Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Pumpkin seed waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 857 KiB  
Article
A Pilot Study on the Use of Pumpkin Waste as Cattle Feed
by Minori Nizuka, Hironobu Ishihara, Jun Nakahigashi, Daisaku Matsumoto and Eiji Kobayashi
Metabolites 2025, 15(8), 511; https://doi.org/10.3390/metabo15080511 - 31 Jul 2025
Viewed by 285
Abstract
Background/Objectives: Pumpkin seed pulp from processing plants offers high nutritional value due to its rich β-carotene content, making it a potential functional feed ingredient. This study investigated the effects of pumpkin seed pulp, which has already been administered as livestock feed, on [...] Read more.
Background/Objectives: Pumpkin seed pulp from processing plants offers high nutritional value due to its rich β-carotene content, making it a potential functional feed ingredient. This study investigated the effects of pumpkin seed pulp, which has already been administered as livestock feed, on key physiological parameters in cattle, including the concentration of β-carotene in the blood measured during routine health monitoring. Methods: Here, pumpkin waste cultivated in various fields was processed into cattle feed (pumpkin seed pulp flakes, PSPFs) by grinding and drying, and residual pesticide (heptachlor) and β-carotene contents were measured. A pilot feeding trial was conducted with 13 cattle (7 in the treatment group and 6 in the control group) and blood component analysis was performed, and findings were contextualized with a literature review. Results: Heptachlor concentrations varied depending on the cultivation site of raw pumpkins. Among the six lots produced using raw materials sourced from fields not contracted by the Air Water Group—a collective of companies in which Air Water Inc. holds more than 51% ownership—three exceeded the regulatory limits for animal feed established in Japan. PSPFs contained high levels of β-carotene, as expected. Blood tests before and after the feeding trial indicated absorption of β-carotene in the cattle. Maintaining high plasma β-carotene concentrations in cattle has been associated with improved immune function and reproductive performance. Conclusions: Our study demonstrates that PSPFs are a promising, environmentally friendly, and natural β-carotene-rich feed ingredient. Tracing the cultivation fields of raw pumpkins can help ensure feed safety. Full article
Show Figures

Graphical abstract

14 pages, 3565 KiB  
Article
Synthesis of Lipopeptides Using Vegetable Oils by Newly Isolated Strain of Serratia marcescens G8-1: Genomic Characterization and Process Performance
by Slawomir Ciesielski, Wiktoria Stefańska, Kritika Singh and Ewelina Wielgus
Int. J. Mol. Sci. 2025, 26(12), 5794; https://doi.org/10.3390/ijms26125794 - 17 Jun 2025
Viewed by 371
Abstract
Biosurfactants are becoming increasingly popular, but industrial production of biosurfactants is difficult, partly due to high production costs resulting from the need to use expensive substrates. One economically feasible candidate is vegetable oils, which can be directly metabolized without pretreatment. The aim of [...] Read more.
Biosurfactants are becoming increasingly popular, but industrial production of biosurfactants is difficult, partly due to high production costs resulting from the need to use expensive substrates. One economically feasible candidate is vegetable oils, which can be directly metabolized without pretreatment. The aim of this work is therefore to investigate the possibility of using vegetable oils for lipopeptide production by Serratia marcescens G8-1. The genetic background of this strain for the production of lipopeptides was investigated using a genomic approach. The biosurfactants were analysed by Ultra-Performance Liquid Chromatography coupled with Electrospray Ionisation Mass Spectrometry. The ability to reduce surface tension was investigated using a tensiometer. The results showed that the best effect in reducing surface tension was achieved by adding waste rapeseed oil. Sunflower and linseed oil also showed good results. Significantly poorer results were obtained when fresh rapeseed oil, sesame oil and pumpkin seed oil were used. The putative gene cluster for cyclic lipopeptides NRPS was identified in the genome of S. marcescens G8-1. The results obtained confirmed that serrawettin W1 is the major biosurfactant produced by S. marcescens G8-1. Of particular interest, the results showed the presence of vinylamycin when rapeseed oil was used. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

17 pages, 752 KiB  
Article
Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables
by Enrico Maria Milito, Lucia De Luca, Giulia Basile, Martina Calabrese, Antonello Santini, Sabato Ambrosio and Raffaele Romano
Foods 2025, 14(12), 2037; https://doi.org/10.3390/foods14122037 - 9 Jun 2025
Viewed by 875
Abstract
In recent years, the development of nutritionally enhanced foods with reduced environmental impact has gained significant importance. This study aimed to produce four types of tomato sauces: traditional, whole (including peels and seeds), traditional with added vegetables, and whole with added vegetables. The [...] Read more.
In recent years, the development of nutritionally enhanced foods with reduced environmental impact has gained significant importance. This study aimed to produce four types of tomato sauces: traditional, whole (including peels and seeds), traditional with added vegetables, and whole with added vegetables. The vegetables included in the latter two variations were pumpkin, carrot, basil, and oregano. The sauces were analyzed for various parameters, such as soluble solids content, viscosity, pH, reducing sugars, titratable acidity, color, sodium, calcium, potassium, magnesium content, total polyphenols, lycopene, beta-carotene, antioxidant activity, dietary fiber content, vitamin C, and volatile organic compounds. Results showed that whole tomato sauces had up to 80% more polyphenols (270.40 vs. 150.30 mg GAE/kg f.w.) and 30% higher DPPH antioxidant activity (87.07 vs. 66.96 µmol TE/100 g) compared to traditional sauces. Vegetable enrichment, particularly with pumpkin and carrot, significantly increased β-carotene levels (up to 68.67 mg/kg f.w.). Incorporating peels and seeds boosted the bioactive components, and adding vegetables provided an additional nutritional benefit. These findings highlight how waste recovery can contribute to the development of products with enhanced health benefits, offering a sustainable approach to food production. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

20 pages, 8412 KiB  
Article
Wastewater Treatment Using a Combination of Pumpkin seed Waste After Extraction of Essential Oils (Bio-Coagulant) and Ferric Chloride (Chemical Coagulant): Optimization and Modeling Using a Box–Behnken Design
by Abderrezzaq Benalia, Ouiem Baatache, Katr Enada Zerguine, Amel Khediri, Kerroum Derbal, Nawal Ferroudj, Amel Khalfaoui and Antonio Pizzi
Appl. Sci. 2025, 15(10), 5439; https://doi.org/10.3390/app15105439 - 13 May 2025
Viewed by 497
Abstract
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, [...] Read more.
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, bio-coagulant was extracted from pumpkin seed (PS) waste after extraction of the essential oils, and used with ferric chloride to treat wastewater from the plant of Chalghoum El Aid-Oued El Athmania Mila. In this study, the Box–Behnken design (BBD) with three factors was used to investigate the effect of pH, organic coagulant dosage Pumpkin seed extract (PSE), and chemical coagulant dosage (FeCl3) on coagulation–flocculation performance in relation to turbidity, chemical oxygen demand (COD), aromatic organic matter (UV 254), and phosphate. The main characteristics of the raw water were turbidity (250 NTU), COD (640 mg/L), UV 254 (0.893 cm−1), and phosphate (0.115 mg/L). The results obtained were very significant. All the statistical estimators (R2 ≥ 97% and p ≤ 0.05) reveal that the models developed are statistically validated for simulating the coagulation–flocculation process. It should be noted that the residual values of turbidity, COD, UV 254, and phosphate after treatment by this process were 0.754 NTU; 190.88 mg/L; 0.0028 cm−1; and 0.0149 mg/L, respectively. In this case, the pH, bio-coagulant dosage, and chemical coagulant dosage values were 4; 17.81 mL/L; and 10 mL/L, respectively. In this study, Fourier-transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) characterization of the bio-coagulant proved the presence of the active functional groups responsible for coagulation, namely carboxyl group. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

22 pages, 1959 KiB  
Article
Integration of Plant Pomace into Extruded Products: Analysis of Process Conditions, Post-Production Waste Properties and Biogas Potential
by Jakub Soja, Tomasz Oniszczuk, Iryna Vaskina, Maciej Combrzyński and Agnieszka Wójtowicz
Energies 2024, 17(24), 6476; https://doi.org/10.3390/en17246476 - 23 Dec 2024
Cited by 2 | Viewed by 944
Abstract
Waste streams from cereal-based food production processes, rich in organic matter and carbohydrates, have untapped potential for biogas production. This study uniquely investigated the extrusion-cooking process conditions, physical properties and biogas efficiency of snack pellets enriched with plant pomace (apple, chokeberry, pumpkin, flaxseed [...] Read more.
Waste streams from cereal-based food production processes, rich in organic matter and carbohydrates, have untapped potential for biogas production. This study uniquely investigated the extrusion-cooking process conditions, physical properties and biogas efficiency of snack pellets enriched with plant pomace (apple, chokeberry, pumpkin, flaxseed and nigella seeds) at different levels (10, 20 and 30%), produced using a single-screw extruder-cooker. The highest efficiency obtained in the extrusion-cooking process (18.20 kg/h) was observed for pellets with the addition of 30% flaxseed pomace. The SME value during the entire process was in the range of 0.015–0.072 kWh/kg. New insights into the interaction between the inclusion of pomace, the physical properties of the extrudate and the anaerobic fermentation efficiency were obtained. The results show that 30% chokeberry extrudate maximized methane production (51.39% gas), demonstrating a double innovation: improving snack pellet quality and converting food waste into renewable energy. Full article
Show Figures

Figure 1

29 pages, 1775 KiB  
Review
Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications
by Roxana Nicoleta Gavril (Rațu), Florina Stoica, Florin Daniel Lipșa, Oana Emilia Constantin, Nicoleta Stănciuc, Iuliana Aprodu and Gabriela Râpeanu
Foods 2024, 13(17), 2694; https://doi.org/10.3390/foods13172694 - 26 Aug 2024
Cited by 20 | Viewed by 11317
Abstract
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various [...] Read more.
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin’s potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste. Full article
(This article belongs to the Special Issue Feature Review on Plant Foods)
Show Figures

Figure 1

16 pages, 4135 KiB  
Article
Wound Healing Efficacy of Cucurbitaceae Seed Oils in Rats: Comprehensive Phytochemical, Pharmacological, and Histological Studies Tackling AGE/RAGE and Nrf2/Ho-1 Cue
by Ayat M. Emad, Engy A. Mahrous, Dalia M. Rasheed, Fatma Alzahraa M. Gomaa, Ahmed Mohsen Elsaid Hamdan, Heba Mohammed Refat M. Selim, Einas M. Yousef, Hagar B. Abo-Zalam, Amira A. El-Gazar and Ghada M. Ragab
Pharmaceuticals 2024, 17(6), 733; https://doi.org/10.3390/ph17060733 - 5 Jun 2024
Cited by 4 | Viewed by 2621
Abstract
The Cucurbitaceae family includes several edible species that are consumed globally as fruits and vegetables. These species produce high volumes of seeds that are often discarded as waste. In this study, we investigate the chemical composition and biological activity of three seed oils [...] Read more.
The Cucurbitaceae family includes several edible species that are consumed globally as fruits and vegetables. These species produce high volumes of seeds that are often discarded as waste. In this study, we investigate the chemical composition and biological activity of three seed oils from Cucurbitaceae plants, namely, cantaloupe, honeydew, and zucchini, in comparison to the widely used pumpkin seed oil for their ability to enhance and accelerate wound healing in rats. Our results showed that honeydew seed oil (HSO) was effective in accelerating wound closure and enhancing tissue repair, as indicated by macroscopic, histological, and biochemical analyses, as compared with pumpkin seed oil (PSO). This effect was mediated by down-regulation of the advanced glycation end products (AGE) and its receptor (RAGE) cue, activating the cytoprotective enzymes nuclear factor erythroid 2 (Nrf2) and heme oxygenase-1 (HO-1), suppressing the inflammatory mediators tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-κB), and nod-like receptor protein 3 (NLRP3), and reducing the levels of the skin integral signaling protein connexin (CX)-43. Furthermore, immunohistochemical staining for epidermal growth factor (EGF) showed the lowest expression in the skin after treatment with HSO, indicating a well-organized and complete healing process. Other seed oils from cantaloupe and zucchini exhibited favorable activity when compared with untreated rats; however, their efficacy was comparatively lower than that of PSO and HSO. Gas chromatographic analysis of the derivatized oils warranted the superior activity of HSO to its high nutraceutical content of linoleic acid, which represented 65.9% of the fatty acid content. This study’s findings validate the use of honeydew seeds as a wound-healing fixed oil and encourage further investigation into the potential of Cucurbitaceae seeds as sources of medicinally valuable plant oils. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 13141 KiB  
Article
Optimization of the Process for Obtaining Antioxidant Protein Hydrolysates from Pumpkin Seed Oil Cake Using Response Surface Methodology
by Svetla Dyankova, Maria Doneva, Margarita Terziyska, Petya Metodieva and Iliana Nacheva
Appl. Sci. 2024, 14(5), 1967; https://doi.org/10.3390/app14051967 - 28 Feb 2024
Cited by 9 | Viewed by 2000
Abstract
Pumpkin seed cake, a byproduct of cold-pressed oil production, represents a food waste material with a great potential for valorization. The objective of the present study is to optimize the papain enzymatic hydrolysis process of pumpkin seed cold-pressed oil cake (CPC) to obtain [...] Read more.
Pumpkin seed cake, a byproduct of cold-pressed oil production, represents a food waste material with a great potential for valorization. The objective of the present study is to optimize the papain enzymatic hydrolysis process of pumpkin seed cold-pressed oil cake (CPC) to obtain protein hydrolysates with the highest antioxidant activity. Box–Behnken Response Surface Methodology (RSM) was used to optimize the simultaneous effects of an enzyme concentration of papain, a temperature, and a reaction time on the process of enzymatic hydrolysis on pumpkin seed cold-pressed oil cake (CPC). For these three input factors, different values are used—1, 2, and 3% for papain concentration, 20, 30, and 40 °C for temperature, and 60, 120, and 180 min for hydrolysis time. Thus, the design generated a total of 21 experimental runs. The aim is to obtain protein hydrolysates with the highest antioxidant activity. The responses DPPH and ABTS were calculated and the determined regression models were statistically analyzed and validated. The results revealed that optimal conditions included a papain concentration of 1.0%, a temperature of 40 °C, and a hydrolysis time of 60 min to retrieve the highest level of bioactive compounds. Full article
Show Figures

Figure 1

2 pages, 130 KiB  
Abstract
Phenolics and Flavonoid Content in Selected Seeds from the Serbian Market
by Margarita Dodevska, Nevena Ivanovic, Jelena Kukic-Markovic and Verica Jovanovic
Proceedings 2023, 91(1), 374; https://doi.org/10.3390/proceedings2023091374 - 27 Feb 2024
Viewed by 874
Abstract
Objectives: Edible seeds are usually consumed as common food ingredients. They are considered to have a rich nutrient profile, containing different macro and micronutrients, as well as some biologically active compounds with positive health effects, such as different phenolics. The aim of this [...] Read more.
Objectives: Edible seeds are usually consumed as common food ingredients. They are considered to have a rich nutrient profile, containing different macro and micronutrients, as well as some biologically active compounds with positive health effects, such as different phenolics. The aim of this work was to determine total phenolics (TPC) and total flavonoid content (TFC) in selected commercial seeds samples from the Serbian market. Methods: Samples of nine seeds were investigated (sesame and black sesame, raw and roasted sunflower, raw and roasted pumpkin, hemp, chia and linseed). The samples of native seeds and those defatted using dichloromethane (maceration and Soxhlet extraction) were extracted with 80% methanol. Obtained hydro-methanol extracts were dried and further analysed using spectrophotometric methods: TPC was determined using Folin–Ciocalteu (FC) reagent and expressed as gallic acid equivalents (GAE), while TFC was measured based on the reaction between flavonoids and aluminium chloride and expressed as catechin equivalents (KE). Results: In general, hydro-methanol extracts of seed samples defatted using Soxhlet extraction had the highest TPC and TFC contents. TPC values ranged from 9.47 g GAE/mg (raw pumpkin seed) to over 170 g GAE/mg (raw sunflower seeds). As for TFC, the highest amount was measured in extracts of defatted raw sunflower seeds (over 150 g KE/mg), while roasted pumpkin and hemp seeds’ extracts were practically devoid of flavonoids. Conclusion: Our results confirmed the fact that certain defatted seeds, which are usually considered as waste products in oil production, could be considered as valuable sources of certain secondary plant metabolites, implicating further investigations on their composition and potential in the development of functional foods. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
21 pages, 6244 KiB  
Article
Comparison of Engine Performance and Emission Values of Biodiesel Obtained from Waste Pumpkin Seeds with Machine Learning
by Seda Şahin and Ayşe Torun
Agriculture 2024, 14(2), 227; https://doi.org/10.3390/agriculture14020227 - 31 Jan 2024
Cited by 5 | Viewed by 1768
Abstract
This study was primarily conducted to investigate the potential use of pumpkin seed oil in biodiesel production. Initially, the fatty acid composition of oils extracted from discarded pumpkin seeds was determined. Then, biodiesel produced from discarded pumpkin seed oil was tested in an [...] Read more.
This study was primarily conducted to investigate the potential use of pumpkin seed oil in biodiesel production. Initially, the fatty acid composition of oils extracted from discarded pumpkin seeds was determined. Then, biodiesel produced from discarded pumpkin seed oil was tested in an engine test setup. The performance and emission values of a four-cylinder diesel engine fueled with diesel (D100), biodiesel (PB100), and blended fuels (PB2D98, PB5D95, and PB20D80) were determined. Furthermore, three distinctive machine learning algorithms (artificial neural networks, XGBoost, and random forest) were employed to model engine performance and emission parameters. Models were generated based on the data from the PB100, PB2D98, and PB5D95 fuels, and model performance was assessed through the R2, RMSE, and MAPE metrics. The highest torque value (333.15 Nm) was obtained from 1200 rpm of D100 fuel. PB2D98 (2% biodiesel–98% diesel) had the lowest specific fuel consumption (194.33 g HPh−1) at 1600 rpm. The highest BTE (break thermal efficiency) value (30.92%) was obtained from diesel fuel at 1400 rpm. Regarding the blended fuels, PB2D98 exhibited the most fuel-efficient performance. Overall, in terms of engine performance and emission values, PB2M98 showed the closest results to diesel fuel. A comparison of machine learning algorithms revealed that artificial neural networks (ANNs) generally performed the best. However, the XGBoost algorithm proved to be more successful than other algorithms at predicting the performance and emissions of PB20D80 fuel. The present findings demonstrated that the XGBoost algorithm could be a more reliable option for predicting engine performance and emissions, especially for data-deficient fuels such as PB20D80. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 1703 KiB  
Article
Substitution of Pork Fat by Emulsified Seed Oils in Fresh Deer Sausage (‘Chorizo’) and Its Impact on the Physical, Nutritional, and Sensory Properties
by Elena Martínez, José Emilio Pardo, Manuel Álvarez-Ortí, Adrián Rabadán, Arturo Pardo-Giménez and Andrés Alvarruiz
Foods 2023, 12(4), 828; https://doi.org/10.3390/foods12040828 - 15 Feb 2023
Cited by 9 | Viewed by 2765
Abstract
Meat products are consumed worldwide, but their high content of saturated fatty acids requires a reformulation of that type of food. In this regard, the objective of this study is to reformulate ‘chorizos’ by replacing the pork fat with emulsified seed oils from [...] Read more.
Meat products are consumed worldwide, but their high content of saturated fatty acids requires a reformulation of that type of food. In this regard, the objective of this study is to reformulate ‘chorizos’ by replacing the pork fat with emulsified seed oils from seeds (50%, 75%, and 100%). Commercial seeds (chia and poppy) and other seeds considered wastes from the agri-food industry (melon and pumpkin) were evaluated. Physical parameters, nutritional composition, fatty acid profile, and consumer evaluation were analyzed. The reformulated chorizos presented a softer texture but a better fatty acid profile due to their decrease in saturated fatty acids and their increase in linoleic and linolenic fatty acids. Regarding consumer evaluation, all the batches were positively evaluated in all the parameters studied. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 2180 KiB  
Article
A Comparative Study on the Nutritional, Antioxidant, Thermal, Morphological and Diffraction Properties of Selected Cucurbit Seeds
by Sanghmitra R. Gade, Murlidhar Meghwal, Pramod K. Prabhakar and Angelo Maria Giuffrè
Agronomy 2022, 12(10), 2242; https://doi.org/10.3390/agronomy12102242 - 20 Sep 2022
Cited by 9 | Viewed by 8141
Abstract
Cucurbit seeds are highly nutritious but generally discarded as a waste by various processing sectors. This study aims to investigate the nutritional profile of seeds of ash gourd, pumpkin, watermelon and musk melon. The techniques, such as mineral, vitamin, amino acid and fatty [...] Read more.
Cucurbit seeds are highly nutritious but generally discarded as a waste by various processing sectors. This study aims to investigate the nutritional profile of seeds of ash gourd, pumpkin, watermelon and musk melon. The techniques, such as mineral, vitamin, amino acid and fatty acid profiling, will provide the nutritional status of the selected seed samples, while the antinutritional accounts will assess the safety of the food application. The thermal behavior of the seeds will guide the decision of the food application of the selected seeds. These seeds were found to be rich in protein and fat, minerals, vitamins and amino acids. The antinutritional compounds in the studied seeds were within the safety limits. Ash gourd seeds had the highest antioxidant activity at 85.11%, with the highest values of total phenols at 176.07 mg GAE/100 g and flavonoids at 159.16 mg QE/100 g. The peaks of the functional group at 3008 cm−1, 1651 cm−1, 1528 cm−1 and 1233 cm−1 denote the presence of polyunsaturated fatty acids, and amide I, II and III, respectively. The thermal analysis of the seeds reviled that the seeds were thermally stable and could be used in product development. The surface morphology was attributed to the interaction of fat, protein and carbohydrates. The semicrystalline or amorphous nature of the seeds resulted in an A-type pattern in the XRD analysis. The results obtained here supports the food application of the selected seeds. Full article
Show Figures

Figure 1

18 pages, 4782 KiB  
Article
Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours
by Magdalena Mikus, Sabina Galus, Agnieszka Ciurzyńska and Monika Janowicz
Molecules 2021, 26(12), 3738; https://doi.org/10.3390/molecules26123738 - 19 Jun 2021
Cited by 45 | Viewed by 3627
Abstract
The possibility of using oilseed flours as a waste source for film-forming materials with a combination of soy protein isolate in preparation of edible films was evaluated. Physical, mechanical and barrier properties were determined as a function of the oilseed type: hemp, evening [...] Read more.
The possibility of using oilseed flours as a waste source for film-forming materials with a combination of soy protein isolate in preparation of edible films was evaluated. Physical, mechanical and barrier properties were determined as a function of the oilseed type: hemp, evening primrose, flax, pumpkin, sesame and sunflower. It was observed that the addition of oilseed flours increased the refraction and thus the opacity of the obtained films from 1.27 to 9.57 A mm−1. Depending on the type of flours used, the edible films took on various colors. Lightness (L*) was lowest for the evening primrose film (L* = 34.91) and highest for the soy protein film (L* = 91.84). Parameter a* was lowest for the sunflower film (a* = −5.13) and highest for the flax film (a* = 13.62). Edible films made of pumpkin seed flour had the highest value of the b* color parameter (b* = 34.40), while films made of evening primrose flour had the lowest value (b* = 1.35). All analyzed films had relatively low mechanical resistance, with tensile strength from 0.60 to 3.09 MPa. Films made of flour containing the highest amount of protein, pumpkin and sesame, had the highest water vapor permeability, 2.41 and 2.70 × 10−9 g·m−1 s−1 Pa−1, respectively. All the edible films obtained had high water swelling values from 131.10 to 362.16%, and the microstructure of the films changed after adding the flour, from homogeneous and smooth to rough. All blended soy protein isolate–oilseed flour films showed lower thermal stability which was better observed at the first and second stages of thermogravimetric analysis when degradation occurred at lower temperatures. The oilseed flours blended with soy protein isolate show the possibility of using them in the development of biodegradable films which can find practical application in the food industry. Full article
(This article belongs to the Special Issue Food Packaging Materials)
Show Figures

Figure 1

16 pages, 2924 KiB  
Article
The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum
by Małgorzata Kowalska, Paweł Turek, Anna Żbikowska, Monika Babut and Jerzy Szakiel
Biomolecules 2021, 11(2), 213; https://doi.org/10.3390/biom11020213 - 3 Feb 2021
Cited by 14 | Viewed by 3539
Abstract
The study investigated the quality of emulsions containing rabbit fat modified with vegetable oil. The modification of the fat and introducing it as a fatty base into the emulsion was dictated by consumer preferences. Emulsion systems containing various fatty bases and viscosity modifier [...] Read more.
The study investigated the quality of emulsions containing rabbit fat modified with vegetable oil. The modification of the fat and introducing it as a fatty base into the emulsion was dictated by consumer preferences. Emulsion systems containing various fatty bases and viscosity modifier contents were evaluated in the terms of their stability (by means of Turbiscan test), texture properties, color, and viscosity. Moreover, the emulsions were assessed by a sensory panel in the context of the intensity of the following parameters: color, fragrance, consistency, greasiness, and hydration. The same characteristics were also subject to consumer evaluation. The results of the sensory assessment showed the sensory panel attributed higher scores to consistency and skin hydration to the emulsions formed with modified fats; these systems were more appreciated by consumers as well. The results confirmed a major role of sensory determinations in the development of new emulsion products. They also provide knowledge on modifications to product characteristics that would lead to the best possible quality and consumer acceptance. This research has also reaffirmed that looking for new fats among waste fats is becoming a solution to finding new fatty bases for emulsions. The natural origin of these components, and thus their agreeability with the human body, appear noteworthy as well. Enrichment with unsaturated fatty acids is an added advantage of the enzymatic modification of rabbit fat with pumpkin seed oil and can be applied not only for food but also for skin applications. Full article
Show Figures

Graphical abstract

10 pages, 1554 KiB  
Article
N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil
by Larissa Naida Rosa, Thays Raphaela Gonçalves, Sandra T. M. Gomes, Makoto Matsushita, Rhayanna Priscila Gonçalves, Paulo Henrique Março and Patrícia Valderrama
Molecules 2020, 25(19), 4366; https://doi.org/10.3390/molecules25194366 - 23 Sep 2020
Cited by 3 | Viewed by 2651
Abstract
The use of chemometric tools is progressing to scientific areas where analytical chemistry is present, such as food science. In analytical food evaluation, oils represent an important field, allowing the exploration of the antioxidant effects of herbs and seeds. However, traditional methodologies have [...] Read more.
The use of chemometric tools is progressing to scientific areas where analytical chemistry is present, such as food science. In analytical food evaluation, oils represent an important field, allowing the exploration of the antioxidant effects of herbs and seeds. However, traditional methodologies have some drawbacks which must be overcome, such as being time-consuming, requiring sample preparation, the use of solvents/reagents, and the generation of toxic waste. The objective of this study is to evaluate the protective effect provided by plant-based substances (directly, or as extracts), including pumpkin seeds, poppy seeds, dehydrated goji berry, and Provençal herbs, against the oxidation of antioxidant-free soybean oil. Synthetic antioxidants tert-butylhydroquinone and butylated hydroxytoluene were also considered. The evaluation was made through thermal degradation of soybean oil at different temperatures, and near-infrared spectroscopy was employed in an n-way mode, coupled with Parallel Factor Analysis (PARAFAC) to extract nontrivial information. The results for PARAFAC indicated that factor 1 shows oxidation product information, while factor 2 presents results regarding the antioxidant effect. The plant-based extract was more effective in improving the frying stability of soybean oil. It was also possible to observe that while the oxidation product concentration increased, the antioxidant concentration decreased as the temperature increased. The proposed method is shown to be a simple and fast way to obtain information on the protective effects of antioxidant additives in edible oils, and has an encouraging potential for use in other applications. Full article
(This article belongs to the Special Issue Chemometrics Tools Used in Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop