Innovative Strategy of Protection and Control for the Grid

A special issue of Inventions (ISSN 2411-5134). This special issue belongs to the section "Inventions and Innovation in Electrical Engineering/Energy/Communications".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 10085

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical Engineering, Indian Institute Technology, Roorkee 247667, India
Interests: digital protection; sub-station automation; distributed generation; smart grid/microgrid technology; wide area monitoring; synchrophasor technology; cyber security issues of power system; application of artificial intelligence techniques to power system; fault detection and classification; power system planning and design; condition monitoring of electrical apparatus; controlled switching applications

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Although the pairing of energy storage systems with a renewable energy source ensures a smooth and steady power supply, particularly in the case of unfavourable weather conditions, high integration of smart grid renewable energy resources produces more challenges for the reliable operation of the grid. The impacts of the loss of a portion of the electric grid range from minor inconveniences for most users (when the outage is on a small scale and short-lived) to potentially catastrophic situations (when the blackout covers a large region for a long duration). There is usually a trade-off between a reduced blackout risk and increased cost. The focus of this Special Issue is on the development of a coordinated protection and control scheme for the system, which reduces risk and improves grid resiliency. The post fault stability concerns will be a part of the decision-making process while addressing the protection issues, and hence, disastrous consequences can be avoided with minimum time delays. Moreover, this Special Issue also focuses on the seamless integration of energy storage with an existing grid with considerable penetration of renewable energy resources, leading to its universal deployment. As the deployment of battery storage, PV and wind generation is rapidly increasing, their optimal allocation would certainly improve grid resiliency during extreme events. Therefore, a new multi-objective optimization approach will be required to decide the optimal sizing and location of battery storage, PV, and wind generation for improved system resilience.

Prof. Dr. Bhaveshkumar R. Bhalja
Prof. Dr. Om P. Malik
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inventions is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protection and control
  • microgrid
  • resiliency
  • renewable resources
  • smart grid
  • fault location and classification
  • fault classification
  • optimization
  • renewable integration
  • solar PV and wind generation
  • battery storage
  • distributed energy resources

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2071 KiB  
Article
A Novel Technique for the Optimization of Energy Cost Management and Operation of Microgrids Inspired from the Behavior of Egyptian Stray Dogs
by Hatem Y. Diab and Mahmoud Abdelsalam
Inventions 2024, 9(4), 88; https://doi.org/10.3390/inventions9040088 - 30 Jul 2024
Viewed by 1241
Abstract
Managing costs in microgrids presents a formidable challenge due to the intricate blend of renewable and non-renewable energy sources that underpin their power generation. Ensuring seamless integration of microgrids with the national grid is pivotal for continuous load demand satisfaction and adherence to [...] Read more.
Managing costs in microgrids presents a formidable challenge due to the intricate blend of renewable and non-renewable energy sources that underpin their power generation. Ensuring seamless integration of microgrids with the national grid is pivotal for continuous load demand satisfaction and adherence to liberalized energy market mandates. To address this challenge, this paper introduces a new optimization technique for the Cost Management and Operation System (CMOS) of multi-source microgrids through a smart management unit. The cornerstone of this unit is the Egyptian Stray Dog Optimization (ESDO) algorithm, meticulously designed to optimize operational costs in line with load demands, energy cost dynamics, and generation proficiencies. Rigorous testing of the proposed system was conducted on a multi-resource microgrid using MATLAB, encompassing various operational scenarios. The simulation outcomes consistently highlighted the unit’s capability to achieve optimal cost-efficiency. Comparative analysis with other optimization techniques, particularly Particle Swarm Optimization (PSO), demonstrated the superior performance of the Egyptian Stray Dog algorithm, underscoring its potential as a leading solution in this domain. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

23 pages, 10856 KiB  
Article
A Modified Reduced-Order Generalized Integrator–Frequency-Locked Loop-Based Sensorless Vector Control Scheme Including the Maximum Power Point Tracking Algorithm for Grid-Connected Squirrel-Cage Induction Generator Wind Turbine Systems
by Tuynh Van Pham and Anh Tan Nguyen
Inventions 2024, 9(2), 44; https://doi.org/10.3390/inventions9020044 - 18 Apr 2024
Viewed by 1500
Abstract
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The [...] Read more.
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

19 pages, 4671 KiB  
Article
Large-Scale BESS for Damping Frequency Oscillations of Power Systems with High Wind Power Penetration
by Shami Ahmad Assery, Xiao-Ping Zhang and Nan Chen
Inventions 2024, 9(1), 3; https://doi.org/10.3390/inventions9010003 - 26 Dec 2023
Cited by 1 | Viewed by 2825
Abstract
With the high penetration of renewable energy into power grids, frequency stability and oscillation have become big concerns due to the reduced system inertia. The application of the Battery Energy Storage System (BESS) is considered one of the options to deal with frequency [...] Read more.
With the high penetration of renewable energy into power grids, frequency stability and oscillation have become big concerns due to the reduced system inertia. The application of the Battery Energy Storage System (BESS) is considered one of the options to deal with frequency stability and oscillation. This paper presents a strategy to size, locate, and operate the BESS within the power grid and, therefore, investigate how sizing capacity is related to renewable energy penetration levels. This paper proposes an identification method to determine the best location of the BESS using the Prony method based on system oscillation analysis, which is easy to implement based on measurements while actual physical system models are not required. The proposed methods for BESS size and location are applied using MATLAB/Simulink simulation software (version: R2023a) on the Kundur 2-area 11-bus test system with different renewable energy penetration levels, and the effectiveness of the applied method in enhancing frequency stability is illustrated in the study cases. The case studies showed a significant improvement in steady-state frequency deviation, frequency nadir, and Rate of Change of Frequency (ROCOF) after implementing BESS at the selected bus. The integration of BESS can help to avoid Under-frequency Load Shedding (UFLS) by proper selections of size, location, and operating strategy of the BESS within the power grid. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

20 pages, 6296 KiB  
Article
A New MPPT-Based Extended Grey Wolf Optimizer for Stand-Alone PV System: A Performance Evaluation versus Four Smart MPPT Techniques in Diverse Scenarios
by Mohammed Yousri Silaa, Oscar Barambones, Aissa Bencherif and Abdellah Rahmani
Inventions 2023, 8(6), 142; https://doi.org/10.3390/inventions8060142 - 7 Nov 2023
Cited by 9 | Viewed by 2763
Abstract
Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum power point tracking (MPPT) techniques are essential to optimize their performance. However, conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized by rapidly changing environmental factors and various [...] Read more.
Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum power point tracking (MPPT) techniques are essential to optimize their performance. However, conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized by rapidly changing environmental factors and various operating conditions. To address these challenges, this paper presents a performance evaluation of a novel extended grey wolf optimizer (EGWO). The EGWO has been meticulously designed in order to improve the efficiency of PV systems by rapidly tracking and maintaining the maximum power point (MPP). In this study, a comparison is made between the EGWO and other prominent MPPT techniques, including the grey wolf optimizer (GWO), equilibrium optimization algorithm (EOA), particle swarm optimization (PSO) and sin cos algorithm (SCA) techniques. To evaluate these MPPT methods, a model of a PV module integrated with a DC/DC boost converter is employed, and simulations are conducted using Simulink-MATLAB software under standard test conditions (STC) and various environmental conditions. In particular, the results demonstrate that the novel EGWO outperforms the GWO, EOA, PSO and SCA techniques and shows fast tracking speed, superior dynamic response, high robustness and minimal power fluctuations across both STC and variable conditions. Thus, a power fluctuation of 0.09 W could be achieved by using the proposed EGWO technique. Finally, according to these results, the proposed approach can offer an improvement in energy consumption. These findings underscore the potential benefits of employing the novel MPPT EGWO to enhance the efficiency and performance of MPPT in PV systems. Further exploration of this intelligent technique could lead to significant advancements in optimizing PV system performance, making it a promising option for real-world applications. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

Back to TopTop