N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples
3.2. Sample Preparation by Using Plant-Based Substances Directly
3.3. Sample Preparation by Using Plant-Based Substance Extracts
3.4. Thermal Degradation
3.5. Spectroscopy Measurements and Data Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferreira, M.M.C. Quimiometria—Conceitos, Métodos e Aplicações, 1st ed.; Editora Unicamp: Campinas-SP, Brazil, 2015; pp. 15–27. [Google Scholar]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L. Computerized learning machines applied to chemical problems. Molecular formula determination from low resolution mass spectrometry. Anal. Chem. 1969, 41, 21–27. [Google Scholar] [CrossRef]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. An investigation of convergence rate and predictive ability of adaptive binary pattern classification. Anal. Chem. 1969, 41, 690–695. [Google Scholar] [CrossRef]
- Kowalski, B.R.; Jurs, P.C.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. Multicategory pattern classification by least squares. Anal. Chem. 1969, 41, 695–700. [Google Scholar] [CrossRef]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. An investigation of combined patterns from diverse analytical data using computerized learning machine. Anal. Chem. 1969, 41, 1949–1953. [Google Scholar] [CrossRef]
- Booksh, K.S.; Kowalski, B.R. Theory of analytical chemistry. Anal. Chem. 1994, 66, 782A–791A. [Google Scholar] [CrossRef]
- Brereton, R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125, 2125–2154. [Google Scholar] [CrossRef]
- Brereton, R.G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.M.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry—part I: History, experimental design and data analysis tools. Anal. Bioanal. Chem. 2017, 409, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sarma, A.B.G.S.; Rawal, R.K. Chemometrics tools used in analytical chemistry: An overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Q.; Xiao, N.; Wen, Y.; He, S.-H.; Xu, Y.-D.; Lin, Y.-W.; Li, H.-D.; Xu, Q.-S. Collaboration patterns and network in chemometrics. Chemom. Intell. Lab. Syst. 2019, 191, 21–29. [Google Scholar] [CrossRef]
- Marini, F. Chemometrics in Food Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ruisánchez, I.; Jiménez-Carvelo, A.M.; Callao, M.P. ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta 2020, in press. [Google Scholar]
- Gonçalves, R.P.; Março, P.H.; Valderrama, P. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics. Food Chem. 2014, 163, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.K.; Musso, M.; Bertoldo Menezes, D. Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil. Food Chem. 2020, in press. [Google Scholar]
- Malacrida, C.R.; Angelo, P.M.; Andreo, D.; Jorge, N. Chemical composition and antioxidant potential of yellow melon seed extracts in soybean oil. Revista Ciência Agronômica 2007, 38, 372–376. [Google Scholar]
- Angelo, P.M.; Jorge, N. Evaluation of added sunflower oil of antioxidants under storage. Food Sci. Technol. 2008, 28, 498–502. [Google Scholar] [CrossRef][Green Version]
- Chong, Y.M.; Chang, S.K.; Sia, W.C.M.; Yim, H.S. Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Boroski, M.; Aguiar, A.C.; Rotta, E.M.; Bonafé, E.G.; Valderrama, P.; Souza, N.E.; Visentainer, J.V. Antioxidant activity of herbs and extracted phenolics from oregano in canola oil. Int. Food Res. J. 2018, 25, 2444–2452. [Google Scholar]
- Pedro, A.C.; Maurer, J.B.B.; Zawadzki-Baggio, S.F.; Ávila, S.; Maciel, G.M.; Haminiuk, C.W.I. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind. Crops Prod. 2018, 112, 90–97. [Google Scholar] [CrossRef]
- Sekhon-Loodu, S.; Warnakulasuriya, S.N.; Rupasinghe, H.P.V.; Shahidi, F. Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chem. 2013, 140, 189–196. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Badaró, A.T.; Pasquini, C.; Barbin, D.F. Food quality and NIR spectroscopy in the omics era. In Reference Module in Food Science; Smithers, G., Trinetta, V., Knoerzer, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pop, A.; Petrut, G.S.; Muste, S.; Paucean, A.; Salanta, L.C.; Farcas, A.; Man, S. Herbs and spices as important source of antioxidant and phenolic content in black radish dressing. Hop Med. Plants 2017, 1–2, 87–93. [Google Scholar]
- Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhe, R. Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant potential of the extracts, fractions and oils derived from oilseeds. Antioxidants 2013, 2, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.N.; Coqueiro, A.; Março, P.H.; Valderrama, P. Thermal rice oil degradation evaluated by UV–Vis-NIR and PARAFAC. Food Chem. 2019, 273, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, V.C.; Jorge, N. Antioxidants used in oils, fats and fatty foods. Quim. Nova 2006, 29, 755–760. [Google Scholar]
- Valderrama, P.; Março, P.H.; Locquet, N.; Ammari, F.; Rutledge, D.N. A procedure to facilitate the choice of the number of factors in multi-way data analysis applied to the natural samples: Application to monitoring the thermal degradation of oils using front-face fluorescence spectroscopy. Chemom. Intell. Lab. Syst. 2011, 106, 166172. [Google Scholar] [CrossRef]
- Ammari, F.; Jouan-Rimbaud-Bouveresse, D.; Eveleigh, L.; Boughanmi, D.; Rutledge, D.N. Independent component analysis applied to mid-infrared spectra of edible oils to study the thermal stability of heated oils. J. Food Meas.Charact. 2013, 7, 90–99. [Google Scholar] [CrossRef]
- Patel, S. Pumpkin (Cucurbita sp.) seeds as nutraceutic: A review on status quo and scopes. Mediterr. J. Nutr. Metab. 2013, 6, 183–189. [Google Scholar] [CrossRef]
- Kirkan, B.; Ozer, M.S.; Sarikurkcu, C.; Copuroglu, M.; Cengiz, M.; Tepe, B. Can the stalks of Papaver somniferum L. be an alternative source of bioactive components? Ind. Crops Prod. 2018, 115, 1–5. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Spencer, J.P.E.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provençal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Canha, N.; Felizardo, P.; Menezes, J.C.; Correia, M.J.N. Multivariate near infrared spectroscopy models for predicting the oxidative stability of biodiesel: Effect of antioxidants addition. Fuel 2012, 97, 352–357. [Google Scholar] [CrossRef]
- Vieira, F.S.; Pasquini, C. Near infrared emission photometer for measuring the oxidative stability of edible oils. Anal. Chim. Acta 2013, 796, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.S.; Pasquini, C. Determination of the oxidative stability of biodiesel using near infrared emission spectroscopy. Fuel 2014, 117, 1004–1009. [Google Scholar] [CrossRef]
- Ammari, F.; Jouan-Rimbaud-Bouveresse, D.; Boughanmi, D.; Rutledge, D.N. Study of the heat stability of sunflower oil enriched in natural antioxidants by different analytical techniques and front-face fluorescence spectroscopy combined with independent component analysis. Talanta 2012, 99, 323–329. [Google Scholar] [CrossRef] [PubMed]
- ABIOVE—Associação Brasileira das Indústrias de Óleos Vegetais. Available online: https://abiove.org.br/estatisticas/ (accessed on 12 September 2020).
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares producers. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC, Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Bro, R.; Viereck, N.; Toft, M.; Toft, H.; Hansen, P.I.; Engelsen, S.B. Mathematical chromatography solves the cocktail party effect in mixtures using 2D spectra and PARAFAC. TrAC Trends Anal. Chem. 2010, 29, 281–284. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Vieira, T.M.F.S.; D’Arce, M.A.B.R. Stability of oils heated by microwave: UV spectrophotometric evaluation. Food Sci. Technol. 1998, 18, 433–437. [Google Scholar] [CrossRef]
- Gonçalves, T.R.; Rosa, L.N.; Gonçalves, R.P.; Torquato, A.S.; Março, P.H.; Gomes, S.T.M.; Matsushita, M.; Valderrama, P. Monitoring the Oxidative Stability of Monovarietal Extra Virgin Olive Oils by UV–Vis Spectroscopy and MCR–ALS. Food Anal. Methods 2018, 11, 1936–1943. [Google Scholar] [CrossRef]
- Holman, R.; Nickell, C.; Privett, O.; Edmondson, P. Detection and measurement of hydroperoxides by near-infrared spectrophotometry. J. Am. Oil Chem. Soc. 1958, 35, 422–425. [Google Scholar] [CrossRef]
- Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and mid-infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem. 2015, 187, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.N.; Figueiredo, L.C.; Bonafé, E.G.; Coqueiro, A.; Visentainer, J.V.; Março, P.H.; Rutledge, D.N.; Valderrama, P. Multi-block data analysis using ComDim for the evaluation of complex samples: Characterization of edible oils. Anal. Chim. Acta 2017, 961, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Guinazi, M.; Milagres, R.C.R.M.; Pinheiro-Sant’Ana, M.; Chaves, J.B.P. Tocopherols and tocotrienols in vegetable oils and eggs. Quim. Nova 2009, 32, 2098–2103. [Google Scholar]
- Ardabili, A.G.; Farhoosh, R.; Khodaparast, M.H.H. Frying stability of canola oil in presence of pumpkin seed and olive oils. Eur. J. Lipid Sci. Technol. 2010, 112, 871–877. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Barreto, G.P.M.; Bragagnolo, N.; Mercadante, A.Z. Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil. Braz. Arch. Biol. Technol. 2008, 51, 1225–1232. [Google Scholar] [CrossRef]
- Soares, D.R.; Gonçalves, R.P.; Valderrama, P.; Março, P.H. MCR-ALS and NIRS application in the evaluation of the antioxidant activity of Peruvian Maca (Lepidium Meyenii Walp). Braz. J. Food Res. 2016, 7, 17–26. [Google Scholar] [CrossRef]
- Laczkowski, M.S.; Gonçalves, T.R.; Gomes, S.T.M.; Março, P.H.; Valderrama, P.; Matsushita, M. Application of chemometric methods in the evaluation of antioxidants activity from degreased chia seeds extracts. LWT, Food Sci. Technol. 2018, 95, 303–307. [Google Scholar] [CrossRef]
- Anderson, C.A.; Bro, R. The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Vilas-Boas, A.; Valderrama, P.; Fontes, N.; Geraldo, D.; Bento, F. Evaluation of total polyphenol content of wines by means of voltammetric techniques: Cyclic voltammetry vs differential pulse voltammetry. Food Chem. 2019, 276, 719–725. [Google Scholar] [CrossRef]
Sample Availability: NIR spectra are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, L.N.; Gonçalves, T.R.; Gomes, S.T.M.; Matsushita, M.; Gonçalves, R.P.; Março, P.H.; Valderrama, P. N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules 2020, 25, 4366. https://doi.org/10.3390/molecules25194366
Rosa LN, Gonçalves TR, Gomes STM, Matsushita M, Gonçalves RP, Março PH, Valderrama P. N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules. 2020; 25(19):4366. https://doi.org/10.3390/molecules25194366
Chicago/Turabian StyleRosa, Larissa Naida, Thays Raphaela Gonçalves, Sandra T. M. Gomes, Makoto Matsushita, Rhayanna Priscila Gonçalves, Paulo Henrique Março, and Patrícia Valderrama. 2020. "N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil" Molecules 25, no. 19: 4366. https://doi.org/10.3390/molecules25194366
APA StyleRosa, L. N., Gonçalves, T. R., Gomes, S. T. M., Matsushita, M., Gonçalves, R. P., Março, P. H., & Valderrama, P. (2020). N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules, 25(19), 4366. https://doi.org/10.3390/molecules25194366