Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Tomato Sauce Preparation
2.4. pH, Total Soluble Solids, Dry Weight, and Viscosity
2.5. Titratable Acidity, Reducing Sugar and Fat Content
2.6. Mineral Content
2.7. Total Phenolic Compound and Antioxidant Activity Determination
2.7.1. Extraction
2.7.2. Spectrophotometric Assay
2.8. Carotenoids Content
2.9. Total Dietary Fiber
2.10. Organic Acids and Ascorbic Acid Determination
2.11. Color Measurement
2.12. Volatile Organic Compounds
2.13. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of pH, °Brix, Viscosity, Ash, and Dry Matter
3.2. Determination of Titratable Acidity, Reducing Sugars, and Fat Content
3.3. Mineral Determination
3.4. Total Phenolic Compounds and Antioxidant Activity
3.5. Total Carotenoids
3.6. Total Dietary Fiber
3.7. Organic Acid and Ascorbic Acid Determination
3.8. Color Evaluation
3.9. Volatile Organic Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting Future Food Demand with Current Agricultural Resources. Glob. Environ. Change 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef]
- Kiralan, M.; Ketenoglu, O. Utilization of Tomato (Solanum lycopersicum) by-Products: An Overview. In Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 799–818. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Manzo, N.; Pizzolongo, F.; Aiello, A. A New Type of Tomato Puree with High Content of Bioactive Compounds from 100% Whole Fruit. J. Food Sci. 2020, 85, 3264–3272. [Google Scholar] [CrossRef]
- Méndez-Carmona, J.Y.; Ascacio-Valdes, J.A.; Alvarez-Perez, O.B.; Hernández-Almanza, A.Y.; Ramírez-Guzman, N.; Sepúlveda, L.; Aguilar-González, M.A.; Ventura-Sobrevilla, J.M.; Aguilar, C.N. Tomato Waste as a Bioresource for Lycopene Extraction Using Emerging Technologies. Food Biosci. 2022, 49, 101966. [Google Scholar] [CrossRef]
- Biondi, L.; Luciano, G.; Cutello, D.; Natalello, A.; Mattioli, S.; Priolo, A.; Lanza, M.; Morbidini, L.; Gallo, A.; Valenti, B. Meat Quality from Pigs Fed Tomato Processing Waste. Meat Sci. 2020, 159, 107940. [Google Scholar] [CrossRef]
- Doria, E.; Boncompagni, E.; Marra, A.; Dossena, M.; Verri, M.; Buonocore, D. Polyphenols Extraction From Vegetable Wastes Using a Green and Sustainable Method. Front. Sustain. Food Syst. 2021, 5. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Donado-Pestana, C.M.; Pessoa, É.V.M.; Rodrigues, L.; Rossi, R.; Moura, M.H.C.; dos Santos-Donado, P.R.; Castro, É.; Festuccia, W.T.; Genovese, M.I. Polyphenols of Cambuci (Campomanesia phaea (O. Berg.)) Fruit Ameliorate Insulin Resistance and Hepatic Steatosis in Obese Mice. Food Chem. 2021, 340, 128169. [Google Scholar] [CrossRef] [PubMed]
- Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbaso, F.A.; Kazmi, I. Lycopene: A natural arsenal in the war against oxidative stress and cardiovascular dis- 482 eases. Antioxidants 2022, 11, 232. [Google Scholar] [CrossRef]
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease Prevention and Treatment Using β-Carotene: The Ultimate Provitamin A. Rev. Bras. Farmacogn. 2022, 32, 491–501. [Google Scholar] [CrossRef]
- Moors, E.H. Functional foods: Regulation and innovations in the EU. Innovation: The European Journal of Social Science 486 Research 2012, 25, 424–440. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chemistry 2020, 97, 9–19. [Google Scholar] [CrossRef]
- Pérez-Conesa, D.; García-Alonso, J.; García-Valverde, V.; Iniesta, M.-D.; Jacob, K.; Sánchez-Siles, L.M.; Ros, G.; Periago, M.J. Changes in Bioactive Compounds and Antioxidant Activity during Homogenization and Thermal Processing of Tomato Puree. Innov. Food Sci. Emerg. Technol. 2009, 10, 179–188. [Google Scholar] [CrossRef]
- Yong, S.X.M.; Song, C.P.; Choo, W.S. Impact of High-Pressure Homogenization on the Extractability and Stability of Phytochemicals. Front. Sustain. Food Syst. 2021, 4. [Google Scholar] [CrossRef]
- G.U. 232/2005. Available online: https://www.gazzettaufficiale.it/eli/gu/2005/10/05/232/sg/pdf (accessed on 16 March 2025).
- G.U. 168/1989. Available online: https://www.gazzettaufficiale.it/eli/gu/1989/07/20/168/so/51/sg/pdf (accessed on 16 March 2025).
- Raiola, A.; Pizzolongo, F.; Manzo, N.; Montefusco, I.; Spigno, P.; Romano, R.; Barone, A. A Comparative Study of the Physico-Chemical Properties Affecting the Organoleptic Quality of Fresh and Thermally Treated Yellow Tomato Ecotype Fruit. Int. J. Food Sci. Technol. 2018, 53, 1219–1226. [Google Scholar] [CrossRef]
- Raiola, A.; Del Giudice, R.; Monti, D.M.; Tenore, G.C.; Barone, A.; Rigano, M.M. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes. Molecules 2016, 21, 33. [Google Scholar] [CrossRef]
- Parisi, M.; Burato, A.; Pentangelo, A.; Ronga, D. Towards the Optimal Mineral N Fertilization for Improving Peeled Tomato Quality Grown in Southern Italy. Horticulturae 2022, 8, 697. [Google Scholar] [CrossRef]
- Sacco, A.; Raiola, A.; Calafiore, R.; Barone, A.; Rigano, M.M. New Insights in the Control of Antioxidants Accumulation in Tomato by Transcriptomic Analyses of Genotypes Exhibiting Contrasting Levels of Fruit Metabolites. BMC Genomics 2019, 20, 43. [Google Scholar] [CrossRef]
- Rigano, M.M.; Raiola, A.; Tenore, G.C.; Monti, D.M.; Del Giudice, R.; Frusciante, L.; Barone, A. Quantitative trait loci pyramiding can improve the nutritional potential of tomato (Solanum lycopersicum) fruits. J. Agric. Food Chem. 2014, 62, 11519–11527. [Google Scholar] [CrossRef]
- Luterotti, S.; Bicanic, D.; Marković, K.; Franko, M. Carotenes in Processed Tomato after Thermal Treatment. Food Control 2015, 48, 67–74. [Google Scholar] [CrossRef]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Pizzolongo, F.; Sorrentino, G.; Graci, S.; Barone, A.; Romano, R. Improved Antioxidant Properties and Sustainability of Whole-Fruit Yellow Tomato Puree. Int. J. Food Sci. Technol. 2024, 59, 7668–7678. [Google Scholar] [CrossRef]
- Tagliamonte, S.; Romano, R.; Chiacchio, M.F.; Aiello, A.; De Luca, L.; Salzano, V.; Vitaglione, P. Enrichment of Tomato Sauce and Chopped Tomatoes with Tomato By-Products Increases Antioxidant Activity upon in Vitro Digestion. LWT 2023, 184, 115002. [Google Scholar] [CrossRef]
- Jiang, C.-H.; Xie, Y.-S.; Zhu, K.; Wang, N.; Li, Z.-J.; Yu, G.-J.; Guo, J.-H. Volatile Organic Compounds Emitted by Bacillus Sp. JC03 Promote Plant Growth through the Action of Auxin and Strigolactone. Plant Growth Regul. 2019, 87, 317–328. [Google Scholar] [CrossRef]
- Knoblich, M.; Anderson, B.; Latshaw, D. Analyses of Tomato Peel and Seed Byproducts and Their Use as a Source of Carotenoids. J. Sci. Food Agric. 2005, 85, 1166–1170. [Google Scholar] [CrossRef]
- Silva, Y.P.; Borba, B.C.; Pereira, V.A.; Reis, M.G.; Caliari, M.; Brooks, M.S.-L.; Ferreira, T.A. Characterization of 471 Tomato Processing By-Product for Use as a Potential Functional Food Ingredient: Nutritional Composition, Anti- 472 oxidant Activity and Bioactive Compounds. Int. J. Food Sci. Nutr. 2019, 70, 150–160. [Google Scholar] [CrossRef]
- Donegà, V.; Marchetti, M.G.; Pedrini, P.; Costa, S.; Tamburini, E. Valorization of Tomato Dried Peels Powder as Thickening Agent in Tomato Purees. Food Process. Technol. 2015, 6–11. [Google Scholar] [CrossRef]
- Sharma, S.; Ramana Rao, T.V. Nutritional Quality Characteristics of Pumpkin Fruit as Revealed by Its Biochemical Analysis. Int. Food Res. J. 2013, 20, 2309–2316. [Google Scholar]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Ercolano, M.R.; Carli, P.; Soria, A.; Cascone, A.; Fogliano, V.; Frusciante, L.; Barone, A. Biochemical, Sensorial and Genomic Profiling of Traditional Italian Tomato Varieties. Euphytica 2008, 164, 571–582. [Google Scholar] [CrossRef]
- Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and Analysis of Tomato Seed Oil. J. Am. Oil Chem. Soc. 2010, 87, 755–762. [Google Scholar] [CrossRef]
- Khan, A.A.; Sajid, M.; Iqbal, A.; Khan, Z.H.; Islam, B.; Ali, F.; Ali, K.; Ahmed, A.; Sajjad, M.; Arif, M.; et al. Improving yield and mineral profile of tomato through changing crop micro-environment. Fresenius Environ. Bull. 2017, 26, 4911–4918. [Google Scholar]
- Costa, F.; de Lurdes Baeta, M.; Saraiva, D.; Verissimo, M.T.; Ramos, F. Evolution of Mineral Contents in Tomato Fruits During the Ripening Process After Harvest. Food Anal. Methods 2011, 4, 410–415. [Google Scholar] [CrossRef]
- van het Hof, K.H.; de Boer, B.C.J.; Tijburg, L.B.M.; Lucius, B.R.H.M.; Zijp, I.; West, C.E.; Hautvast, J.G.A.J.; Weststrate, J.A. Carotenoid Bioavailability in Humans from Tomatoes Processed in Different Ways Determined from the Carotenoid Response in the Triglyceride-Rich Lipoprotein Fraction of Plasma after a Single Consumption and in Plasma after Four Days of Consumption. J. Nutr. 2000, 130, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Irina, Z.; Irina, P.; Dmitriy, E.; Inessa, P.; Alla, C.; Alena, P.; Natalya, H. Assessment of Vitamin- and Mineral-Content Stability of Tomato Fruits as a Potential Raw Material to Produce Functional Food. Funct. Foods Health Dis. 2024, 14, 14–32. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Basile, G.; De Luca, L.; Sorrentino, G.; Calabrese, M.; Esposito, M.; Pizzolongo, F.; Romano, R. Green Technologies for Extracting Plant Waste Functional Ingredients and New Food Formulation: A Review. J. Food Sci. 2024, 89, 8156–8174. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–Polyphenol Conjugates: Antioxidant Property, Functionalities and Their Applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Xue, H.; Du, X.; Fang, S.; Gao, H.; Xie, K.; Wang, Y.; Tan, J. The Interaction of Polyphenols-Polysaccharides and Their Applications: A Review. Int. J. Biol. Macromol. 2024, 278, 134594. [Google Scholar] [CrossRef]
- Marszałek, K.; Trych, U.; Bojarczuk, A.; Szczepańska, J.; Chen, Z.; Liu, X.; Bi, J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants 2023, 12, 451. [Google Scholar] [CrossRef]
- Wu, X.; Yu, L.; Pehrsson, P.R. Are Processed Tomato Products as Nutritious as Fresh Tomatoes? Scoping Review on the Effects of Industrial Processing on Nutrients and Bioactive Compounds in Tomatoes. Adv. Nutr. 2022, 13, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.d.M.; Hasan, S.M.K.; Sarkar, S.; Ashik, M.A.I.; Somrat, M.A.M.; Asad, A.I. Effect of Formulation on Physiochemical, Phytochemical, Functional, and Sensory Properties of the Bioactive Sauce Blended with Tomato and Pumpkin Pulp. Appl. Food Res. 2024, 4, 100406. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical Profile, Functional and Antioxidant Properties of Tomato Peel Fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of Many Colors Provide Basic Nutrition and Bioavailable Phytochemicals Acting as a Functional Food. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Park, J.-H.; Lee, S.-Y.; Choi, M.-S.; Choi, J.-H.; Kim, C.-J. Effects of Pumpkin (Cucurbita Maxima Duch.) Fiber on Physicochemical Properties and Sensory Characteristics of Chicken Frankfurters. Food Sci. Anim. Resour. 2012, 32, 174–183. [Google Scholar] [CrossRef]
- García Herrera, P.; Sánchez-Mata, M.C.; Cámara, M. Nutritional Characterization of Tomato Fiber as a Useful Ingredient for Food Industry. Innov. Food Sci. Emerg. Technol. 2010, 11, 707–711. [Google Scholar] [CrossRef]
- Jones, J.M. CODEX-Aligned Dietary Fiber Definitions Help to Bridge the ‘Fiber Gap’. Nutr. J. 2014, 13, 34. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Dave Oomah, B.; Vergara-Castañeda, H.A. In Vivo and In Vitro Studies on Dietary Fiber and Gut Health. In Dietary Fiber Functionality in Food and Nutraceuticals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 123–177. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef]
- Agius, C.; von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of Sugars and Organic Acids in Tomato Fruits. MethodsX 2018, 5, 537–550. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of Organic Acids in the Fruit of Different Pumpkin Species. Food Chem. 2013, 148, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Tkacz, K.; Turkiewicz, I.P.; Wojdyło, A.; Nowicka, P. Analysis of Chemical Compounds’ Content in Different Varieties of Carrots, Including Qualification and Quantification of Sugars, Organic Acids, Minerals, and Bioactive Compounds by UPLC. Eur. Food Res. Technol. 2021, 247, 3053–3062. [Google Scholar] [CrossRef]
- Chanforan, C.; Loonis, M.; Mora, N.; Caris-Veyrat, C.; Dufour, C. The Impact of Industrial Processing on Health-Beneficial Tomato Microconstituents. Food Chem. 2012, 134, 1786–1795. [Google Scholar] [CrossRef] [PubMed]
- Gahler, S.; Otto, K.; Böhm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
- Ayuso-Yuste, M.C.; González-Cebrino, F.; Lozano-Ruiz, M.; Fernández-León, A.M.; Bernalte-García, M.J. Influence of Ripening Stage on Quality Parameters of Five Traditional Tomato Varieties Grown under Organic Conditions. Horticulturae 2022, 8, 313. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.; Díaz Romero, C. Analysis of Organic Acid Content in Cultivars of Tomato Harvested in Tenerife. Eur. Food Res. Technol. 2008, 226, 423–435. [Google Scholar] [CrossRef]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effects of Industrial Tomato Paste Processing on Ascorbic Acid, Flavonoids and Carotenoids and Their Stability over One-Year Storage. J. Sci. Food Agric. 2012, 92, 23–28. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Impact of High-Pressure and Traditional Thermal Processing of Tomato Purée on Carotenoids, Vitamin C and Antioxidant Activity. J. Sci. Food Agric. 2006, 86, 171–179. [Google Scholar] [CrossRef]
- Mirondo, R.; Barringer, S. Improvement of Flavor and Viscosity in Hot and Cold Break Tomato Juice and Sauce by Peel Removal. J. Food Sci. 2015, 80, S171–S179. [Google Scholar] [CrossRef]
- Calabrese, M.; De Luca, L.; Basile, G.; Sorrentino, G.; Esposito, M.; Pizzolongo, F.; Verde, G.; Romano, R. Reducing the Acrylamide Concentration in Homemade Bread Processed with L-Asparaginase. LWT-Food Sci. Technol. 2024, 209, 116770. [Google Scholar] [CrossRef]
- García, M.L.; Calvo, M.M.; Selgas, M.D. Beef Hamburgers Enriched in Lycopene Using Dry Tomato Peel as an Ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Marković, K.; Vahčić, N.; Ganić, K.K.; Banović, M. Aroma Volatiles of Tomatoes and Tomato Products Evaluated by Solid-Phase Microextraction. Flavour Fragr. J. 2007, 22, 395–400. [Google Scholar] [CrossRef]
- Carbonell-Barrachina, A.A.; Agustí, A.; Ruiz, J.J. Analysis of Flavor Volatile Compounds by Dynamic Headspace in Traditional and Hybrid Cultivars of Spanish Tomatoes. Eur. Food Res. Technol. 2006, 222, 536–542. [Google Scholar] [CrossRef]
- Farneti, B.; Cristescu, S.M.; Costa, G.; Harren, F.J.M.; Woltering, E.J. Rapid Tomato Volatile Profiling by Using Proton-Transfer Reaction Mass Spectrometry (PTR-MS). J. Food Sci. 2012, 77, C551–C559. [Google Scholar] [CrossRef]
- Lewinsohn, E.; Sitrit, Y.; Bar, E.; Azulay, Y.; Ibdah, M.; Meir, A.; Yosef, E.; Zamir, D.; Tadmor, Y. Not Just Colors—Carotenoid Degradation as a Link between Pigmentation and Aroma in Tomato and Watermelon Fruit. Trends Food Sci. Technol. 2005, 16, 407–415. [Google Scholar] [CrossRef]
- Kelebek, H.; Kesen, S.; Sonmezdag, A.S.; Cetiner, B.; Kola, O.; Selli, S. Characterization of the Key Aroma Compounds in Tomato Pastes as Affected by Hot and Cold Break Process. J. Food Meas. Charact. 2018, 12, 2461–2474. [Google Scholar] [CrossRef]
- Cosmai, L.; Summo, C.; Caponio, F.; Paradiso, V.M.; Gomes, T. Influence of the Thermal Stabilization Process on the Volatile Profile of Canned Tomato-Based Food. J. Food Sci. 2013, 78, C1865–C1870. [Google Scholar] [CrossRef]
- Yilmaz, E.; Aydeniz, B.; Güneşer, O.; Arsunar, E.S. Sensory and Physico-Chemical Properties of Cold Press-Produced Tomato (Lycopersicon esculentum L.) Seed Oils. J. Am. Oil Chem. Soc. 2015, 92, 833–842. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; De Pablo Gallego, S.L.; Maestre Pérez, S.E.; Valdés García, A.; Prats Moya, M.S. Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito. Antioxidants 2019, 8, 551. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Rouphael, Y.; Corrado, G. Volatiles Emitted by Three Genovese Basil Cultivars in Different Growing Systems and Successive Harvests. Data 2023, 8, 33. [Google Scholar] [CrossRef]
- Koutidou, M.; Grauwet, T.; Van Loey, A.; Acharya, P. Impact of Processing on Odour-Active Compounds of a Mixed Tomato-Onion Puree. Food Chem. 2017, 228, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Ballard, R.K.; Benyo, A.; Ren, R.; Nguyen, J.; Nguyen, J.; Zieber, E.; Gullickson, G.; Kim, H.J. Assessing Tomato Flavors Chemically: Identification of Aroma Volatiles from Heirloom and Commercial Tomatoes Using Solid-Phase Microextraction and GC-MS. J. Chem. Educ. 2023, 100, 1263–1269. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Q.; Niu, Y.; Zhou, X.; Liu, J.; Xu, Y.; Xu, Z. Odor-Active Compounds of Different Lavender Essential Oils and Their Correlation with Sensory Attributes. Ind. Crops Prod. 2017, 108, 748–755. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Díaz-Maroto Hidalgo, I.J.; Sánchez-Palomo, E.; Pérez-Coello, M.S. Volatile Components and Key Odorants of Fennel (Foeniculum vulgare Mill.) and Thyme (Thymus vulgaris L.) Oil Extracts Obtained by Simultaneous Distillation−Extraction and Supercritical Fluid Extraction. J. Agric. Food Chem. 2005, 53, 5385–5389. [Google Scholar] [CrossRef]
Ingredient (%) | ETS/WETS |
---|---|
Tomato | 85.7 |
Pumpkin | 5.0 |
Carrot | 5.0 |
Onion | 3.0 |
Oregano | 0.1 |
Basil | 1.2 |
Sample | pH | °Brix | Bostwick | Dry Matter % | Ash % |
---|---|---|---|---|---|
TS | 4.21 ± 0.01 c | 7.75 ± 0.07 b | 6.01 ± 0.01 b | 8.35 ± 0.07 c | 0.84 ±0.04 bc |
ETS | 4.29 ± 0.01 a | 8.15 ± 0.07 a | 6.15 ± 0.07 a | 8.38 ± 0.07 c | 0.76 ± 0.02 c |
WTS | 4.24 ± 0.02 b | 7.70 ± 0.01 b | 5.50 ± 0.07 d | 8.89 ± 0.01 a | 0.95 ± 0.05 a |
WETS | 4.20 ± 0.01 c | 8.05 ± 0.07 a | 5.70 ± 0.14 cd | 8.61 ± 0.02 b | 0.87 ±0.01 ab |
Sample | Titratable Acidity (%) | Reducing Sugars (%) | Fat Content (%) |
---|---|---|---|
TS | 0.56 ± 0.01 a | 2.69 ± 0.02 d | 0.16 ± 0.01 b |
ETS | 0.56 ± 0.01 a | 4.04 ± 0.15 a | 0.11 ± 0.03 b |
WTS | 0.46 ± 0.01 b | 2.96 ± 0.01 c | 0.25 ± 0.01 a |
WETS | 0.42 ± 0.00 b | 3.33 ± 0.05 b | 0.13 ± 0.03 b |
Sample | Ca | Na | Mg | K |
---|---|---|---|---|
TS | 29.35 ± 1.58 c | 75.36 ± 1.68 b | 16.88 ± 0.300 a | 322.1 ± 1.78 b |
ETS | 27.96 ± 0.30 c | 71.22 ± 0.65 c | 14.40 ± 0.384 b | 284.1 ± 0.97 c |
WTS | 43.21 ± 1.23 a | 79.73 ± 1.86 a | 17.58 ± 0.517 a | 381.2 ± 1.23 a |
WETS | 37.93 ± 0.96 b | 77.71 ± 0.64 ab | 15.30 ± 0.081 b | 305.5 ± 0.51 bc |
Sample | DPPH (µmol TE/100 g) | ABTS (µmol TE/100 g) | TPC (mg GAE/kg f.w.) |
---|---|---|---|
TS | 66.96 ± 1.31 d | 328.96 ± 0.22 d | 150.30 ± 2.81 d |
ETS | 76.71 ± 0.97 c | 381.34 ± 0.37 b | 165.10 ± 1.26 c |
WTS | 80.61 ± 1.85 b | 362.70± 0.12 c | 250.22 ± 2.33 b |
WETS | 87.07 ± 0.40 a | 395.61 ± 0.81 a | 270.40 ± 2.68 a |
Sample | TDF % |
---|---|
TS | 2.93 ± 0.32 b |
ETS | 2.78 ± 0.17 b |
WTS | 4.55 ± 0.94 a |
WETS | 3.95 ± 0.10 ab |
Sample | Ascorbic Acid | Malic Acid | Citric Acid |
---|---|---|---|
TS | 7.70± 0.23 b | 179.69 ± 1.41 a | 301.73 ± 0.61 a |
ETS | 7.05 ± 0.19 c | 175.45 ± 3.14 a | 294.92 ±2.45 b |
WTS | 11.36 ± 0.17 a | 177.22± 1.56 a | 298.39 ± 1.80 ab |
WETS | 11.01 ± 0.22 a | 173.86± 0.92 a | 293.9 ± 1.07 b |
Sample | L* | a* | b* |
---|---|---|---|
TS | 37.27 ± 0.37 a | 23.16 ± 0.93 b | 34.88 ± 1.45 b |
ETS | 40.84 ± 0.61 a | 20.01 ± 0.30 c | 35.06 ± 0.16 b |
WTS | 28.87 ± 0.62 b | 24.36 ± 0.30 a | 56.35 ± 0.00 a |
WETS | 26.11 ± 0.25 b | 24.19 ± 0.13 a | 54.87 ± 0.05 a |
TS | ETS | WTS | WETS | |
---|---|---|---|---|
ΣAlcohols | 5.16 ± 0.54 b | 2.26 ± 0.98 d | 15.53 ± 1.54 a | 3.44 ± 0.83 c |
1-Pentanol | 0.43 ± 0.04 a | n.d. | 0.48 ± 0.05 a | 0.27 ± 0.03 b |
(Z)-3-Hexen-1-ol | 4.19 ± 0.63 b | 2.21 ± 0.42 c | 12.87 ± 1.35 a | 2.14 ± 0.36 c |
3-Cyclohexen-1-ol, 4-methyl | 0.54 ± 0.06 b | 0.07 ± 0.01 c | 0.88 ± 0.01 a | 1.03 ± 0.22 a |
1-octanol | n.d. | n.d. | 1.30 ± 0.26 a | n.d. |
ΣTerpens | 24.77 ± 1.13 b | 28.49 ± 1.89 a | 9.32 ± 0.94 d | 20.17 ± 1.86 c |
α-terpineol | 11.61 ± 1.42 a | 7.64 ± 0.92 b | n.d. | n.d. |
Linalool | 3.53 ± 0.52 c | 5.45 ± 0.51 b | 7.49 ± 0.42 a | 7.64 ± 0.56 a |
β-Damascenone | 7.99 ± 0.62 a | n.d. | 1.13 ± 0.42 b | n.d. |
Methyleugenol | n.d. | 2.36 ± 0.27 a | n.d. | n.d. |
Eucalyptol | n.d. | 0.61 ± 0.08 b | n.d. | 1.22 ± 0.37 a |
(-)Terpinen-4-ol | 1.09 ± 0.23 a | 3.11 ± 0.36 b | 0.54 ± 0.05 b | 4.09 ± 0.32 a |
Thymol | n.d. | 3.83 ± 0.45 a | n.d. | 1.59 ± 0.32 b |
Borneol | n.d. | 5.10 ± 0.82 a | n.d. | 3.45 ± 0.42 a |
Eugenol | 0.55 ± 0.08 bc | 0.39 ± 0.04 c | 0.16 ± 0.04 d | 2.18 ± 0.47 a |
ΣAldehydes | 20.54 ± 1.13 a | 13.37 ± 1.01 b | 20.97 ± 1.28 a | 15.27 ± 1.14 b |
2-(Hexyloxy)benzaldehyde | 5.78 ± 0.81 a | 4.14 ± 0.77 a | 2.34 ± 0.56 b | 2.15 ± 0.39 b |
Hexanal | 7.78 ± 0.78 a | 4.90 ± 0.71 b | 8.42 ± 0.66 a | 6.14 ± 0.82 ab |
Benzeneacetaldehyde | 2.24 ± 0.31 a | 1.84 ± 0.22 a | 1.64 ± 0.26 ab | 0.89 ± 0.10 b |
Furfural | 4.72 ± 0.63 b | 2.48 ± 0.33 c | 8.56 ± 0.88 a | 6.07 ± 0.91 a |
ΣKetones | 46.27 ± 1.33 c | 54.01 ± 2.26 ab | 54.18 ± 2.88 b | 61.12 ± 3.50 a |
6-methyl-5-heptene-2one | 43.18 ± 1.52 c | 48.81 ± 1.31 b | 51.13 ± 1.55 b | 56.31 ± 1.59 a |
Geranylacetone | 3.09 ± 0.81 b | 5.20 ± 0.91 a | 3.04 ± 0.78 b | 4.34 ± 0.66 ab |
(+)2-Bornanone | n.d. | n.d. | n.d. | 0.47 ± 0.03 |
ΣOther | 3.26 ± 0.51 a | 1.87 ± 0.48 b | n.d. | n.d. |
1,3-Di-terz-butylbenzene | 0.52 ± 0.09 a | n.d. | n.d. | n.d. |
2,3-Di-tert-butylphenol | 2.69 ± 0.71 a | 0.73 ± 0.10 b | n.d. | n.d. |
5-Methylindole | n.d. | 1.14 ± 0.33 a | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milito, E.M.; De Luca, L.; Basile, G.; Calabrese, M.; Santini, A.; Ambrosio, S.; Romano, R. Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables. Foods 2025, 14, 2037. https://doi.org/10.3390/foods14122037
Milito EM, De Luca L, Basile G, Calabrese M, Santini A, Ambrosio S, Romano R. Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables. Foods. 2025; 14(12):2037. https://doi.org/10.3390/foods14122037
Chicago/Turabian StyleMilito, Enrico Maria, Lucia De Luca, Giulia Basile, Martina Calabrese, Antonello Santini, Sabato Ambrosio, and Raffaele Romano. 2025. "Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables" Foods 14, no. 12: 2037. https://doi.org/10.3390/foods14122037
APA StyleMilito, E. M., De Luca, L., Basile, G., Calabrese, M., Santini, A., Ambrosio, S., & Romano, R. (2025). Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables. Foods, 14(12), 2037. https://doi.org/10.3390/foods14122037