The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Enzymatic Modification (EIE) Reaction
2.2.2. Preparation of Emulsions
2.2.3. Texture Analysis
2.2.4. Dynamic Viscosity
2.2.5. Instrumental Determination of Emulsion Color
- ∆E—color difference between freshly prepared and stored emulsions,
- C*—difference in color saturation,
- L*—intensity of color brightness from 0.00 (black) to 100.0 (white),
- a*—indication of a value between red and green,
- b*—indication of a value between yellow and blue [21].
2.2.6. Stability Evaluation
- λ*—is the photon transport mean free path in the analyzed dispersion,
- ϕ—is the volume fraction of emulsion particles,
- d—is the mean diameter of particles,
- g, Qs—are the optical parameters given by the Mie theory,
- Xi—is the average backscattering for each minute of measurement,
- XBS—is the average Xi
- n—is the number of scans [22].
2.2.7. Sensory Analysis
2.2.8. Consumer Testing
3. Results and Discussion
3.1. Texture Analysis
3.2. Dynamic Viscosity
3.3. Instrumental Determination of Emulsion Color
3.4. Stability Evaluation
3.5. Sensory Analysis
3.6. Consumer Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Dhir, A.; Talwar, S.; Chakraborty, D.; Kaur, P. What drives brand love for natural products? The moderating role of household size. J. Retail. Consum. Serv. 2021, 58, 102329. [Google Scholar] [CrossRef]
- Kahraman, A.; Kazancoglu, I. Understanding consumers’ purchase intentions toward natural-claimed products: A qualitative research in personal care products. Bus. Strat. Environ. 2019, 28, 1218–1233. [Google Scholar] [CrossRef]
- Statista. 2019. Global Market Value for Natural and Organic Cosmetics from 2018 to 2027. 2019. Available online: https://www.statista.com/statistics/673641/global-market-value-for-natural-cosmetics/ (accessed on 10 January 2021).
- Dickinson, E. Colloids in Food: Ingredients, Structure, and Stability. Annu. Rev. Food Sci. Technol. 2015, 6, 211–233. [Google Scholar] [CrossRef]
- Chang, Y.; McClements, D.J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocoll. 2016, 61, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Huan, S.; Li, Z.; McClements, D.J. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocoll. 2017, 66, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Lam, R.S.; Nickerson, M.T. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Rosalam, S.; England, R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzyme Microb. Technol. 2016, 39, 197–207. [Google Scholar] [CrossRef]
- Desplanques, S.; Renou, F.; Grisel, M.; Malhiac, C. Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll. 2012, 27, 401–410. [Google Scholar] [CrossRef]
- Hanazawa, T.; Murray, B.S. The influence of oil droplets on the phase separation of protein–polysaccharide mixtures. Food Hydrocoll. 2014, 34, 128–137. [Google Scholar] [CrossRef]
- Marzec, A.; Kowalska, H.; Suwińska, S. Wpływ rodzaju i zawartości tłuszczu na właściwości akustyczne ciastek kruchych. Acta Agrophysica. 2017, 19, 611–620. [Google Scholar]
- Kowalska, M.; Woźniak, M.; Krzton-Maziopa, A.; Tavernier, S.; Pazdur, Ł.; Żbikowska, A. Development of the emulsions containing modified fats formed via enzymatic interesterification catalyzed by specific lipase with various amount of water. J. Dispers. Sci. Technol. 2018, 40, 192–205. [Google Scholar] [CrossRef]
- Kowalska, M.; Mendrycka, M.; Zbikowska, A.; Kowalska, D. Assessment of a stable cosmetic preparation based on enzymatic interesterified fat, proposed in the prevention of atopic dermatitis. Acta Pol. Pharm. Drug Res. 2017, 74, 465–476. [Google Scholar]
- Rojas, V.M.; Marconi, L.F.D.C.B.; Guimarães-Inácio, A.; Leimann, F.V.; Tanamati, A.; Gozzo Ângela, M.; Fuchs, R.H.B.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R.; et al. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chem. 2019, 274, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, R.M.P. Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Rasinska, E.; Czarniecka-Skubina, E.; Rutkowska, J. Fatty acid and lipid contents differentiation in cuts of rabbit meat. CyTA J. Food 2018, 16, 807–813. [Google Scholar] [CrossRef]
- Leiber, F.; Meier, J.S.; Burger, B.; Wettstein, H.-R.; Kreuzer, M.; Hatt, J.-M.; Clauss, M. Significance of Coprophagy for the Fatty Acid Profile in Body Tissues of Rabbits Fed Different Diets. Lipids 2008, 43, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Givens, D.I. Animal nutrition and lipids in animal products and their contribution to human intake and health. Nutrients 2009, 1, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Zotte, A.D.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Stokman, H.; Gevers, T.; Koenderink, J. Color Measurement by Imaging Spectrometry. Comput. Vis. Image Underst. 2000, 79, 236–249. [Google Scholar] [CrossRef]
- Klimaszewska, E.; Seweryn, A.; Małysa, A.; Zieba, M.; Lipińska, J. The effect of chamomile extract obtained in supercritical carbon dioxide conditions on physicochemical and usable properties of pharmaceutical ointments. Pharm. Dev. Technol. 2018, 23, 780–786. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, F.; Saito, M.; Tatsumi, E.; Yin, L. Effect of magnesium salt concentration in water-in-oil emulsions on the physical properties and microstructure of tofu. Food Chem. 2016, 201, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food. Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6488-5. [Google Scholar]
- ISO 4121. Sensory Analysis - Guidelines for the Use of Quantitative Response Scales. Genewa: ISO. 2003, 1–9. Available online: https://www.iso.org/standard/33817.html (accessed on 14 February 2020).
- ISO 11132. Sensory Analysis - Methodology - Guidelines for Monitoring the Performance of a Quantitative Sensory Panel. Genewa: ISO. 2012, 1–23. Available online: https://www.iso.org/standard/50124.html (accessed on 20 January 2020).
- ISO 5496. Sensory Analysis - Methodology - Initiation and Training of Assessors in the Detection and Recognition of Odours. Genewa: ISO. 2006, 1–16. Available online: https://www.iso.org/standard/44247.html (accessed on 16 January 2020).
- ISO 6658. Sensory Analysis - Methodology - General Guidance. Genewa: ISO. 2017, 1–26. Available online: https://www.iso.org/standard/65519.html (accessed on 19 December 2019).
- ISO 8586. Sensory Analysis - General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Genewa: ISO. 2012, 1–26. Available online: https://www.iso.org/standard/45352.html (accessed on 23 March 2020).
- ISO 11136. Sensory analysis - Methodology - General guidance for conducting hedonic tests with consumers in a controlled area. Genewa: ISO. 2014, 1-44. Available online: https://www.iso.org/standard/50125.html (accessed on 23 March 2020).
- Zaborski, A. Skalowanie Wielowymiarowe. Statystyczna Analiza Danych z Wykorzystaniem Programu R; PWN: Warsaw, Poland, 2009; ISBN 978-830-115-661-9. [Google Scholar]
- Quan, T.H.; Benjakul, S.; Quân, T.H. Gelling properties of duck albumen powder as affected by desugarization and drying conditions. J. Texture Stud. 2018, 49, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.V.; Shamasundar, B. Texture Profile Analysis and Functional Properties of Gelatin from the Skin of Three Species of Fresh Water Fish. Int. J. Food Prop. 2015, 18, 572–584. [Google Scholar] [CrossRef]
- Assadpour, E.; Maghsoudlou, Y.; Jafari, S.M.; Ghorbani, M.; Aalami, M. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. Int. J. Biol. Macromol. 2016, 86, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Babut, M.; Woźniak, M.; Żbikowska, A. Formulation of oil-in-water emulsions containing enzymatically modified rabbit fat with pumpkin seed oil. J. Food Process. Preserv. 2019, 43, e13987. [Google Scholar] [CrossRef]
- Papalamprou, E.M.; A Makri, E.; Kiosseoglou, V.D.; I Doxastakis, G. Effect of medium molecular weight xanthan gum in rheology and stability of oil-in-water emulsion stabilized with legume proteins. J. Sci. Food Agric. 2005, 85, 1967–1973. [Google Scholar] [CrossRef]
- Saharudin, S.H.; Ahmad, Z.; Basri, M. Role of xanthan gum on physicochemical and rheological properties of rice bran oil emulsion. Int. Food Res. J. 2016, 23, 1361–1366. [Google Scholar]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; Series in contemporary food science; CRC Press: Boca Raton, FL, USA, 2005; p. 609. [Google Scholar]
- Chudy, S.; Gierałtowska, U.; Krzywdzińska-Bartkowiak, M.; Piątek, M. Pomiar barwy produktów mleczarskich. In Współczesne Trendy w Kształtowaniu Jakości żywności; Wydział Nauk o Żywności i Żywieniu Uniwersytet Przyrodniczy w Poznaniu: Poznan, Poland, 2016; pp. 85–95. [Google Scholar]
- Weiss, J.; McClements, D.J. Color changes in hydrocarbon oil-in-water emulsions caused by Ostwald ripening. J. Agric. Food Chem. 2001, 49, 4372–4377. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; Clydesdale, F.; McClements, D.J. Influence of Flocculation on Optical Properties of Emulsions. J. Food Sci. 2001, 66, 464–469. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yang, X.; Zhang, Q. TURBISCAN: History, Development, Application to Colloids and Dispersions. Adv. Mater. Res. 2014, 936, 1592–1596. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.-F.; Lu, L.; Li, M.-X.; Xu, J.-C.; Deng, H.-P. Turbiscan Lab® Expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers. J. Hazard. Mater. 2011, 190, 214–221. [Google Scholar] [CrossRef] [PubMed]
- LeMarchand, C. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int. J. Pharm. 2003, 254, 77–82. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Fang, Y.; Cao, Y.; Liao, H.; Nishinari, K.; Phillips, G.O. Hydrocolloid-food component interactions. Food Hydrocoll. 2017, 68, 149–156. [Google Scholar] [CrossRef]
- Raymundo, A.; Franco, J.M.; Empis, J.; De Sousa, I.M.N. Optimization of the composition of low-fat oil-in-water emulsions stabilized by white lupin protein. J. Am. Oil Chem. Soc. 2002, 79, 783–790. [Google Scholar] [CrossRef]
- Vélez, G.; Fernández, M.A.; Muñoz, J.; Williams, P.A.; English, R.J. Role of Hydrocolloids in the Creaming of Oil in Water Emulsions. J. Agric. Food Chem. 2003, 51, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Traynor, M.; Burke, R.; Fria, J.M. Gaston, E.; Barry-Ryan, C. Formation and stability of an oil in water emulsion containing lecithin, xanthan gum and sunflower oil. Int. Food Res. J. 2013, 20, 2173–2181. [Google Scholar]
- Xu, D.; Zhang, J.; Cao, Y.; Wang, J.; Xiao, J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT 2016, 66, 590–597. [Google Scholar] [CrossRef]
- Ren, Y.; Zheng, J.; Xu, Z.; Zhang, Y.; Zheng, J. Application of Turbiscan LAB to study the influence of lignite on the static stability of PCLWS. Fuel 2018, 214, 446–456. [Google Scholar] [CrossRef]
- Moravkova, T.; Filip, P. Relation between sensory analysis and rheology of body lotions. Int. J. Cosmet. Sci. 2016, 38, 558–566. [Google Scholar] [CrossRef]
- Jabkowski, P. O korzyściach wynikających z zastosowania analizy PROFIT. In Praktyczna Analiza Danych w Marketingu i Bada-Niach Rynku; StatSoft: Warsaw, Poland, 2010; pp. 89–102. [Google Scholar]
- Błażejczyk-Majka, L.; Boczar, P. Zastosowanie metod wielowymiarowych w charakterystyce preferencji konsumentów. Metody Ilościowe w Badaniach Ekonomicznych 2016, 17, 18–32. [Google Scholar]
- Turek, P.; Głowik, A. The Effects of the Moisturizing Cream Color on the Perception of Selected Sensory Attributes. In Current Trends in Commodity Science: Development and Assessment of Non-food Products; University of Economics Faculty of Commodity Science: Poznan, Poland, 2015; pp. 59–174. [Google Scholar]
- Turek, P. Color Modification of the Face Cream and its General Sensory Quality. Polish J. Commod. Sci. 2017, 53, 139–147. [Google Scholar] [CrossRef]
Emulsions | Fat Type | Component (%) wt/wt | |||||
---|---|---|---|---|---|---|---|
Xanthan Gum [g] | Emulsifiers * [%] | Water | |||||
MAG | DAG | ||||||
E1 | RF:PSO | 3:1 | EIE blends | 0.8 | Up to 100.0 | ||
E2 | 1.0 | ||||||
E3 | 3:3 | 0.8 | |||||
E4 | 1.0 | 4.8 | 21.00 | ||||
E5 | 1:3 | 0.8 | |||||
E6 | 1.0 | ||||||
E7 | RF:PSO | 3:1 | NIE blends | 0.8 | |||
E8 | 1.0 | ||||||
E9 | 3:3 | 0.8 | |||||
E10 | 1.0 | - | - | ||||
E11 | 1:3 | 0.8 | |||||
E12 | 1.0 |
Emulsions | 24 h | 30 Days | |||||||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | L* | a* | b* | C* | ∆E | |
E1 | 18.0 ± 0.8 | 0.6 ± 0.4 | 1.1 ± 0.3 | 1.2 ± 0.5 | 15.0 ± 0.5 | −0.3 ± 0.1 | 1.9 ± 0.2 | 1.8 ± 0.3 | 2.7 ± 0.1 |
E2 | 17.9 ± 0.3 | 0.8 ± 0.1 | 1.1 ± 0.2 | 1.3 ± 0.2 | 15.7 ± 0.5 | −0.8 ± 0.1 | 3.3 ± 0.1 | 3.4 ± 0.2 | 1.9 ± 0.2 |
E3 | 17.4 ± 1.0 | 1.2 ± 0.1 | 0.7 ± 0.5 | 1.4 ± 0.5 | 13.8 ± 0.2 | −0.5 ± 0.1 | 2.8 ± 0.1 | 2.9 ± 0.1 | 3.3 ± 0.3 |
E4 | 18.2 ± 0.7 | 1.1 ± 0.1 | 1.1 ± 0.3 | 1.6 ± 0.3 | 14.2 ± 0.2 | −0.7 ± 0.1 | 3.0 ± 0.1 | 3.0 ± 0.1 | 3.8 ± 0.2 |
E5 | 18.2 ± 0.4 | 0.9 ± 0.1 | 0.3 ± 0.3 | 1.0 ± 0.2 | 14.2 ± 0.2 | −0.6 ± 0.1 | 2.7 ± 0.1 | 2.7 ± 0.1 | 3.8 ± 0.1 |
E6 | 18.2 ± 0.5 | 0.8 ± 0.1 | 0.6 ± 0.6 | 1.0 ± 0.4 | 13.6 ± 0.1 | −0.6 ± 0.1 | 2.6 ± 0.1 | 2.7 ± 0.1 | 4.4 ± 0.3 |
E7 | 17.1 ± 0.3 | 1.5 ± 0.1 | −0.2 ± 0.1 | 1.5 ± 0.2 | 13.9 ± 0.2 | −0.4 ± 0.1 | 2.0 ± 0.2 | 2.1 ± 0.1 | 3.1 ± 0.1 |
E8 | 17.4 ± 0.9 | 1.7 ± 0.1 | −0.2 ± 0.1 | 1.7 ± 0.2 | 13.0 ± 0.4 | −0.5 ± 0.2 | 1.8 ± 0.1 | 1.9 ± 0.2 | 4.4 ± 0.3 |
E9 | 16.7 ± 0.2 | 1.7 ± 0.1 | −0.3 ± 0.2 | 1.7 ± 0.2 | 12.2 ± 0.2 | −0.5 ± 0.2 | 1.6 ± 0.3 | 1.7 ± 0.2 | 4.5 ± 0.2 |
E10 | 17.2 ± 0.8 | 1.6 ± 0.1 | −0.7 ± 0.2 | 1.8 ± 0.4 | 13.3 ± 0.4 | −0.4 ± 0.1 | 1.6 ± 0.1 | 1.7 ± 0.2 | 3.9 ± 0.2 |
E11 | 15.8 ± 0.6 | 1.9 ± 0.2 | −0.8 ± 0.1 | 2.1 ± 0.3 | 12.7 ± 0.5 | −0.6 ± 0.3 | 1.2 ± 0.1 | 1.3 ± 0.2 | 3.2 ± 0.4 |
E12 | 16.3 ± 0.6 | 2.0 ± 0.1 | −0.6 ± 0.3 | 2.1 ± 0.3 | 12.3 ± 0.5 | −0.6 ± 0.1 | 1.5 ± 0.3 | 0.4 ± 0.3 | 4.0 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, M.; Turek, P.; Żbikowska, A.; Babut, M.; Szakiel, J. The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum. Biomolecules 2021, 11, 213. https://doi.org/10.3390/biom11020213
Kowalska M, Turek P, Żbikowska A, Babut M, Szakiel J. The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum. Biomolecules. 2021; 11(2):213. https://doi.org/10.3390/biom11020213
Chicago/Turabian StyleKowalska, Małgorzata, Paweł Turek, Anna Żbikowska, Monika Babut, and Jerzy Szakiel. 2021. "The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum" Biomolecules 11, no. 2: 213. https://doi.org/10.3390/biom11020213
APA StyleKowalska, M., Turek, P., Żbikowska, A., Babut, M., & Szakiel, J. (2021). The Quality of Emulsions with New Synthetized Lipids Stabilized by Xanthan Gum. Biomolecules, 11(2), 213. https://doi.org/10.3390/biom11020213