Renormalization Group and Effective Field Theories in Magnetohydrodynamics
Abstract
1. Introduction
2. Renormalization
Anomalous Dissipation
3. Super-Diffusion and Super-Chaos
3.1. Effective Description of Stochastic Systems
“…certain formally deterministic fluid systems which possess many scales of motion are observationally indistinguishable from indeterministic systems; specifically, that two states of the system differing initially by a small “observational error” will evolve into two states differing as greatly as randomly chosen states of the system within a finite time interval, which cannot be lengthened by reducing the amplitude of the initial error.”
3.2. Spontaneous Stochasticity and Particle Advection
3.3. Chaos and Super-Chaos
3.4. Richardson Diffusion
3.5. Alfvénic Wave Packets
4. Magnetic Reconnection
5. Final Remarks and Conclusions
Funding
Conflicts of Interest
References
- Donev, A.; Fai, T.G.; Vanden-Eijnden, E. A reversible mesoscopic model of diffusion in liquids: From giant fluctuations to Fick’s law. J. Stat. Mech. Theory Exp. 2014, 2014, P04004. [Google Scholar] [CrossRef]
- Bedeaux, D.; Mazur, P. Renormalization of the diffusion coefficient in a fluctuating fluid I. Physica 1974, 73, 431–458. [Google Scholar] [CrossRef]
- Eyink, G.; Jafari, A. High Schmidt-number turbulent advection and giant concentration fluctuations. Phys. Rev. Res. 2022, 4, 023246. [Google Scholar] [CrossRef]
- Eyink, G.L. Stochastic flux freezing and magnetic dynamo. Phys. Rev. E 2011, 83, 056405. [Google Scholar] [CrossRef] [PubMed]
- Eyink, G.L.; Lazarian, A.; Vishniac, E.T. Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 2011, 743, 51. [Google Scholar] [CrossRef]
- Eyink, G.L.; Bandak, D. Renormalization group approach to spontaneous stochasticity. Phys. Rev. Res. 2020, 2, 043161. [Google Scholar] [CrossRef]
- Burkhart, B.; Stanimirović, S.; Lazarian, A.; Kowal, G. Characterizing magnetohydrodynamic turbulence in the Small Magellanic Cloud. Astrophys. J. 2009, 708, 1204. [Google Scholar] [CrossRef]
- Jafari, A.; Vishniac, E.; Vaikundaraman, V. Magnetic stochasticity and diffusion. Phys. Rev. E 2019, 100, 043205. [Google Scholar] [CrossRef]
- Lazarian, A.; Eyink, G.L.; Jafari, A.; Kowal, G.; Li, H.; Xu, S.; Vishniac, E.T. 3D turbulent reconnection: Theory, tests, and astrophysical implications. Phys. Plasmas 2020, 27, 012305. [Google Scholar] [CrossRef]
- Lazarian, A.; Vishniac, E.T. Reconnection in a Weakly Stochastic Field. Astrophys. J. 1999, 517, 700. [Google Scholar] [CrossRef]
- Lazarian, A.; Kowal, G.; Xu, S.; Jafari, A. 3D Turbulent Reconnection: 20 Years After. J. Physics Conf. Ser. 2019, 1332, 012009. [Google Scholar] [CrossRef]
- Jafari, A.; Vishniac, E. Topology and stochasticity of turbulent magnetic fields. Phys. Rev. E 2019, 100, 013201. [Google Scholar] [CrossRef]
- Jafari, A. Lagrangian approach to reconnection and topology change. Phys. Rev. E 2025, 111, 065212. [Google Scholar] [CrossRef]
- Eyink, G.L.; Aluie, H. The breakdown of Alfvén’s theorem in ideal plasma flows: Necessary conditions and physical conjectures. Phys. D Nonlinear Phenom. 2006, 223, 82–92. [Google Scholar] [CrossRef]
- Eyink, G.; Vishniac, E.; Lalescu, C.; Aluie, H.; Kanov, K.; Bürger, K.; Burns, R.; Meneveau, C.; Szalay, A. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature 2013, 497, 466–469. [Google Scholar] [CrossRef]
- Eyink, G.L. Turbulent General Magnetic Reconnection. Astrophys. J. 2015, 807, 137. [Google Scholar] [CrossRef]
- Eyink, G.L. Review of the Onsager “Ideal Turbulence” Theory. arXiv 2018, arXiv:1803.02223. [Google Scholar] [CrossRef]
- Eyink, G. Onsager’s ‘ideal turbulence’ theory. J. Fluid Mech. 2024, 988, P1. [Google Scholar] [CrossRef]
- Richardson, L.F.; Walker, G.T. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1926, 110, 709–737. [Google Scholar] [CrossRef]
- Bernard, D.; Gawedzki, K.; Kupiainen, A. Slow Modes in Passive Advection. J. Stat. Phys. 1998, 90, 519–569. [Google Scholar] [CrossRef]
- Mizerski, K.A. Renormalization group analysis of the magnetohydrodynamic turbulence and dynamo. J. Fluid Mech. 2021, 926, A13. [Google Scholar] [CrossRef]
- Canet, L. Functional renormalisation group for turbulence. J. Fluid Mech. 2022, 950, P1. [Google Scholar] [CrossRef]
- Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G. Turbulent reconnection and its implications. Philos. Trans. R. Soc. Lond. Ser. A 2015, 373, 20140144. [Google Scholar] [CrossRef]
- Kowal, G.; Lazarian, A.; Vishniac, E.T.; Otmianowska-Mazur, K. Numerical tests of fast reconnection in weakly stochastic magnetic fields. Astrophys. J. 2009, 700, 63–85. [Google Scholar] [CrossRef]
- Kowal, G.; Lazarian, A.; Vishniac, E.T.; Otmianowska-Mazur, K. Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 2012, 19, 297–314. [Google Scholar] [CrossRef]
- Beresnyak, A. Three-dimensional spontaneous magnetic reconnection. Astrophys. J. 2016, 834, 47. [Google Scholar] [CrossRef]
- Oishi, J.S.; Mac Low, M.M.; Collins, D.C.; Tamura, M. Self-generated turbulence in magnetic reconnection. Astrophys. J. Lett. 2015, 806, L12. [Google Scholar] [CrossRef]
- Kowal, G.; Falceta-Gonçalves, D.A.; Lazarian, A.; Vishniac, E.T. Statistics of Reconnection-driven Turbulence. Astrophys. J. 2017, 838, 91. [Google Scholar] [CrossRef]
- Takamoto, M.; Lazarian, A. Compressible relativistic magnetohydrodynamic turbulence in magnetically dominated plasmas and implications for strong-coupling-regime. Astrophys. J. Lett. 2016, 831, L11. [Google Scholar] [CrossRef]
- Takamoto, M. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence. Mon. Not. R. Astron. Soc. 2018, 476, 4263–4271. [Google Scholar] [CrossRef]
- Alfvén, H. On the existence of electromagnetic-hydrodynamic waves. Ark. Mat. Astron. Fys. 1942, 29B, 1–7. [Google Scholar] [CrossRef]
- Pontin, D.I.; Priest, E.R. Magnetic reconnection: MHD theory and modelling. Living Rev. Sol. Phys. 2022, 19, 1. [Google Scholar] [CrossRef]
- Eyink, G.L. Turbulence noise. J. Stat. Phys. 1996, 83, 955–1019. [Google Scholar] [CrossRef]
- Jafari, A.; Vishniac, E.; Vaikundaraman, V. Statistical analysis of stochastic magnetic fields. Phys. Rev. E 2020, 101, 022122. [Google Scholar] [CrossRef]
- Drivas, T.D.; Eyink, G.L. A Lagrangian fluctuation–dissipation relation for scalar turbulence. Part I. Flows with no bounding walls. J. Fluid Mech. 2017, 829, 153–189. [Google Scholar] [CrossRef]
- Onsager, L. Statistical hydrodynamics. Il Nuovo Cimento (1943–1954) 1949, 6, 279–287. [Google Scholar] [CrossRef]
- Bitane, R.; Homann, H.; Bec, J. Geometry and violent events in turbulent pair dispersion. J. Turbul. 2013, 14, 23–45. [Google Scholar] [CrossRef]
- Kolmogorov, A. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Akad. Nauk SSSR Dokl. 1941, 30, 301–305. [Google Scholar]
- Norton, J. Causation as Folk Science. Philos. Impr. 2003, 3, 1–22. [Google Scholar]
- Palmer, T. The Primacy of Doubt; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Chow, C.C.; Buice, M.A. Path Integral Methods for Stochastic Differential Equations. J. Math. Neurosci. 2015, 5, 8. [Google Scholar] [CrossRef]
- Landau, L. Fluid Mechanics; Volumw 6, Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- de Zárate, J.M.O.; Sengers, J.V. Hydrodynamic Fluctuations in Fluids and Fluid Mixtures; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Eyink, G.; Bandak, D.; Goldenfeld, N.; Mailybaev, A.A. Dissipation-Range Fluid Turbulence and Thermal Noise. arXiv 2021, arXiv:2107.13954. [Google Scholar] [CrossRef]
- Bandak, D.; Goldenfeld, N.; Mailybaev, A.A.; Eyink, G. Dissipation-range fluid turbulence and thermal noise. Phys. Rev. E 2022, 105, 065113. [Google Scholar] [CrossRef] [PubMed]
- Drummond, I.T. Path-integral methods for turbulent diffusion. J. Fluid Mech. 1982, 123, 59–68. [Google Scholar] [CrossRef]
- Risken, H.; Frank, T. The Fokker-Planck Equation: Methods of Solution and Applications; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; International Series in Pure and Applied Physics; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Sweet, P.A. IAU Symp. 6, Electromagnetic Phenomena in Cosmical Plasma; Lehnert, B., Ed.; Cambridge U. Press: Cambridge, UK, 1958. [Google Scholar]
- Parker, E.N. Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids. J. Geophys. Res. 1957, 62. [Google Scholar] [CrossRef]
- Petschek, H.E. Magnetic Field Annihilation. NASA Spec. Publ. 1964, 50, 425. [Google Scholar]
- Zweibel, E.G.; Yamada, M. Magnetic Reconnection in Astrophysical and Laboratory Plasmas. Annu. Rev. Astron. Astrophys. 2009, 47, 291–332. [Google Scholar] [CrossRef]
- Yamada, M.; Kulsrud, R.; Ji, H. Magnetic reconnection. Rev. Mod. Phys. 2010, 82, 603–664. [Google Scholar] [CrossRef]
- Boozer, A.H. Why fast magnetic reconnection is so prevalent. J. Plasma Phys. 2018, 84, 715840102. [Google Scholar] [CrossRef]
- Boozer, A.H. Magnetic field evolution and reconnection in low resistivity plasmas. Phys. Plasmas 2023, 30, 062113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, A. Renormalization Group and Effective Field Theories in Magnetohydrodynamics. Fluids 2025, 10, 188. https://doi.org/10.3390/fluids10080188
Jafari A. Renormalization Group and Effective Field Theories in Magnetohydrodynamics. Fluids. 2025; 10(8):188. https://doi.org/10.3390/fluids10080188
Chicago/Turabian StyleJafari, Amir. 2025. "Renormalization Group and Effective Field Theories in Magnetohydrodynamics" Fluids 10, no. 8: 188. https://doi.org/10.3390/fluids10080188
APA StyleJafari, A. (2025). Renormalization Group and Effective Field Theories in Magnetohydrodynamics. Fluids, 10(8), 188. https://doi.org/10.3390/fluids10080188