Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = RC beam specimen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2595 KiB  
Article
Evolutionary Polynomial Regression Algorithm with Uncertain Variables: Two Case-Studies in the Field of Civil Engineering
by Alessandra Fiore, Sebastiano Marasco and Rita Greco
Appl. Sci. 2025, 15(15), 8432; https://doi.org/10.3390/app15158432 - 29 Jul 2025
Viewed by 203
Abstract
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression [...] Read more.
Data-driven approaches and calibration techniques for mathematical models, starting from observed data, are attracting more and more interest in the field of civil engineering. Among them, evolutionary polynomial regression (EPR) is an artificial intelligence (AI) technique that combines genetic algorithms (GAs) and regression strategies. However, the difficulties and uncertainties inherent in the method have pointed out how the implementation of proper computational methods together with the use of recent and qualified databases of experimental data are essential to carry out reliable formulations. In this framework, this paper explores a new robust EPR approach able to remove potential outliers and leverage points often occurring in biased dataset and simultaneously accounting for the effects of probabilistic uncertainties. Uncertainties are incorporated in the EPR methodology by adopting the direct perturbation method. In particular, it is shown the importance to set the parameters representative of experimental and analytical dispersions on the basis of the characteristics of the database in terms of homogeneity. With this purpose, two different case-studies are analyzed, dealing with the shear capacity of RC beams without stirrups and the compressive strength of cement-based mortar specimens, respectively. Finally, the best capacity equations are selected and discussed. Full article
Show Figures

Figure 1

23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 313
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 203
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 5062 KiB  
Review
State-of-the-Art Review of Studies on the Flexural Behavior and Design of FRP-Reinforced Concrete Beams
by Hau Tran, Trung Nguyen-Thoi and Huu-Ba Dinh
Materials 2025, 18(14), 3295; https://doi.org/10.3390/ma18143295 - 12 Jul 2025
Viewed by 521
Abstract
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused [...] Read more.
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused on the behavior of FRP RC beams. In this paper, a comprehensive overview of previous studies is conducted to provide a thorough understanding about the behavior, the design, and the limitations of FRP RC beams. Particularly, experimental studies on FRP RC beams are collected and reviewed. In addition, the numerical analysis of FRP beams including the finite element (FE) analysis, the discrete element (DE) analysis, and artificial intelligence/machine learning (AI/ML) is summarized. Moreover, the international standards for the design of FRP RC beams are presented and evaluated. Through the review of previous studies, 93 tested specimens are collected. They can be a great source of reference for other studies. In addition, it has been found that the studies on the continuous beams and deep beams reinforced with FRP bars are still limited. In addition, more studies using DE analysis and AI/ML to analyze the response of FRP RC beams under loading conditions should be conducted. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 16393 KiB  
Article
Near-Surface-Mounted CFRP Ropes as External Shear Reinforcement for the Rehabilitation of Substandard RC Joints
by George Kalogeropoulos, Georgia Nikolopoulou, Evangelia-Tsampika Gianniki, Avraam Konstantinidis and Chris Karayannis
Buildings 2025, 15(14), 2409; https://doi.org/10.3390/buildings15142409 - 9 Jul 2025
Viewed by 344
Abstract
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, [...] Read more.
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, exhibited shear failure of the joint region and was used as the control specimen. The other specimens were retrofitted and subsequently subjected to the same history of incremental lateral displacement amplitudes with the control subassemblage. The retrofitting was characterized by low labor demands and included wrapping of NSM CFPR-ropes in the two diagonal directions on both lateral sides of the joint as shear reinforcement. Single or double wrapping of the joint was performed, while weights were suspended to prevent the loose placement of the ropes in the grooves. A significant improvement in the seismic performance of the retrofitted specimens was observed with respect to the control specimen, regarding strength and ductility. The proposed innovative scheme effectively prevented shear failure of the joint by shifting the damage in the beam, and the retrofitted specimens showed a more dissipating hysteresis behavior without significant loss of lateral strength and axial load-bearing capacity. The cumulative energy dissipation capacity of the strengthened specimens increased by 105.38% and 122.23% with respect to the control specimen. Full article
Show Figures

Figure 1

22 pages, 6320 KiB  
Article
Investigation on Shear Behavior of Precast Monolithic ECC Composite Beams
by Tingting Lu, Yuxiang Wen and Bin Wang
Materials 2025, 18(13), 3081; https://doi.org/10.3390/ma18133081 - 29 Jun 2025
Viewed by 331
Abstract
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) [...] Read more.
This study applied precast engineered cementitious composite (ECC) shells to replace conventional concrete in precast assembled monolithic composite beams to enhance mechanical performance. A new type of precast monolithic ECC composite beam was proposed. Five ECC composite beams and one reinforced concrete (RC) composite beam were designed and fabricated for the experimental study. The failure pattern, failure mechanism, load-bearing capacity, deformability, and stiffness degradation were quantitatively analyzed through the tests. The main findings were as follows: ECC composite beams developed finer and more densely distributed cracks compared to RC composite beams, without significant concrete spalling. The peak load of ECC composite beams was 8.2% higher than that of RC composite beams, while the corresponding displacement at peak load increased by 29.3%. The ECC precast shell delayed crack propagation through the fiber bridging effect. The average load degradation coefficient of the ECC composite beams was 8.2% lower than that of the RC beam. The stiffness degradation curve of ECC composite beams was more gradual than that of RC composite beams, providing an optimization basis for the design of precast beams in structures with high seismic demands. As the shear span ratio increased from 1.5 to 3, the load-bearing capacity decreased by 32.0%. When the stirrup ratio increased from 0.25% to 0.75%, the ultimate load-bearing capacity improved by 28.8%. Furthermore, specimens with higher stirrup ratios showed a 40–50% reduction in stiffness degradation rate, demonstrating that increased stirrup ratio effectively mitigated brittle failure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3656 KiB  
Article
Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
by Konstantinos I. Christidis
CivilEng 2025, 6(3), 34; https://doi.org/10.3390/civileng6030034 - 28 Jun 2025
Viewed by 299
Abstract
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear [...] Read more.
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear walls. The model is applicable to medium-rise walls designed with or without modern seismic provisions and incorporates shear effects in both deformation and strength capacity. The application of the Proposed Model is assessed through comparison with numerical models implemented in the widely accepted OpenSees platform. Specifically, two types of elements are examined: the widely used flexural element Force-Based Beam-Column Element (FBE) and the Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI), which accounts for the interaction between flexure and shear. The results of both analytical and numerical approaches are compared with experimental data from four RC shear wall specimens reported in previous studies. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

19 pages, 3735 KiB  
Article
Easy Prestressing of FRP for Strengthening RC Beams: Experimental Study with an Analytical Approach
by Gokhan Sakar and Huseyin Kursat Celik
Polymers 2025, 17(12), 1628; https://doi.org/10.3390/polym17121628 - 12 Jun 2025
Viewed by 731
Abstract
This study investigates strengthening reinforced concrete (RC) beams using fiber-reinforced polymers (FRPs). Nine samples were cast and strengthened with varying parameters, including the width, number of laminates, use of anchors, and application of prestressing. A novel device—the easy prestressing machine (EPM)—was developed to [...] Read more.
This study investigates strengthening reinforced concrete (RC) beams using fiber-reinforced polymers (FRPs). Nine samples were cast and strengthened with varying parameters, including the width, number of laminates, use of anchors, and application of prestressing. A novel device—the easy prestressing machine (EPM)—was developed to apply prestress. The EPM is lightweight and operable manually, enabling up to 10% prestressing. All specimens were tested under three-point bending until failure, and load-displacement curves were recorded. An analytical method based on curvature increment and incorporating material nonlinearities is also proposed to estimate the load-displacement response of RC beams with and without FRP strengthening. Both experimental and analytical results are presented and compared. The analytical model strongly agreed with the experimental results, showing Pearson correlation coefficients exceeding 90% for most specimens. According to the experimental findings, applying FRP, particularly when combined with anchorage and prestressing, increased the load-bearing capacity by up to 45%. Anchorage and prestressing effectively mitigate premature debonding, with prestressing showing a more pronounced impact on enhancing bond performance and load capacity. Based on the results, conclusions regarding the analytical model, structural behavior, and optimal strengthening strategies are discussed. Full article
Show Figures

Figure 1

18 pages, 3706 KiB  
Article
Shear Performance of RC Beams Reinforced by Thin Layer of Epoxy Mortar with High Strength and High Toughness
by Weizhao Li, Tianhao Wen, Lingye Li and Chenggui Jing
Appl. Sci. 2025, 15(11), 6266; https://doi.org/10.3390/app15116266 - 3 Jun 2025
Viewed by 459
Abstract
This study aims to improve the shear performance of reinforced concrete (RC) beams by utilizing the favorable tensile and shear deformation capabilities of high-strength, high-toughness epoxy mortar. This study investigates the effect of reinforcement layer thickness on the shear failure modes, bearing capacity, [...] Read more.
This study aims to improve the shear performance of reinforced concrete (RC) beams by utilizing the favorable tensile and shear deformation capabilities of high-strength, high-toughness epoxy mortar. This study investigates the effect of reinforcement layer thickness on the shear failure modes, bearing capacity, and deformation capacity of beams through static tests on three specimens reinforced with thin layers of high-strength, high-toughness epoxy mortar and one unreinforced beam. The results show that reinforcing RC beams with thin layers of high-strength, high-toughness epoxy mortar can significantly enhance its shear bearing capacity and deformation capacity. The reinforcement layer of epoxy mortar can partially exert the shear resistance provided by the stirrups. The thicker the reinforcement layer, the more significant the improvement in the shear bearing capacity and deformation capacity of the strengthened beam. The epoxy mortar layer bonds well with the concrete, but delamination between the cover concrete and the core concrete leads to failure of the reinforcement layer, meaning that shear bearing capacity does not increase linearly with the thickness of the epoxy mortar layer. Based on the experimental results, a shear bearing capacity calculation formula for RC beams reinforced with thin layers of high-strength, high-toughness epoxy mortar is proposed, which matches the experimental results well. Full article
Show Figures

Figure 1

21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 387
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 17103 KiB  
Article
Study on Crack Development of Frame Beams with U-Shaped Engineered Cementitious Composites Cover Layer Under Negative Moments
by Yuqing Yang, Hongyue Yang, Zhelong Jiang and Zaigen Mu
Appl. Sci. 2025, 15(10), 5397; https://doi.org/10.3390/app15105397 - 12 May 2025
Viewed by 363
Abstract
In order to enhance the durability of concrete frame beams, a U-shaped engineered cementitious composites (ECC) protective layer is applied at the end of the frame beams. The bond between the ECC protective layer and the concrete is reinforced by incorporating notches and [...] Read more.
In order to enhance the durability of concrete frame beams, a U-shaped engineered cementitious composites (ECC) protective layer is applied at the end of the frame beams. The bond between the ECC protective layer and the concrete is reinforced by incorporating notches and grooves in the occupancy plate. The development and resistance to cracking of reinforced concrete (RC) frame beams and frame beams with an ECC protective layer were investigated using monotonic loading tests. The test results show that the average value of crack spacing in the negative moment zone of the RC frame beam specimen is in close agreement with the crack spacing calculated according to the GB50010 Code for Design of Concrete Structures. While the dispersion of crack width in the negative moment zone of the RC frame beam specimens is considerable, the distribution pattern of crack width undergoes a gradual change with increasing load. When the maximum crack width calculation method of GB50010 is employed in the negative moment zone of RC frame beams, the crack width should be increased by approximately 1.25 times. Furthermore, the crack spacing and crack width of the ECC protective layer are markedly smaller than those of RC frame beams. Full article
Show Figures

Figure 1

21 pages, 4947 KiB  
Article
Effective Flexural Strengthening of Reinforced Concrete T-Beams Using Bonded Fiber-Core Steel Wire Ropes
by Anggun Tri Atmajayanti, Yanuar Haryanto, Fu-Pei Hsiao, Hsuan-Teh Hu and Laurencius Nugroho
Fibers 2025, 13(5), 53; https://doi.org/10.3390/fib13050053 - 30 Apr 2025
Cited by 1 | Viewed by 587
Abstract
This study experimentally and numerically investigated the effectiveness of fiber-core steel wire ropes (FC-SWRs) in enhancing the flexural performance of reinforced concrete (RC) T-beams using a bonding technique. The investigation focused on deflection, flexural load-carrying capacity, and failure modes, along with key behaviors [...] Read more.
This study experimentally and numerically investigated the effectiveness of fiber-core steel wire ropes (FC-SWRs) in enhancing the flexural performance of reinforced concrete (RC) T-beams using a bonding technique. The investigation focused on deflection, flexural load-carrying capacity, and failure modes, along with key behaviors such as ductility, stiffness, energy absorption, and steel strain response. Two beams were tested under four-point bending until failure—one serving as the control specimen and the other strengthened with bonded FC-SWRs to improve its flexural behavior. Additionally, an analytical study was conducted using a computer program based on the Modified Compression Field Theory (MCFT), and the results were compared with experimental findings. The validation of the analytical model enabled further parametric investigations, examining the influence of the FC-SWR diameter, modulus of elasticity, and steel reinforcement ratio on flexural performance. Full article
Show Figures

Figure 1

25 pages, 19304 KiB  
Article
Parameter Analysis for the Flexural Performance of Concrete Beams Using Near-Surface Mounted-Strengthening Application
by Cunsheng Li, Yanheng Zhao, Dongbo Wan, Xiaodong Han, Weiwei Li, Changxuan Tian, Chongjie Wang, Zhaoqun Chang and Jiao Huang
Buildings 2025, 15(9), 1453; https://doi.org/10.3390/buildings15091453 - 25 Apr 2025
Viewed by 472
Abstract
In this paper, a systematical study on the influence of strengthening parameters on the flexural performance of RC beams using the NSM application was carried out. Experimental results consist of two reference beams and 25 beams divided into two groups using NSM systems [...] Read more.
In this paper, a systematical study on the influence of strengthening parameters on the flexural performance of RC beams using the NSM application was carried out. Experimental results consist of two reference beams and 25 beams divided into two groups using NSM systems with various embedded bars and strengthening configurations were presented. Additionally, theoretical analysis was conducted to enrich the research on the parameters affecting the strength and failure mode of the beams. The accuracy of the theoretical formulas has been verified through experimental results, and the average value of the ratio between the theoretical and experimental values is approximately 0.9. Results indicated that NSM technology is an effective approach for strengthening RC structures. Compared with the control specimens, the maximum load-bearing capacity of the beams with the NSM system experiences a remarkable enhancement of nearly 140%. The flexural behavior of the beams strengthened by the NSM system are closely related to the material properties (steel bar, NSM bars, concrete, and filler), location of the cutoff points, external confinement, and prestress level. The NSM bars characterized by high strength and high elasticity prove to be far more advantageous in enhancing the strength of the strengthened specimens. The research findings can provide theoretical support for the practical engineering applications of the NSM technology in strengthening reinforced concrete structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 20703 KiB  
Article
Performance Evaluation of Reinforced Concrete Beams with Corroded Rebar Strengthened by Carbon Fiber-Reinforced Polymer
by Sangwoo Kim, Wonchang Choi and Jinsup Kim
Polymers 2025, 17(8), 1021; https://doi.org/10.3390/polym17081021 - 10 Apr 2025
Viewed by 762
Abstract
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, [...] Read more.
The inefficiency of unreinforced concrete beams as flexural members poses a challenge because concrete’s tensile strength is significantly lower than its compressive strength. In response to this challenge, reinforcement bars are commonly employed near the tension zone of reinforced concrete (RC) beams. Nonetheless, structures constructed with RC face challenges such as reduced live load capacity, concrete deterioration, and the corrosion of reinforcement bars over time. To address this, ongoing research is exploring maintenance and retrofitting techniques using high-strength, lightweight fiber-reinforced polymer (FRP) composite materials such as carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP). In this study, the flexural performance of corroded RC beams was enhanced through retrofitting with CFRP plates and sheets. The corroded RC beams were fabricated using an applied-current method with a 5% NaCl solution to induce a 10% target corrosion level under controlled laboratory conditions. Flexural tests were conducted to evaluate the structural performance, failure modes, load–displacement relationships, and energy dissipation capacities. The results showed that CFRP reinforcement mitigates the adverse effects of corrosion-induced reduction in rebar cross-sectional areas, leading to increased stiffness and improved load-carrying capacity. In particular, CFRP reinforcement increased the yield load by up to 36.5% and the peak load by up to 90% in corroded specimens. The accumulated energy dissipation capacity also increased by 92%. These enhancements are attributed to the effective load-sharing behavior between the corroded rebar and the CFRP reinforcement. Full article
Show Figures

Figure 1

25 pages, 6327 KiB  
Article
Improving Seismic Performance of RC Structures with Innovative TnT BRBs: A Shake Table and Finite Element Investigation
by Evrim Oyguc, Resat Oyguc, Onur Seker, Abdul Hayir, Jay Shen and Bulent Akbas
Appl. Sci. 2025, 15(7), 3844; https://doi.org/10.3390/app15073844 - 1 Apr 2025
Cited by 1 | Viewed by 793
Abstract
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace [...] Read more.
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace (TnT BRB) system. Shake table tests were performed on one-third scale RC frame specimens, including a baseline structure representing conventional substandard design and a counterpart retrofitted with the proposed TnT BRBs. Experimental results revealed that the unretrofitted specimen experienced pronounced brittle shear failures, excessive lateral deformations, and significant degradation of beam-column joints under cyclic seismic loading. In contrast, the TnT BRB-retrofitted specimen exhibited substantially improved seismic behavior, characterized by enhanced energy dissipation, controlled inter-story drifts, and preserved joint integrity. Advanced fiber-based finite element modeling complemented the experimental efforts, accurately capturing critical nonlinear phenomena such as hysteretic energy dissipation, stiffness degradation, and localized damage evolution within the structural components. Despite inherent modeling limitations regarding bond-slip effects and micro-level cracking, strong correlation between numerical and experimental results affirmed the efficacy of the TnT BRB retrofit solution. This integrated experimental-analytical approach offers a robust, cost-effective pathway for upgrading seismically deficient RC structures in earthquake-prone regions. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

Back to TopTop