From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System
Simple Summary
Abstract
1. Introduction
1.1. Study Objective
1.2. The BCSS Aims to:
- Improve inter-reader agreement in BPE interpretation on CEM.
- Enable reproducible comparisons across imaging studies and centers.
- Facilitate the inclusion of BPE in structured breast cancer risk stratification frameworks.
2. Materials and Methods
2.1. Data Management
2.2. Inclusion and Exclusion Criteria
2.3. CEM Protocol
2.4. Image Acquisition
2.5. Image Interpretation and BPE Assessment
- Minimal (MIN): <10% of visible fibroglandular tissue enhanced, faint enhancement not obscuring ducts/vessels.
- Light (LIE): 10–25% enhancement, mild masking but key anatomical landmarks visible.
- Moderate (MOD): 25–50% enhancement, partial overlap/obscuration of ducts, vessels, and glandular architecture, potentially interfering with lesion visibility.
- Marked (MAR): >50% enhancement, strong masking/obscuration complicating lesion detection.
2.6. Inter-Observer Agreement Assessment
2.7. Statistical Analysis
3. Results
3.1. Patient Age Distribution
- Minimal BPE: 57%.
- Light BPE: 31%.
- Moderate BPE: 10%.
- Marked BPE: 2%.
3.2. Inter-Observer Agreement
3.3. Breast Density and Imaging Modality
- Non-contrast (based on low-energy images): 11% A, 29% B, 26% C, 17% D.
- Contrast-enhanced (CEM): 1% A, 7% B, 4% C, 4% D.
3.4. Age-Based Stratification of BPE
- Age 25–40: 5% Minimal/Light, 1% Moderate/Marked.
- Age 41–55: 38% Minimal/Light, 6% Moderate/Marked.
- Age > 55: 46% Minimal/Light, 4% Moderate/Marked.
3.5. S Metric Analysis
- Density A: 14% of cases; 3 with S < −2, 2 with S > 2.
- Density B: 36%; 7 with S < −2, 8 with S > 2.
- Density C: 31%; 7 each with S < −2 and S > 2.
- Density D: 19%; 7 with S < −2, 3 with S > 2.
3.6. Regression Analysis
- Multiple R: 0.38 (moderate correlation).
- R2: 0.144 (14.4% of variance explained).
- Adjusted R2: 0.136.
- Standard error: 0.8639.
- BPE showed a statistically significant positive association with breast density (p < 0.05).
- Age was not a significant predictor (p = 0.14).
ANOVA (Analysis of Variance) | |||||
---|---|---|---|---|---|
Source | df | SS | MS | F | Significance F |
Regression | 2 | 26.42365998 | 13.21182999 | 17.70217459 | 7.8594 × 10−8 |
Residual | 210 | 156.7312696 | 0.746339379 | ||
Total | 212 | 183.1549296 |
4. Discussion
4.1. Key Findings
- BPE distribution: Minimal in 57% of patients, Light in 31%, Moderate in 10%, and Marked in 2%.
- Density correlation: Higher breast density categories (BI-RADS C–D) were significantly associated with Moderate-to-Marked BPE, whereas lower densities (A–B) correlated with Minimal-to-Light BPE (p < 0.05).
- Regression analysis: Demonstrated a statistically significant association between BPE and breast density (R2 = 0.144), with a moderate multiple correlation coefficient (R = 0.38). Age was not a significant predictor (p = 0.14).
- Inter-observer agreement: The BCSS showed excellent reproducibility, with Cohen’s κ = 0.85 (95% CI: 0.78–0.92), supporting its feasibility and consistency in clinical practice.
4.2. Introducing the BCSS: Toward Standardization
4.3. Clinical Integration and Operational Implementation of the BCSS
4.4. Limitations and Future Directions
- Prospective, multicenter validation of the BCSS across different imaging platforms.
- Integration of AI-based tools for objective, automated quantification of BPE, reducing reader subjectivity.
- Incorporation of hormonal, genetic, and physiological variables into risk prediction models.
- Application of machine learning and deep learning methods to uncover complex, non-linear associations and enhance predictive accuracy.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPE | Background Parenchymal Enhancement |
CEM | Contrast-Enhanced Mammography |
BCSS | BPE-CEM Standard Scale |
BI-RADS | Breast Imaging Reporting and Data System |
MAE | Mean Absolute Error |
DBMS | Database Management System |
AI | Artificial Intelligence |
References
- Bodewes, F.T.H.; van Asselt, A.A.; Dorrius, M.D.; Greuter, M.J.W.; de Bock, G.H. Mammographic breast density and the risk of breast cancer: A systematic review and meta-analysis. Breast 2022, 66, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Michaels, E.; Worthington, R.O.; Rusiecki, J. Breast Cancer: Risk Assessment, Screening, and Primary Prevention. Med. Clin. North Am. 2023, 107, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Magni, V.; Cozzi, A.; Muscogiuri, G.; Benedek, A.; Rossini, G.; Fanizza, M.; Di Giulio, G.; Sardanelli, F. Background parenchymal enhancement on contrast-enhanced mammography: Associations with breast density and patient’s characteristics. Radiol Med. 2024, 129, 1303–1312. [Google Scholar] [CrossRef]
- Sorin, V.; Yagil, Y.; Shalmon, A.; Gotlieb, M.; Faermann, R.; Halshtok-Neiman, O.; Sklair-Levy, M. Background Parenchymal Enhancement at Contrast-Enhanced Spectral Mammography (CESM) as a Breast Cancer Risk Factor. Acad Radiol. 2020, 27, 1234–1240. [Google Scholar] [CrossRef]
- Moffa, G.; Galati, F.; Maroncelli, R.; Rizzo, V.; Cicciarelli, F.; Pasculli, M.; Pediconi, F. Diagnostic Performance of Contrast-Enhanced Digital Mammography versus Conventional Imaging in Women with Dense Breasts. Diagnostics 2023, 13, 2520. [Google Scholar] [CrossRef]
- Taylor, D.B.; Kessell, M.A.; Parizel, P.M. Contrast-enhanced mammography improves patient access to functional breast imaging. J. Med. Imaging Radiat Oncol. 2024, 69, 46–61. [Google Scholar] [CrossRef]
- Watt, G.P.; Keshavamurthy, K.N.; Nguyen, T.L.; Lobbes, M.B.I.; Jochelson, M.S.; Sung, J.S.; Moskowitz, C.S.; Patel, P.; Liang, X.; Woods, M.; et al. Association of breast cancer with quantitative mammographic density measures for women receiving contrast-enhanced mammography. JNCI Cancer Spectr. 2024, 8, pkae026. [Google Scholar] [CrossRef]
- Karimi, Z.; Phillips, J.; Slanetz, P.; Lotfi, P.; Dialani, V.; Karimova, J.; Mehta, T. Factors Associated With Background Parenchymal Enhancement on Contrast-Enhanced Mammography. AJR Am. J. Roentgenol. 2021, 216, 340–348. [Google Scholar] [CrossRef]
- Van Nijnatten, T.J.A.; Morscheid, S.; Baltzer, P.A.T.; Clauser, P.; Alcantara, R.; Kuhl, C.K.; Wildberger, J.E. Contrast-enhanced breast imaging: Current status and future challenges. Eur. J. Radiol. 2024, 171, 111312. [Google Scholar] [CrossRef]
- Meucci, R.; Pistolese, C.A.; Perretta, T.; Vanni, G.; Beninati, E.; DITosto, F.; Serio, M.L.; Caliandro, A.; Materazzo, M.; Pellicciaro, M.; et al. Background Parenchymal Enhancement in Contrast-enhanced Spectral Mammography: A Retrospective Analysis and a Pictorial Review of Clinical Cases. In Vivo 2022, 36, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.M.; Mayorov, S.; Ganti, R.; Nguyen, J.V.; Rochman, C.M.; Caley, M.; Jahjah, J.; Repich, K.; Patrie, J.T.; Anderson, R.T.; et al. Patient Experience of Women with Dense Breasts Undergoing Screening Contrast-Enhanced Mammography. J. Breast Imaging 2024, 6, 277–287. [Google Scholar] [CrossRef]
- Ferrara, F.; Santonocito, A.; Vogel, W.; Trombadori, C.; Zarcaro, C.; Weber, M.; Kapetas, P.; Helbich, T.H.; Baltzer, P.A.T.; Clauser, P. Background parenchymal enhancement in CEM and MRI: Is there always a high agreement? Eur. J. Radiol. 2024, 183, 111903. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Mariano, L.; Mallardi, C.; Sorce, A.; Frassoni, S.; Bagnardi, V.; Gialain, C.; Pesapane, F.; Sangalli, C.; Cassano, E. Influence of Breast Density and Menopausal Status on Background Parenchymal Enhancement in Contrast-Enhanced Mammography: Insights from a Retrospective Analysis. Cancers 2024, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Freer, P.E. Mammographic breast density: Impact on breast cancer risk and implications for screening. Radiographics 2015, 35, 302–315. [Google Scholar] [CrossRef]
- Kataoka, M. Mammographic Density for Personalized Breast Cancer Risk. Radiology 2023, 306, e222129. [Google Scholar] [CrossRef]
- Harrington, J.L. Relational Database Design and Implementation; Morgan Kaufmann: San Francisco, CA, USA, 2016. [Google Scholar]
- Date, C.J. An Introduction to Database Systems; Addison-Wesley: Reading, MA, USA, 2004. [Google Scholar]
- Taipalus, T. Database management system performance comparisons: A systematic literature review. J. Syst. Softw. 2023, 208, 111872. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef]
- Lantz, B. Machine Learning con, R. Conoscere le Tecniche per Costruire Modelli Predittivi; Apogeo Editore: Pietrasanta, Italy, 2020. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley-Interscience: Hoboken, NJ, USA, 2014. [Google Scholar]
- Altman, D.G. Practical Statistics for Medical Research; Chapman & Hall: London, UK, 1991. [Google Scholar]
- Neter, J.; Wassermann, W.; Kutner, M.H. Applied Linear Statistical Models; McGraw-Hill Education (ISE Editions): New York, NY, USA, 1996. [Google Scholar]
- Kim, G.; Mehta, T.S.; Brook, A.; Du, L.H.; Legare, K.; Phillips, J. Enhancement Type at Contrast-enhanced Mammography and Association with Malignancy. Radiology 2022, 305, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Hafez, M.A.F.; Zeinhom, A.; Hamed, D.A.A.; Ghaly, G.R.M.; Tadros, S.F.K. Contrast-enhanced mammography versus breast MRI in the assessment of multifocal and multicentric breast cancer: A retrospective study. Acta Radiol. 2023, 64, 2868–2880. [Google Scholar] [CrossRef]
- Monticciolo, D.L.; Newell, M.S.; Moy, L.; Lee, C.S.; Destounis, S.V. Breast Cancer Screening for Women at Higher-Than-Average Risk: Updated Recommendations From the ACR. J. Am. Coll Radiol. 2023, 20, 902–914. [Google Scholar] [CrossRef]
- Wessling, D.; Männlin, S.; Schwarz, R.; Hagen, F.; Brendlin, A.; Olthof, S.C.; Hattermann, V.; Gassenmaier, S.; Herrmann, J.; Preibsch, H. Background enhancement in contrast-enhanced spectral mammography (CESM): Are there qualitative and quantitative differences between imaging systems? Eur. Radiol. 2023, 33, 2945–2953. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Hill, M.L.; Bezzon, E.; Caumo, F. Quantitative Breast Density in Contrast-Enhanced Mammography. J. Clin. Med. 2021, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.T.; Li, H.J.; Li, Y.Z.; Chen, Q.Q.; Ye, J.Y.; Lin, S.; Cai, S.Q.; Sun, J.G. Diagnostic performance of contrast-enhanced mammography for suspicious findings in dense breasts: A systematic review and meta-analysis. Cancer Med. 2024, 13, e7128. [Google Scholar] [CrossRef]
- Camps-Herrero, J.; Pijnappel, R.; Balleyguier, C. MR-contrast enhanced mammography (CEM) for follow-up of breast cancer patients: A “pros and cons” debate. Eur. Radiol. 2024, 34, 6264–6270. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, F. Principles of Perceptrons; Spartan Book: Washington, DC, USA, 1962. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back Propagating Errors; Nature Publishing Group: London, UK, 1986; Volume 323. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
Age Group | Number of Record (out of 268) | Percentage | BPE | Notes on Density |
---|---|---|---|---|
25–40 | 11 | 5% | MIN/LIE | |
25–40 | 2 | 1% | MOD/MAR | No A and no D |
41–55 | 80 | 38% | MIN/LIE | |
41–55 | 13 | 6% | MOD/MAR | No A |
Over 55 | 97 | 46% | MIN/LIE | |
Over 55 | 9 | 4% | MOD/MAR | No A, one B and one D |
Letter | Count | Percentage (%) | Null Values | Details on S Value |
---|---|---|---|---|
A | 18 | 14% | 13 | 3 records with S < −2, 2 with S > 2 |
B | 47 | 36% | 31 | 7 records with S < −2, 8 with S > 2 |
C | 40 | 31% | 25 | 7 records with S < −2, 7 with S > 2 |
D | 25 | 19% | 14 | 7 records with S < −2, 3 with S > 2 |
Coefficients | Standard Error | t Stat | p-Value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
---|---|---|---|---|---|---|---|---|
Intercept | 2.343692153 | 0.379884019 | 6.169493937 | 3.47353 × 10−9 | 1.594817367 | 3.092566939 | 1.594817367 | 3.092566939 |
BPEnum | 0.426517913 | 0.077858245 | 5.478134158 | 1.22301 × 10−7 | 0.273034024 | 0.580001803 | 0.273034024 | 0.580001803 |
Age | 0.008787179 | 0.005970236 | 1.471831024 | 0.14256352 | 0.020556454 | 0.002982096 | 0.020556454 | 0.002982096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Grezia, G.; Nazzaro, A.; Schiavone, L.; Elisa, C.; Galiano, A.; Gianluca, G.; Vincenzo, C.; Scaglione, M. From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System. Cancers 2025, 17, 2523. https://doi.org/10.3390/cancers17152523
Di Grezia G, Nazzaro A, Schiavone L, Elisa C, Galiano A, Gianluca G, Vincenzo C, Scaglione M. From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System. Cancers. 2025; 17(15):2523. https://doi.org/10.3390/cancers17152523
Chicago/Turabian StyleDi Grezia, Graziella, Antonio Nazzaro, Luigi Schiavone, Cisternino Elisa, Alessandro Galiano, Gatta Gianluca, Cuccurullo Vincenzo, and Mariano Scaglione. 2025. "From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System" Cancers 17, no. 15: 2523. https://doi.org/10.3390/cancers17152523
APA StyleDi Grezia, G., Nazzaro, A., Schiavone, L., Elisa, C., Galiano, A., Gianluca, G., Vincenzo, C., & Scaglione, M. (2025). From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System. Cancers, 17(15), 2523. https://doi.org/10.3390/cancers17152523