Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = SCIG wind turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10856 KiB  
Article
A Modified Reduced-Order Generalized Integrator–Frequency-Locked Loop-Based Sensorless Vector Control Scheme Including the Maximum Power Point Tracking Algorithm for Grid-Connected Squirrel-Cage Induction Generator Wind Turbine Systems
by Tuynh Van Pham and Anh Tan Nguyen
Inventions 2024, 9(2), 44; https://doi.org/10.3390/inventions9020044 - 18 Apr 2024
Viewed by 2087
Abstract
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The [...] Read more.
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

24 pages, 10820 KiB  
Article
Hybrid Wind-Solar Power System with a Battery-Assisted Quasi-Z-Source Inverter: Optimal Power Generation by Deploying Minimum Sensors
by Matija Bubalo, Mateo Bašić, Dinko Vukadinović and Ivan Grgić
Energies 2023, 16(3), 1488; https://doi.org/10.3390/en16031488 - 2 Feb 2023
Cited by 8 | Viewed by 2422
Abstract
This paper presents a hybrid renewable energy system (RES) including wind and photovoltaic (PV) power sources. The wind energy subsystem (WES) consists of a squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine (WT) and corresponding power electronic converter, by means of [...] Read more.
This paper presents a hybrid renewable energy system (RES) including wind and photovoltaic (PV) power sources. The wind energy subsystem (WES) consists of a squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine (WT) and corresponding power electronic converter, by means of which a speed-sensorless indirect-rotor-field-oriented control of the SCIG is implemented. The outputs of both the WES and PV power source rated 1.5 kW and 3.5 kW, respectively, are connected to the DC bus, with the quasi-Z-source inverter (qZSI) acting as an interlinking converter between the DC bus and the AC grid/load. An advanced pulse-width-modulation scheme is applied to reduce the qZSI switching losses. The considered RES can operate both in grid-tie and island operation, whereas the battery storage system—integrated within the qZSI impedance network—enables more efficient energy management. The proposed control scheme includes successively executed algorithms for the optimization of the WES and PV power outputs under varying atmospheric conditions. A perturb-and-observe PV optimization algorithm is executed first due to the significantly faster dynamics and higher-rated power of the PV source compared to the WES. The WES optimization algorithm includes two distinct fuzzy logic optimizations: one for extraction of the maximum wind power and the other for minimization of the SCIG losses. To reduce the number of the required sensors, all three MPPT algorithms utilize the same input variable—the qZSI’s input power—thus increasing the system’s reliability and reducing the cost of implementation. The performance of the proposed hybrid RES was experimentally evaluated over wide ranges of simulated atmospheric conditions in both the island and grid-tie operation. Full article
(This article belongs to the Special Issue Power Converter Control Applications in Low-Inertia Power Systems)
Show Figures

Figure 1

21 pages, 6862 KiB  
Article
Fault Analysis of a Small PV/Wind Farm Hybrid System Connected to the Grid
by Bilel Dhouib, Mohamed Ali Zdiri, Zuhair Alaas and Hsan Hadj Abdallah
Appl. Sci. 2023, 13(3), 1743; https://doi.org/10.3390/app13031743 - 29 Jan 2023
Cited by 7 | Viewed by 2870
Abstract
The dynamic modeling, control, and simulation of renewable energy sources connected to the electrical grid are investigated in this study. Photovoltaic (PV) systems and wind systems connected to the power grid via the point of common connection (PCC) were the only two systems [...] Read more.
The dynamic modeling, control, and simulation of renewable energy sources connected to the electrical grid are investigated in this study. Photovoltaic (PV) systems and wind systems connected to the power grid via the point of common connection (PCC) were the only two systems included in our study. Simulation and control methodologies are provided. For both PV arrays, the method of extracting maximum power point tracking (MPPT) is utilized to obtain the highest power under standard test conditions (STC: 1000 W/m2, 25 °C). A power electronics converter that can transform DC voltage into three-phase AC voltage is required to connect a PV system to the grid. Insulated gate bipolar transistors (IGBTs) are utilized in a three-level voltage source converter (VSC). The distribution network is connected to this three-phase VSC by way of a step-up transformer and filter. During synchronous rotation in the dq reference frame, the suggested control for the three-level solar power system that is connected to the grid is constructed. To obtain a power factor as near to one as possible, the phase-locked loop (PLL) is employed to align the angle of the power grid voltage with the angle of the current coming from the inverter. Squirrel-cage induction generators (SCIGs), which are utilized as fixed speed generators and are linked directly to the power network, are the foundation of the wind system. Additionally, a pitch angle control approach is suggested to keep the wind turbine’s rotor speed stable. MATLAB/Simulink software is utilized to model and simulate the suggested hybrid system. Under fault scenarios such as the line to line to line to ground fault (LLLG fault), the suggested hybrid system’s dynamic performance is examined. The simulation results prove the ability to manage the small hybrid system that combines solar and wind power, as well as its dynamic performance. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 6977 KiB  
Article
Performance Evaluation of Grid-Connected Wind Turbine Generators
by Henok Ayele Behabtu, Thierry Coosemans, Maitane Berecibar, Kinde Anlay Fante, Abraham Alem Kebede, Joeri Van Mierlo and Maarten Messagie
Energies 2021, 14(20), 6807; https://doi.org/10.3390/en14206807 - 18 Oct 2021
Cited by 21 | Viewed by 5383
Abstract
The risk of oscillation of grid-connected wind turbine generators (WTGs) is well known, making it all the more important to understand the characteristics of different WTGs and analyze their performance so that the problems’ causes are identified and resolved. While many studies have [...] Read more.
The risk of oscillation of grid-connected wind turbine generators (WTGs) is well known, making it all the more important to understand the characteristics of different WTGs and analyze their performance so that the problems’ causes are identified and resolved. While many studies have evaluated the performance of grid-connected WTGs, most lack clarity and precision in the modeling and simulation techniques used. Moreover, most of the literature focuses on a single mode of operation of WTGs to analyze their performances. Therefore, this paper updates the literature by considering the different operating conditions for WTGs. Using MATLAB/SIMULINK it expands the evaluation to the full range of vulnerabilities of WTGs: from the wind turbine to grid connection. A network representing grid-connected squirrel-cage induction generator (SCIG) and doubly-fed induction generator (DFIG) wind turbines are selected for simulation. The performances of SCIG and DFIG wind turbines are evaluated in terms of their energy generation capacity during constant rated wind speed, variable wind speed, and ability of fault-ride through during dynamic system transient operating conditions. The simulation results show the performance of DFIG is better than SCIG in terms of its energy generation capacity during variable wind speed conditions and active and reactive power control capability during steady-state and transient operating conditions. As a result, DFIG wind turbine is more suitable for large-scale wind power plants connected to weak utility grid applications than SCIG. Full article
(This article belongs to the Special Issue Simulation Modelling and Analysis of a Renewable Energy System)
Show Figures

Figure 1

17 pages, 26399 KiB  
Article
Stability Domain Analysis and Enhancement of Squirrel Cage Induction Generator Wind Turbines in Weak Grids
by Jonathan Devadason, Paul S. Moses and Mohammad A. S. Masoum
Energies 2021, 14(16), 4786; https://doi.org/10.3390/en14164786 - 6 Aug 2021
Cited by 6 | Viewed by 2095
Abstract
There are significant concerns regarding the stability of increased wind power generation in weak power grids. This paper investigates and improves the stability of Wind Turbine Squirrel Cage Induction Generators (WT-SCIGs) with series compensation and weak interconnections to the power grid. Detailed time-domain [...] Read more.
There are significant concerns regarding the stability of increased wind power generation in weak power grids. This paper investigates and improves the stability of Wind Turbine Squirrel Cage Induction Generators (WT-SCIGs) with series compensation and weak interconnections to the power grid. Detailed time-domain and state-space modeling have revealed new bifurcations and oscillatory modes for a WT-SCIG connected radially to a weak grid through a series compensated line. The stability domain analyses are carried out by computing bifurcations in the system by analyzing eigenvalues of the linearized system. The analyses demonstrate for the first time how the degree of compensation at which the Hopf bifurcation occurs depends on the X/R ratio of the line, operating slip of the induction generator, and voltage regulator parameters as well as the time delays in measurements. A new damping controller is proposed, which greatly improves the dynamic stability of the WT-SCIG and eliminates destructive Hopf bifurcations in weak grids for a wide range of series compensation. This allows for a much larger percentage of series compensation than what is usually possible, while avoiding instabilities, thereby maximizing the power transfer capability. Full article
Show Figures

Graphical abstract

21 pages, 801 KiB  
Article
Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator
by Juliano C. L. da Silva, Thales Ramos and Manoel F. Medeiros Júnior
Energies 2021, 14(15), 4524; https://doi.org/10.3390/en14154524 - 27 Jul 2021
Cited by 5 | Viewed by 2264
Abstract
The power quality analysis is an essential issue in the integration of distributed energy resources to the grid. Recent standards regulate the harmonics disturbances due to the increasing penetration of intermittent energy sources interconnected with the grid employing power converters. This paper aims [...] Read more.
The power quality analysis is an essential issue in the integration of distributed energy resources to the grid. Recent standards regulate the harmonics disturbances due to the increasing penetration of intermittent energy sources interconnected with the grid employing power converters. This paper aims to analyze the power quality of an interconnected wind turbine system based on a Squirrel Cage Induction Generator (SCIG) driven by an Electromagnetic Frequency Regulator (EFR). The steady state of the EFR harmonic model is developed in the stationary frame based on the conventional induction generator modeling, which allows the study of the harmonic disturbances in the electrical and mechanical variables due to the PWM inverter of the EFR’s armature voltage. There is no electrical connection between the EFR and SCIG, and the results show that the inherent system inertia contributes to the mitigation of the harmonic content at the grid side generated by the switching. In addition to the steady-state results, the Total Rated Distortion (TRD), which considers the harmonics and interharmonics components, was computed and presented a good performance compared to the IEEE 1547 standard and real data extracted of a single Doubly Fed Induction Generator (DFIG). Finally, the harmonic performance of the proposed system was evaluated considering the impact of the equivalent Thevenin impedance of the grid at the Point of Common Coupling (PCC). Full article
(This article belongs to the Special Issue New Challenges in Harmonics and Power Quality Research)
Show Figures

Figure 1

14 pages, 4100 KiB  
Article
LVRT and Stability Enhancement of Grid-Tied Wind Farm Using DFIG-Based Wind Turbine
by Jannatul Mawa Akanto, Md. Rifat Hazari and Mohammad Abdul Mannan
Appl. Syst. Innov. 2021, 4(2), 33; https://doi.org/10.3390/asi4020033 - 12 May 2021
Cited by 15 | Viewed by 4504
Abstract
According to the grid code specifications, low voltage ride-through (LVRT) is one of the key factors for grid-tied wind farms (WFs). Since fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) require an adequate quantity of reactive power throughout the transient period, conventional [...] Read more.
According to the grid code specifications, low voltage ride-through (LVRT) is one of the key factors for grid-tied wind farms (WFs). Since fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) require an adequate quantity of reactive power throughout the transient period, conventional WF consisting of SCIG do not typically have LVRT capabilities that may cause instability in the power system. However, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs) have an adequate amount of LVRT enhancement competency, and the active and reactive power transmitted to the grid can also be controlled. Moreover, DFIG is quite expensive because of its partial rating (AC/DC/AC) converter than SCIG. Accordingly, combined installation of both WFs could be an effective solution. Hence, this paper illustrated a new rotor-side converter (RSC) control scheme, which played a significant role in ensuring the LVRT aptitude for a wide range of hybrid WF consisting of both FSWT-SCIGs and VSWT-DFIGs. What is more, the proposed RSC controller of DFIG was configured to deliver an ample quantity of reactive power to the SCIG during the fault state to make the overall system stable. Simulation analyses were performed for both proposed and traditional controllers of RSC of the DFIG in the PSCAD/EMTDC environment to observe the proposed controller response. Overall, the presented control scheme could guarantee the LVRT aptitude of large-scale SCIG. Full article
(This article belongs to the Special Issue Smart Grids and Contemporary Electricity Markets)
Show Figures

Figure 1

17 pages, 4123 KiB  
Article
Experimental Investigation of a Standalone Wind Energy System with a Battery-Assisted Quasi-Z-Source Inverter
by Matija Bubalo, Mateo Bašić, Dinko Vukadinović and Ivan Grgić
Energies 2021, 14(6), 1665; https://doi.org/10.3390/en14061665 - 17 Mar 2021
Cited by 5 | Viewed by 2748
Abstract
This paper presents a wind energy conversion system (WECS) for grid-isolated areas. The system includes a squirrel-cage induction generator (SCIG) and a battery-assisted quasi-Z source inverter (qZSI). The batteries ensure reliable and stable operation of the WECS in spite of the wind power [...] Read more.
This paper presents a wind energy conversion system (WECS) for grid-isolated areas. The system includes a squirrel-cage induction generator (SCIG) and a battery-assisted quasi-Z source inverter (qZSI). The batteries ensure reliable and stable operation of the WECS in spite of the wind power oscillations. The maximum power is captured from both the wind turbine (WT) and the SCIG through adjustment of the WT speed and the SCIG operating flux, respectively. The utilized maximum power point tracking (MPPT) algorithms belong to the group of fuzzy logic (FL) search-based algorithms. The battery state of charge (SOC) is tracked online and controlled. When it reaches the minimum allowed level, the load is automatically disconnected; conversely, when it reaches the maximum allowed level, the battery charging is stopped via WT speed control. The load voltage root-mean-square (RMS) value and frequency are at all times controlled at grid-level values. The performance of the proposed system was experimentally validated, in steady state and during transients, achieving wide ranges of wind speed, load power, SOC, and alternating current/direct current (AC/DC) voltage levels. The system startup and low-wind operation were also analyzed. The control algorithms were executed in real time by means of the DS1103 and MicroLabBox controller boards (dSpace). Full article
(This article belongs to the Special Issue Advanced Control Techniques for Wind/Solar/Battery Systems)
Show Figures

Graphical abstract

17 pages, 4649 KiB  
Article
Nonlinear Current-Mode Control of SCIG Wind Turbines
by Nicholas Hawkins, Bhagyashri Bhagwat and Michael L. McIntyre
Energies 2021, 14(1), 55; https://doi.org/10.3390/en14010055 - 24 Dec 2020
Cited by 5 | Viewed by 2640
Abstract
In this paper, a nonlinear controller is proposed to manage the rotational speed of a full-variable Squirrel Cage Induction Generator wind turbine. This control scheme improves upon tractional vector controllers by removing the need for a rotor flux observer. Additionally, the proposed controller [...] Read more.
In this paper, a nonlinear controller is proposed to manage the rotational speed of a full-variable Squirrel Cage Induction Generator wind turbine. This control scheme improves upon tractional vector controllers by removing the need for a rotor flux observer. Additionally, the proposed controller manages the performance through turbulent wind conditions by accounting for unmeasurable wind torque dynamics. This model-based approach utilizes a current-based control in place of traditional voltage-mode control and is validated using a Lyapunov-based stability analysis. The proposed scheme is compared to a linear vector controller through simulation results. These results demonstrate that the proposed controller is far more robust to wind turbulence than traditional control schemes. Full article
(This article belongs to the Special Issue Advanced Control Applications for Electrical Energy Systems)
Show Figures

Figure 1

16 pages, 34350 KiB  
Article
Enhancement of Power System Transient Stability by the Coordinated Control between an Adjustable Speed Pumping Generator and Battery
by Junji Tamura, Atsushi Umemura, Rion Takahashi, Atsushi Sakahara, Fumihito Tosaka and Ryosuke Nakamoto
Appl. Sci. 2020, 10(24), 9034; https://doi.org/10.3390/app10249034 - 17 Dec 2020
Cited by 2 | Viewed by 2175
Abstract
The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to [...] Read more.
The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to improve the stability of power systems that are composed of large wind farms, as well as usual synchronous generators. The new method is a coordinated controlling method between an adjustable-speed pumping generator (ASG) and a battery. The coordinated system is designed to improve power system stability during a disconnection in a fixed-rotor-speed wind turbine with a squirrel cage-type induction generator (FSWT-SCIG)-based wind farm due to a network fault, in which a battery first responds quickly to the system frequency deviation due to a grid fault and improves the frequency nadir, and then the ASG starts to supply compensatory power to recover the grid frequency to the rated frequency. The performance of the proposed system was confirmed through simulation studies on a power system model consisting of usual synchronous generators (SGs), an ASG, a battery, and an SCIG-based wind farm. Simulation results demonstrated that the proposed control system can enhance the stability of the power system effectively. Full article
(This article belongs to the Special Issue Wind Generators: Technology and Trends)
Show Figures

Figure 1

28 pages, 6342 KiB  
Article
Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques
by Yuri Merizalde, Luis Hernández-Callejo, Oscar Duque-Perez and Raúl Alberto López-Meraz
Appl. Sci. 2020, 10(21), 7389; https://doi.org/10.3390/app10217389 - 22 Oct 2020
Cited by 10 | Viewed by 4070
Abstract
In the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing [...] Read more.
In the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing various types of signals, with the vibration signal predominating. In addition, most of the published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using the electrical signal from an operating WT electric generator and applying various signal analysis and processing techniques to compare the effectiveness of each. The WT used for this research is 20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier transform (FFT), periodogram, spectrogram, and scalogram. Full article
Show Figures

Figure 1

13 pages, 5459 KiB  
Article
Coordinated Control Scheme of Battery Storage System to Augment LVRT Capability of SCIG-Based Wind Turbines and Frequency Regulation of Hybrid Power System
by Md. Rifat Hazari, Effat Jahan, Mohammad Abdul Mannan and Junji Tamura
Electronics 2020, 9(2), 239; https://doi.org/10.3390/electronics9020239 - 1 Feb 2020
Cited by 12 | Viewed by 2907
Abstract
Fixed speed wind turbine-squirrel cage induction generator (FSWT-SCIG)-based wind farms (WFs) are increasing significantly. However, FSWT-SCIGs have no low voltage ride-through (LVRT) and frequency control capabilities, which creates a significant problem on power system transient and steady-state stability. This paper presents a new [...] Read more.
Fixed speed wind turbine-squirrel cage induction generator (FSWT-SCIG)-based wind farms (WFs) are increasing significantly. However, FSWT-SCIGs have no low voltage ride-through (LVRT) and frequency control capabilities, which creates a significant problem on power system transient and steady-state stability. This paper presents a new operational strategy to control the voltage and frequency of the entire power system, including large-scale FSWT-SCIG-based WFs, by using a battery storage system (BSS). The proposed cascaded control of the BSS is designed to provide effective quantity of reactive power during transient periods, to augment LVRT capability and real power during steady-state periods in order to damp frequency fluctuations. The cascaded control technique is built on four proportional integral (PI) controllers. The droop control technique is also adopted to ensure frequency control capability. Practical grid code is taken to demonstrate the LVRT capability. To evaluate the validity of the proposed system, simulation studies are executed on a reformed IEEE nine-bus power system with three synchronous generators (SGs) and SCIG-based WF with BSS. Triple-line-to-ground (3LG) and real wind speed data are used to analyze the hybrid power grid’s transient and steady-state stability. The simulation results indicate that the proposed system can be an efficient solution to stabilize the power system both in transient and steady-state conditions. Full article
(This article belongs to the Special Issue Grid-Connected Renewable Energy Sources)
Show Figures

Figure 1

16 pages, 7300 KiB  
Article
Dynamic Behavior of Wind Turbine Generator Configurations during Ferroresonant Conditions
by Ajibola Akinrinde, Andrew Swanson and Remy Tiako
Energies 2019, 12(4), 639; https://doi.org/10.3390/en12040639 - 16 Feb 2019
Cited by 22 | Viewed by 4867
Abstract
In this paper the dynamic behavior of different wind turbine generator configurations including doubly fed induction generators (DFIG), squirrel cage induction generator (SCIG), wound rotor induction generator (WRIG), and permanent magnet synchronous generator (PMSG) under ferroresonant conditions of energization and de-energization was investigated [...] Read more.
In this paper the dynamic behavior of different wind turbine generator configurations including doubly fed induction generators (DFIG), squirrel cage induction generator (SCIG), wound rotor induction generator (WRIG), and permanent magnet synchronous generator (PMSG) under ferroresonant conditions of energization and de-energization was investigated using Simulink/MATLAB (version 2017B, MathWorks, Natick, MA, USA). The result showed that SCIG had the highest overvoltage of 10.1 PU during energization, followed by WRIG and PMSG, while the least was DFIG. During de-energization, PMSG had the highest overvoltage of 9.58 PU while WRIG had the least. Characterization of the ferroresonance was done using a phase plane diagram to identify the harmfulness of the ferroresonance existing in the system. It was observed that for most of the wind turbine configurations, a chaotic mode of ferroresonance exists for both energization and de-energization scenarios. Although overvoltage during energization for wind turbine generator configurations was higher than in the de-energization with an exception of PMSG, their phase plane diagrams showed that de-energization scenarios were more chaotic than energization scenarios. The study showed that WRIG was the least susceptible to ferroresonance while PMSG was the most susceptible to ferroresonance. Full article
(This article belongs to the Collection Wind Turbines)
Show Figures

Figure 1

18 pages, 1231 KiB  
Article
A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances
by Minh Quan Duong, Sonia Leva, Marco Mussetta and Kim Hung Le
Energies 2018, 11(3), 480; https://doi.org/10.3390/en11030480 - 25 Feb 2018
Cited by 65 | Viewed by 5995
Abstract
Under power system short-circuits, the Doubly-Fed Induction Generator (DFIG) Wind Turbines (WT) are required to be equipped with crowbar protections to preserve the lifetime of power electronics devices. When the crowbar is switched on, the rotor windings are short-circuited. In this case, the [...] Read more.
Under power system short-circuits, the Doubly-Fed Induction Generator (DFIG) Wind Turbines (WT) are required to be equipped with crowbar protections to preserve the lifetime of power electronics devices. When the crowbar is switched on, the rotor windings are short-circuited. In this case, the DFIG behaves like a squirrel-cage induction generator (SCIG) and can adsorb reactive power, which can affect the power system. A DFIG based-fault-ride through (FRT) scheme with crowbar, rotor-side and grid-side converters has recently been proposed for improving the transient stability: in particular, a hybrid cascade Fuzzy-PI-based controlling technique has been demonstrated to be able to control the Insulated Gate Bipolar Transistor (IGBT) based frequency converter in order to enhance the transient stability. The performance of this hybrid control scheme is analyzed here and compared to other techniques, under a three-phase fault condition on a single machine connected to the grid. In particular, the transient operation of the system is investigated by comparing the performance of the hybrid system with conventional proportional-integral and fuzzy logic controller, respectively. The system validation is carried out in Simulink, confirming the effectiveness of the coordinated advanced fuzzy logic control. Full article
(This article belongs to the Special Issue Wind Generators Modelling and Control)
Show Figures

Figure 1

24 pages, 11049 KiB  
Article
Stability Augmentation of a Grid-Connected Wind Farm by Fuzzy-Logic-Controlled DFIG-Based Wind Turbines
by Md. Rifat Hazari, Mohammad Abdul Mannan, S. M. Muyeen, Atsushi Umemura, Rion Takahashi and Junji Tamura
Appl. Sci. 2018, 8(1), 20; https://doi.org/10.3390/app8010020 - 24 Dec 2017
Cited by 31 | Viewed by 7088
Abstract
Wind farm (WF) grid codes require wind generators to have low voltage ride through (LVRT) capability, which means that normal power production should be resumed quickly once the nominal grid voltage has been recovered. However, WFs with fixed-speed wind turbines with squirrel cage [...] Read more.
Wind farm (WF) grid codes require wind generators to have low voltage ride through (LVRT) capability, which means that normal power production should be resumed quickly once the nominal grid voltage has been recovered. However, WFs with fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) have failed to fulfill the LVRT requirement, which has a significant impact on power system stability. On the other hand, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs) have sufficient LVRT augmentation capability and can control the active and reactive power delivered to the grid. However, the DFIG is more expensive than the SCIG due to its AC/DC/AC converter. Therefore, the combined use of SCIGs and DFIGs in a WF could be an effective solution. The design of the rotor-side converter (RSC) controller is crucial because the RSC controller contributes to the system stability. The cascaded control strategy based on four conventional PI controllers is widely used to control the RSC of the DFIG, which can inject only a small amount of reactive power during fault conditions. Therefore, the conventional strategy can stabilize the lower rating of the SCIG. In the present paper, a new control strategy based on fuzzy logic is proposed in the RSC controller of the DFIG in order to enhance the LVRT capability of the SCIG in a WF. The proposed fuzzy logic controller (FLC) is used to control the reactive power delivered to the grid during fault conditions. Moreover, reactive power injection can be increased in the proposed control strategy. Extensive simulations executed in the PSCAD/EMTDC environment for both the proposed and conventional PI controllers of the RSC of the DFIG reveal that the proposed control strategy can stabilize the higher rating of the SCIG. Full article
(This article belongs to the Special Issue Large Grid-Connected Wind Turbines)
Show Figures

Figure 1

Back to TopTop