionsIt follows that the norm is scaling invariant for both w and G, since
3. Key Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chemin, J.Y.; Desjardins, B.; Gallagher, I.; Grenier, E. Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier–Stokes Equations; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Abidin, M.Z.; Marwan, M.; Kalsoom, H.; Omer, O.A. On the Global Well-Posedness of Rotating Magnetohydrodynamics Equations with Fractional Dissipation. Fractal Fract. 2022, 6, 340. [Google Scholar] [CrossRef]
- Wang, W.H.; Wu, G. Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations. Acta Math. Sin. Engl. Ser. 2018, 34, 992–1000. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Zhao, D. Global existence of 3D rotating magnetohydrodynamic equations arising from Earth’s fluid core. Netw. Heterog. Media 2025, 20, 35–51. [Google Scholar] [CrossRef]
- Davidson, P.A. An Introduction to Magnetohydrodynamics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Lin, F.; Zhang, P. Global small solutions to an MHD-type system in . Commun. Pure Appl. Math. 2014, 67, 531–580. [Google Scholar] [CrossRef]
- Pan, R.; Zhou, Y.; Zhu, Y. Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes. Arch. Ration. Mech. Anal. 2018, 227, 637–662. [Google Scholar] [CrossRef]
- Jin, M.; Jiu, Q.; Xie, Y. Global well-posedness and optimal decay for incompressible MHD equations with fractional dissipation and magnetic diffusion. Z. Angew. Math. Phys. 2024, 75, 73. [Google Scholar] [CrossRef]
- Ye, W.K.; Yin, Z.Y. Global well-posedness for the non-viscous MHD equations with magnetic diffusion in critical Besov spaces. Acta Math. Sin. Engl. Ser. 2022, 38, 1493–1511. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J.C. Global well-posedness of generalized magnetohydrodynamics equations in variable exponent Fourier–Besov–Morrey spaces. Acta Math. Sin. Engl. Ser. 2022, 38, 2187–2198. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Y. Stability of 2D inviscid MHD equations with only vertical magnetic diffusion on . J. Math. Phys. 2023, 64, 11. [Google Scholar] [CrossRef]
- Jiu, Q.; Liu, J. Global regularity for the 3D axisymmetric MHD equations with horizontal dissipation and vertical magnetic diffusion. Discret. Contin. Dyn. Syst. 2015, 35, 301–322. [Google Scholar] [CrossRef]
- Lin, H.; Wu, J.; Zhu, Y. Global solutions to 3D incompressible MHD system with dissipation in only one direction. SIAM J. Math. Anal. 2023, 55, 4570–4598. [Google Scholar] [CrossRef]
- Feng, W.; Wang, W.; Wu, J. Nonlinear stability for the 2D incompressible MHD system with fractional dissipation in the horizontal direction. J. Evol. Equ. 2023, 23, 32. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Zheng, D. Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion. Z. Angew. Math. Phys. 2023, 74, 44. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, Y. Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems. SIAM J. Math. Anal. 2018, 50, 1432–1470. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yamazaki, K. Remarks on the global regularity issue of the two-and-a-half-dimensional Hall-magnetohydrodynamics system. Z. Angew. Math. Phys. 2022, 73, 217. [Google Scholar] [CrossRef]
- Regmi, D.; Wu, J. Global regularity for the 2D magneto-micropolar equations with partial dissipation. J. Math. Study 2016, 49, 169–194. [Google Scholar] [CrossRef]
- Wu, J. The 2D magnetohydrodynamic equations with partial or fractional dissipation. In Lectures on the Analysis of Nonlinear Partial Differential Equations; International Press: Somerville, MA, USA, 2018; pp. 283–332. [Google Scholar]
- Li, Y. Large time behavior of the solutions to 3D incompressible MHD system with horizontal dissipation or horizontal magnetic diffusion. Calc. Var. Partial Differ. Equ. 2024, 63, 43. [Google Scholar] [CrossRef]
- Cao, C.; Regmi, D.; Wu, J. The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 2013, 254, 2661–2681. [Google Scholar] [CrossRef]
- Burattini, P.; Zikanov, O.; Knaepen, B. Decay of magnetohydrodynamic turbulence at low magnetic Reynolds number. J. Fluid Mech. 2010, 657, 502–538. [Google Scholar] [CrossRef]
- Fujita, H.; Kato, T. On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef]
- Chemin, J.Y.; Gallagher, I. Well–posedness and stability results for the Navier–Stokes equations in . Ann. Inst. H. Poincaré Anal. Non Linéaire 2009, 26, 599–624. [Google Scholar] [CrossRef]
- Kato, T. Strong Lp solutions of the Navier–Stokes equations in with applications to weak solutions. Math. Z. 1984, 187, 471–480. [Google Scholar] [CrossRef]
- Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
- Wu, J. Generalized MHD equations. J. Differ. Equ. 2003, 195, 284–312. [Google Scholar] [CrossRef]
- Zhou, Y. Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2007, 24, 491–505. [Google Scholar] [CrossRef]
- Chae, D. On the regularity conditions for the Navier–Stokes and related equations. Rev. Mat. Iberoam. 2007, 23, 371–384. [Google Scholar] [CrossRef]
- Duan, N. Well-Posedness and Decay of Solutions for Three-Dimensional Generalized Navier–Stokes Equations. Comput. Math. Appl. 2018, 76, 1026–1033. [Google Scholar] [CrossRef]
- Wu, J. The generalized incompressible Navier–Stokes equations in Besov spaces. Dyn. Partial Differ. Eq. 2004, 1, 381–400. [Google Scholar] [CrossRef]
- Abidin, M.Z.; Chen, J. Global well-posedness for fractional Navier–Stokes equations in variable exponent Fourier–Besov–Morrey spaces. Acta Math. Sci. 2021, 41, 164–176. [Google Scholar] [CrossRef]
- Marinrubio, P.; Robinson, J.C.; Sadowski, W. Solutions of the 3D Navier–Stokes Equations for Initial Data in Ḣ1/2: Robustness of Regularity and Numerical Verification of Regularity for Bounded Sets of Initial Data in Ḣ1. J. Math. Anal. Appl. 2013, 400, 76–85. [Google Scholar] [CrossRef]
- Frick, P.; Noskov, V.; Denisov, S.; Stepanov, R. Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium. Phys. Rev. Lett. 2010, 105, 184502. [Google Scholar] [CrossRef] [PubMed]
- Constantin, P.; Wu, J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 1999, 30, 937–948. [Google Scholar] [CrossRef]
- Wu, H.; Fan, J. Weak–strong uniqueness for the generalized Navier–Stokes equations. Appl. Math. Lett. 2012, 25, 423–428. [Google Scholar] [CrossRef]
- Robinson, J.C.; Rodrigo, J.L.; Sadowski, W. The Three-Dimensional Navier–Stokes Equations; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Miao, C.; Yuan, B.; Zhang, B. Well-posedness of the Cauchy problem for fractional power dissipative equations. Nonlinear Anal. 2008, 68, 461–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidin, M.Z.; Khan, A. Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces. Fractal Fract. 2025, 9, 360. https://doi.org/10.3390/fractalfract9060360
Abidin MZ, Khan A. Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces. Fractal and Fractional. 2025; 9(6):360. https://doi.org/10.3390/fractalfract9060360
Chicago/Turabian StyleAbidin, Muhammad Zainul, and Abid Khan. 2025. "Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces" Fractal and Fractional 9, no. 6: 360. https://doi.org/10.3390/fractalfract9060360
APA StyleAbidin, M. Z., & Khan, A. (2025). Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces. Fractal and Fractional, 9(6), 360. https://doi.org/10.3390/fractalfract9060360