Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,016)

Search Parameters:
Keywords = RAD50

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2458 KiB  
Article
Control Range and Power Efficiency of Multiphase Cage Induction Generators Operating Alone at a Varying Speed on a Direct Current Load
by Piotr Drozdowski
Energies 2025, 18(15), 4108; https://doi.org/10.3390/en18154108 (registering DOI) - 2 Aug 2025
Viewed by 74
Abstract
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter [...] Read more.
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter operating as a PWM rectifier. The entire speed range is divided into intervals in which the sequence of stator phase voltages and, in effect, the number of pole pairs, is changed. In each interval, the output voltage is regulated by the frequency and amplitude of the stator voltages causing the highest possible power efficiency of the generator. The system can be scalar controlled or regulated using field orientation. Generator characteristics are calculated based on the set of steady-state equations derived from differential equations describing the multiphase induction machine. The calculation results are compared with simulations and with the steady-state measurement of the vector-controlled nine-phase generator. Recognizing the reliability of the obtained results, calculations are performed for a twelve-phase generator, obtaining satisfactory efficiency from 70% to 85% in the generator speed range from 0.2 to 1.0 of the assumed reference speed of 314 rad/s. The generator producing DC voltage can charge an electrical energy storage system or can be used directly to provide electrical power. This solution is not patented. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
15 pages, 2220 KiB  
Article
Radiologic Assessment of Periprostatic Fat as an Indicator of Prostate Cancer Risk on Multiparametric MRI
by Roxana Iacob, Emil Radu Iacob, Emil Robert Stoicescu, Diana Manolescu, Laura Andreea Ghenciu, Radu Căprariu, Amalia Constantinescu, Iulia Ciobanu, Răzvan Bardan and Alin Cumpănaș
Bioengineering 2025, 12(8), 831; https://doi.org/10.3390/bioengineering12080831 (registering DOI) - 31 Jul 2025
Viewed by 185
Abstract
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study [...] Read more.
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study aimed to evaluate whether periprostatic and subcutaneous fat thickness are associated with PI-RADS scores or PSA levels in biopsy-naïve patients. We retrospectively reviewed 104 prostate MRI scans performed between January 2020 and January 2024. Fat thickness was measured on axial T2-weighted images, and statistical analyses were conducted using Spearman’s correlation and multiple linear regression. In addition to linear measurements, we also assessed periprostatic fat volume and posterior fat thickness derived from imaging data. No significant correlations were observed between fat thickness (either periprostatic or subcutaneous) and PI-RADS score or PSA values. Similarly, periprostatic fat volume showed only a weak, non-significant correlation with PI-RADS, while posterior fat thickness demonstrated a weak but statistically significant positive association. Additionally, subgroup comparisons between low-risk (PI-RADS < 4) and high-risk (PI-RADS ≥ 4) patients showed no meaningful differences in fat measurements. These findings suggest that simple linear fat thickness measurements may not enhance imaging-based risk assessment in prostate cancer, though regional and volumetric assessments could offer modest added value. Full article
(This article belongs to the Special Issue Label-Free Cancer Detection)
Show Figures

Figure 1

20 pages, 5322 KiB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 (registering DOI) - 31 Jul 2025
Viewed by 197
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 140
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 456 KiB  
Article
From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System
by Graziella Di Grezia, Antonio Nazzaro, Luigi Schiavone, Cisternino Elisa, Alessandro Galiano, Gatta Gianluca, Cuccurullo Vincenzo and Mariano Scaglione
Cancers 2025, 17(15), 2523; https://doi.org/10.3390/cancers17152523 - 30 Jul 2025
Viewed by 371
Abstract
Introduction: Breast density is a well-recognized factor in breast cancer risk assessment, with higher density linked to increased malignancy risk and reduced sensitivity of conventional mammography. Background parenchymal enhancement (BPE), observed in contrast-enhanced imaging, reflects physiological contrast uptake in non-pathologic breast tissue. [...] Read more.
Introduction: Breast density is a well-recognized factor in breast cancer risk assessment, with higher density linked to increased malignancy risk and reduced sensitivity of conventional mammography. Background parenchymal enhancement (BPE), observed in contrast-enhanced imaging, reflects physiological contrast uptake in non-pathologic breast tissue. While extensively characterized in breast MRI, the role of BPE in contrast-enhanced mammography (CEM) remains uncertain due to inconsistent findings regarding its correlation with breast density and cancer risk. Unlike breast density—standardized through the ACR BI-RADS lexicon—BPE lacks a uniform classification system in CEM, leading to variability in clinical interpretation and research outcomes. To address this gap, we introduce the BPE-CEM Standard Scale (BCSS), a structured four-tiered classification system specifically tailored to the two-dimensional characteristics of CEM, aiming to improve consistency and diagnostic alignment in BPE evaluation. Materials and Methods: In this retrospective single-center study, 213 patients who underwent mammography (MG), ultrasound (US), and contrast-enhanced mammography (CEM) between May 2022 and June 2023 at the “A. Perrino” Hospital in Brindisi were included. Breast density was classified according to ACR BI-RADS (categories A–D). BPE was categorized into four levels: Minimal (< 10% enhancement), Light (10–25%), Moderate (25–50%), and Marked (> 50%). Three radiologists independently assessed BPE in a subset of 50 randomly selected cases to evaluate inter-observer agreement using Cohen’s kappa. Correlations between BPE, breast density, and age were examined through regression analysis. Results: BPE was Minimal in 57% of patients, Light in 31%, Moderate in 10%, and Marked in 2%. A significant positive association was found between higher breast density (BI-RADS C–D) and increased BPE (p < 0.05), whereas lower-density breasts (A–B) were predominantly associated with minimal or light BPE. Regression analysis confirmed a modest but statistically significant association between breast density and BPE (R2 = 0.144), while age showed no significant effect. Inter-observer agreement for BPE categorization using the BCSS was excellent (κ = 0.85; 95% CI: 0.78–0.92), supporting its reproducibility. Conclusions: Our findings indicate that breast density is a key determinant of BPE in CEM. The proposed BCSS offers a reproducible, four-level framework for standardized BPE assessment tailored to the imaging characteristics of CEM. By reducing variability in interpretation, the BCSS has the potential to improve diagnostic consistency and facilitate integration of BPE into personalized breast cancer risk models. Further prospective multicenter studies are needed to validate this classification and assess its clinical impact. Full article
Show Figures

Figure 1

13 pages, 873 KiB  
Article
Integrating Clinical Parameters into Thyroid Nodule Malignancy Risk: A Retrospective Evaluation Based on ACR TI-RADS
by Nikolaos Angelopoulos, Ioannis Androulakis, Dimitrios P. Askitis, Nicolas Valvis, Rodis D. Paparodis, Valentina Petkova, Anastasios Boniakos, Dimitra Zianni, Andreas Rizoulis, Dimitra Bantouna, Juan Carlos Jaume and Sarantis Livadas
J. Clin. Med. 2025, 14(15), 5352; https://doi.org/10.3390/jcm14155352 - 29 Jul 2025
Viewed by 389
Abstract
Background/Objectives: Thyroid nodules are commonly found through sensitive imaging methods like ultrasonography. While most nodules are benign and asymptomatic, certain characteristics may indicate malignancy, prompting fine needle aspiration biopsy. Factors like age and gender affect cancer risk, complicating ultrasound-based risk systems. We [...] Read more.
Background/Objectives: Thyroid nodules are commonly found through sensitive imaging methods like ultrasonography. While most nodules are benign and asymptomatic, certain characteristics may indicate malignancy, prompting fine needle aspiration biopsy. Factors like age and gender affect cancer risk, complicating ultrasound-based risk systems. We aimed to determine whether the cytological malignancy rate of thyroid nodules could be adjusted for several clinical parameters. Methods: Data from patients aged 18 and above with thyroid nodules assessed via fine needle aspiration (FNA) were retrospectively reviewed. Malignancy classification was based on cytopathology and histopathology results. The study examined how various clinical parameters, adjusted for the ACR TI-RADS category, affected thyroid nodule malignancy rates, including age, sex, Body Mass Index (BMI), nodule size, presence of autoimmunity, and thyroxine therapy. Additionally, we analyzed the performance of ACR TI-RADS in predicting malignant cytology across different age subgroups of thyroid nodules. Results: The study included 1128 thyroid nodules from 1001 adult patients, with a median age of 48 years and predominantly female (76.68%). Malignancy rates varied across ACR TI-RADS categories, with higher rates associated with larger nodules and younger age groups. Age emerged as a significant predictor of malignancy, with a consistent decrease in the odds ratio for malignant cytology with advancing age across all ACR TI-RADS categories, indicating its potential utility in risk assessment alongside nodule size and sex. Conclusions: Raising the size threshold for recommending FNA of TR3-3 nodules and incorporating patients’ age and gender into the evaluation process could enhance the system’s accuracy in assessing thyroid nodules and guiding clinical management decisions. Full article
(This article belongs to the Special Issue Thyroid Disease: Updates from Diagnosis to Treatment)
Show Figures

Figure 1

14 pages, 2191 KiB  
Article
AI-Based Ultrasound Nomogram for Differentiating Invasive from Non-Invasive Breast Cancer Masses
by Meng-Yuan Tsai, Zi-Han Yu and Chen-Pin Chou
Cancers 2025, 17(15), 2497; https://doi.org/10.3390/cancers17152497 - 29 Jul 2025
Viewed by 180
Abstract
Purpose: This study aimed to develop a predictive nomogram integrating AI-based BI-RADS lexicons and lesion-to-nipple distance (LND) ultrasound features to differentiate mass-type ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) visible on ultrasound. Methods: The final study cohort consisted of 170 [...] Read more.
Purpose: This study aimed to develop a predictive nomogram integrating AI-based BI-RADS lexicons and lesion-to-nipple distance (LND) ultrasound features to differentiate mass-type ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) visible on ultrasound. Methods: The final study cohort consisted of 170 women with 175 pathologically confirmed malignant breast lesions, including 26 cases of DCIS and 149 cases of IDC. LND and AI-based features from the S-Detect system (BI-RADS lexicons) were analyzed. Rare features were consolidated into broader categories to enhance model stability. Data were split into training (70%) and validation (30%) sets. Logistic regression identified key predictors for an LND nomogram. Model performance was evaluated using receiver operating characteristic (ROC) curves, 1000 bootstrap resamples, and calibration curves to assess discrimination and calibration. Results: Multivariate logistic regression identified smaller lesion size, irregular shape, LND ≤ 3 cm, and non-hypoechoic echogenicity as independent predictors of DCIS. These variables were integrated into the LND nomogram, which demonstrated strong discriminative performance (AUC = 0.851 training; AUC = 0.842 validation). Calibration was excellent, with non-significant Hosmer-Lemeshow tests (p = 0.127 training, p = 0.972 validation) and low mean absolute errors (MAE = 0.016 and 0.034, respectively), supporting the model’s accuracy and reliability. Conclusions: The AI-based comprehensive nomogram demonstrates strong reliability in distinguishing mass-type DCIS from IDC, offering a practical tool to enhance non-invasive breast cancer diagnosis and inform preoperative planning. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

23 pages, 4210 KiB  
Article
CT-Based Habitat Radiomics Combining Multi-Instance Learning for Early Prediction of Post-Neoadjuvant Lymph Node Metastasis in Esophageal Squamous Cell Carcinoma
by Qinghe Peng, Shumin Zhou, Runzhe Chen, Jinghui Pan, Xin Yang, Jinlong Du, Hongdong Liu, Hao Jiang, Xiaoyan Huang, Haojiang Li and Li Chen
Bioengineering 2025, 12(8), 813; https://doi.org/10.3390/bioengineering12080813 - 28 Jul 2025
Viewed by 335
Abstract
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of [...] Read more.
Early prediction of lymph node metastasis (LNM) following neoadjuvant therapy (NAT) is crucial for timely treatment optimization in esophageal squamous cell carcinoma (ESCC). This study developed and validated a computed tomography-based radiomic model for predicting pathologically confirmed LNM status at the time of surgery in ESCC patients after NAT. A total of 469 ESCC patients from Sun Yat-sen University Cancer Center were retrospectively enrolled and randomized into a training cohort (n = 328) and a test cohort (n = 141). Three signatures were constructed: the tumor-habitat-based signature (Habitat_Rad), derived from radiomic features of three tumor subregions identified via K-means clustering; the multiple instance learning-based signature (MIL_Rad), combining features from 2.5D deep learning models; and the clinicoradiological signature (Clinic), developed through multivariate logistic regression. A combined radiomic nomogram integrating these signatures outperformed the individual models, achieving areas under the curve (AUCs) of 0.929 (95% CI, 0.901–0.957) and 0.852 (95% CI, 0.778–0.925) in the training and test cohorts, respectively. The decision curve analysis confirmed a high net clinical benefit, highlighting the nomogram’s potential for accurate LNM prediction after NAT and guiding individualized therapy. Full article
(This article belongs to the Special Issue Machine Learning Methods for Biomedical Imaging)
Show Figures

Graphical abstract

31 pages, 8111 KiB  
Article
Design and Experiment of a Greenhouse Autonomous Following Robot Based on LQR–Pure Pursuit
by Yibin Hu, Jieyu Xian, Maohua Xiao, Qianzhe Cheng, Tai Chen, Yejun Zhu and Guosheng Geng
Agriculture 2025, 15(15), 1615; https://doi.org/10.3390/agriculture15151615 - 25 Jul 2025
Viewed by 184
Abstract
Accurate path tracking is crucial for greenhouse robots operating in complex environments. However, traditional curve tracking algorithms suffer from low tracking accuracy and large tracking errors. This study aim to develop a high precision greenhouse autonomous following robot, use ANSYS Workbench 19.2 to [...] Read more.
Accurate path tracking is crucial for greenhouse robots operating in complex environments. However, traditional curve tracking algorithms suffer from low tracking accuracy and large tracking errors. This study aim to develop a high precision greenhouse autonomous following robot, use ANSYS Workbench 19.2 to perform stress and deformation analysis on the robot, then propose a path tracking method based on Linear Quadratic Regulator (LQR) to optimize the pure tracking to ensure high precision curved path tracking for curved tracking, finally perform a comparative simulation analysis in MATLAB R2024a. The structural analysis shows that the maximum equivalent stress is 196 MPa and the maximum deformation is 1.73 mm under a load of 600 kg, which are within the yield limit of 45 steel. Simulation results demonstrate that at a speed of 2 m/s, the conventional Pure Pursuit algorithm incurs a maximum lateral error of 0.3418 m and a heading error of 0.2669 rad under high curvature conditions. By contrast, the LQR–Pure Pursuit algorithm reduces the peak lateral error to 0.0904 m and confines the heading error to approximately 0.0217 rad. Experimental validation yielded an RMSE of 0.018 m for lateral error and 0.016 m for heading error. These findings confirm that the designed robot can sustain its payload under most operating scenarios and that the proposed tracking strategy effectively suppresses deviations and improves path-following accuracy. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 1452 KiB  
Article
Prognostic Utility of Combining VI-RADS Scores and CYFRA 21-1 Levels in Bladder Cancer: A Retrospective Single-Center Study
by Shunsuke Ikuma, Jun Akatsuka, Godai Kaneko, Hayato Takeda, Yuki Endo, Go Kimura and Yukihiro Kondo
Curr. Oncol. 2025, 32(8), 415; https://doi.org/10.3390/curroncol32080415 - 24 Jul 2025
Viewed by 235
Abstract
The Vesical Imaging Reporting and Data System (VI-RADS) is used to detect muscle-invasive bladder cancer, with emerging prognostic implications. Integrating imaging parameters with molecular biomarkers may improve risk stratification in bladder cancer. This study evaluated whether combining VI-RADS scores with serum cytokeratin fragment [...] Read more.
The Vesical Imaging Reporting and Data System (VI-RADS) is used to detect muscle-invasive bladder cancer, with emerging prognostic implications. Integrating imaging parameters with molecular biomarkers may improve risk stratification in bladder cancer. This study evaluated whether combining VI-RADS scores with serum cytokeratin fragment 19 (CYFRA 21-1) levels—a clinically relevant biomarker for bladder cancer—could improve overall survival (OS) prediction. We retrospectively analyzed 134 patients who underwent transurethral resection of bladder tumors, magnetic resonance imaging, and postoperative serum CYFRA 21-1 measurements. In total, 15 cancer-specific deaths were observed during follow-up. Receiver operating characteristic curve analysis identified optimal prognostic cut-off values: VI-RADS score ≥ 4 and CYFRA 21-1 level ≥ 1.8 ng/mL. The 1-, 2-, and 3-year OS in patients with both high VI-RADS scores and CYFRA 21-1 levels were 42.9%, 16.7%, and 8.3%, respectively, significantly lower than those in other groups (p < 0.001, 0.002, and 0.003, respectively). Multivariate Cox proportional hazards analysis demonstrated that such patients had the poorest OS (hazard ratio: 7.51; p = 0.002). This suggests that combining VI-RADS and CYFRA 21-1 improves prognostic accuracy in bladder cancer, demonstrating potential clinical utility by informing individualized treatment strategies; however, limitations include the retrospective study design and absence of external validation. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Graphical abstract

12 pages, 1031 KiB  
Article
Ultrasound Pattern of Indeterminate Thyroid Nodules with Prevalence of Oncocytes
by Sium Wolde Sellasie, Stefano Amendola, Leo Guidobaldi, Francesco Pedicini, Isabella Nardone, Tommaso Piticchio, Simona Zaccaria, Luigi Uccioli and Pierpaolo Trimboli
J. Clin. Med. 2025, 14(15), 5206; https://doi.org/10.3390/jcm14155206 - 23 Jul 2025
Viewed by 238
Abstract
Objectives: Oncocyte-rich indeterminate thyroid nodules (O-ITNs) present diagnostic and management challenges due to overlapping features between benign and malignant lesions and differing cytological classifications. This study aimed primarily to assess the ultrasound (US) characteristics and US-based risk of O-ITNs using the American [...] Read more.
Objectives: Oncocyte-rich indeterminate thyroid nodules (O-ITNs) present diagnostic and management challenges due to overlapping features between benign and malignant lesions and differing cytological classifications. This study aimed primarily to assess the ultrasound (US) characteristics and US-based risk of O-ITNs using the American College of Radiology Thyroid Imaging Reporting And Data Systems (ACR TI-RADS). A secondary objective was to compare the Bethesda System for Reporting Thyroid Cytopathology (BSRTC) and Italian Consensus for the Classification and Reporting of Thyroid Cytology (ICCRTC) cytological systems regarding classification and clinical management implications for O-ITNs. Methods: A retrospective study was conducted on 177 ITNs (TIR3A and TIR3B) evaluated between June 2023 and December 2024 at CTO-Alesini, Rome (Italy). Nodules were assessed with US, cytology, and histology. Oncocyte predominance was defined as >70% oncocytes on fine-needle aspiration (FNA). US features were analyzed according to ACR TI-RADS. Nodules were reclassified by BSRTC, and potential differences in clinical case management (CCM) were analyzed. Results: O-ITNs comprised 47.5% of the sample. Compared to non-O-ITNs, O-ITNs were larger and more frequently showed low-risk US features, including a higher prevalence of ACR TI-RADS 3 nodules. However, no progressive increase in the risk of malignancy (ROM) was observed across ACR TI-RADS classes within O-ITNs. Histological malignancy was identified in 47.1% of O-ITNs, a lower proportion compared to non-O-ITNs, though the difference was not statistically significant. Classification discordance with potential management impact was lower in O-ITNs (20.2%) than in non-O-ITNs (38.7%). Conclusions: O-ITNs typically exhibit benign-appearing US features and lower classification discordance between BSRTC and ICCRTC, yet US risk stratification fails to differentiate malignancy risk within O-ITNs. A tailored approach integrating cytology and cautious US interpretation is essential for optimal O-ITN management. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

9 pages, 3392 KiB  
Article
Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns
by Varis Karitans, Mattias Hammar, Martins Zubkins, Edvins Letko, Maris Ozolinsh and Sergejs Fomins
Photonics 2025, 12(8), 740; https://doi.org/10.3390/photonics12080740 - 22 Jul 2025
Viewed by 231
Abstract
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based [...] Read more.
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based on the free-space transfer function. First, optical measurements are carried out to measure the optical properties of a stack of thin films and select the parameters of simulations. Next, the propagation of light in a waveguide was simulated in COMSOL, and the phase of a wave was retrieved in MATLAB. Analysis was performed both for free-space conditions, and for a waveguide with absorbing sidewalls. The cross-correlation between the distributions of intensity under both conditions was about 0.40. The RMS error of the wave retrieved under free-space conditions was 0.378 rad, while that in the case of absorbing sidewalls was 0.323 rad, indicating successful retrieval. The successfully recovered phase of the input wave suggests that a waveguide with absorbing sidewalls can be approximated as pseudo free space and the free-space transfer function may be valid. These results may be used in future studies on how to shorten the phase retrieval of two-dimensional objects. Full article
Show Figures

Figure 1

20 pages, 1461 KiB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 230
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

16 pages, 1677 KiB  
Article
222Rn Exhalation Rate of Building Materials: Comparison of Standard Experimental Protocols and Radiological Health Hazard Assessment
by Francesco Caridi, Lorenzo Pistorino, Federica Minissale, Giuseppe Paladini, Michele Guida, Simona Mancini, Domenico Majolino and Valentina Venuti
Appl. Sci. 2025, 15(14), 8015; https://doi.org/10.3390/app15148015 - 18 Jul 2025
Viewed by 231
Abstract
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed [...] Read more.
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed for the construction of buildings of historical-artistic relevance were analyzed using the closed chamber method (CCM) combined with the Durridge Rad7 system, by using two experimental protocols that differed in the measurement duration: 10 days (Method 1) versus 24 h (Method 2). Obtained results revealed that the radon exhalation rates ranged from 0.004 to 0.072 Bq h−1, which are moderate to low if compared to studies in other regions. Statistical comparison using the u-test confirmed equivalence between protocols (u-test ≤ 2), thus supporting the validity of the faster Method 2 for practical applications. Furthermore, to estimate the potential indoor radon levels and determine the associated radiological risks to human health, for the investigated natural stones, the Markkanen room model was employed. As a result, simulated indoor radon concentrations remained well below regulatory thresholds (maximum value: 37.3 Bq m−3), thus excluding any significant health concerns under typical indoor conditions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 260
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop