A Pilot Study on the Use of Pumpkin Waste as Cattle Feed
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Pumpkin Seed Pulp Flakes (PSPFs)
2.2. Analysis of Heptachlor Content
2.3. Nutritional Composition Analysis of PSPFs
2.4. Analysis of β-Carotene
2.5. Feeding Trial in Cattle (Pilot Study)
2.6. Statistical Analysis
3. Results
3.1. Analysis of Heptachlor Content in PSPFs
3.2. Nutritional Composition Analysis of PSPFs
3.3. Analysis of β-Carotene Content in PSPFs
3.4. Feeding Trial in Cattle (Pilot Study)
4. Discussion
- (1)
- Vitamin A, which is converted from β-carotene in the body, is essential for maintaining ovarian function, follicular maturation, corpus luteum formation, and endometrial health. A deficiency in vitamin A can lead to reproductive disorders, such as delayed estrus, infertility, and miscarriage.
- (2)
- β-carotene is a potent antioxidant that protects ovarian and uterine cells from oxidative stress. Oxidative stress can impair oocyte quality and hinder embryo implantation; therefore, its mitigation by β-carotene may contribute to improved conception rates.
- (3)
- In cattle with higher blood β-carotene concentrations, corpus luteum development is enhanced, and the secretion of progesterone, critical for the maintenance of pregnancy, is increased and stabilized, thereby promoting embryo implantation and retention.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebadi, M.; Mohammadi, M.; Pezeshki, A.; Jafari, S.M. Health Benefits of Beta-Carotene. In Handbook of Food Bioactive Ingredients; Springer: Cham, Germany, 2023; pp. 1–26. [Google Scholar] [CrossRef]
- Zhu, L.; Song, Y.; Zheng, X. β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell Biochem. Biophys. 2023, 81, 291–302. [Google Scholar] [CrossRef]
- Zhao, T.; He, X.; Yan, X.; Xi, H.; Li, Y.; Yang, X. Recent advances in the extraction, synthesis, biological activities, and stabilisation strategies for β-carotene: A review. Int. J. Food Sci. Technol. 2024, 59, 2136–2147. [Google Scholar] [CrossRef]
- Green, A.S.; Fascetti, A.J. Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef]
- Shastak, Y.; Pelletier, W. A cross-species perspective: β-carotene supplementation effects in poultry, swine, and cattle: A review. J. Appl. Anim. Res. 2024, 52, 2321957. [Google Scholar] [CrossRef]
- Mitsuishi, H.; Yayota, M. The efficacy of β-carotene in cow reproduction: A review. Animals 2024, 14, 2133. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, C.; Matsui, M.; Shimizu, T.; Kida, K.; Miyamoto, A. Nutritional factors that regulate ovulation of the dominant follicle during the first follicular wave postpartum in high-producing dairy cows. J. Reprod. Dev. 2012, 58, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Gunji, M.; Yumura, Y. Relationship Between Blood β-Carotene Concentration and Reproductive Performance in Japanese Black Cattle; Kurayoshi Livestock Hygiene Service Center: Tottori, Japan, 2016. [Google Scholar]
- Zubova, T.V.; Pleshkov, V.A.; Smolovskaya, O.V.; Mironov, A.N.; Korobeynikova, L.N. The use of carotene-containing preparation in cows for the prevention of postpartum complications. Vet. World 2021, 14, 1059–1066. [Google Scholar] [CrossRef]
- Khemarach, S.; Yammuen-art, S.; Punyapornwithaya, V.; Nithithanasilp, S.; Jaipolsaen, N.; Sangsritavong, S. Improved reproductive performance achieved in tropical dairy cows by dietary beta-carotene supplementation. Sci. Rep. 2021, 11, 23171. [Google Scholar] [CrossRef]
- Ježek, J.; Starič, J.; Nemec, M.; Klinkon, M. Deviation of Biochemical Variables in Dairy Cows with Reproductive Disorders–Data. Agric. Conspec. Sci. 2013, 78, 267–269. [Google Scholar]
- Ježek, J.; Klinkon, M.; Nemec, M.; Hodnik, J.J.; Starič, J. β-carotene concentration in blood serum of cows from herds with impaired fertility. Acta Fytotech. Zootech. 2020, 23, 162–166. [Google Scholar] [CrossRef]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Mary, A.E.P.; Artavia Mora, J.I.; Ronda Borzone, P.A.; Richards, S.E.; Kies, A.K. Vitamin E and beta-carotene status of dairy cows: A survey of plasma levels and supplementation practices. Animal 2021, 15, 100303. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Casasús, I.; Joy, M.; Molino, F.; Blanco, M. Fat color and reflectance spectra to evaluate the β-carotene, lutein and α-tocopherol in the plasma of bovines finished on meadows or on a dry total mixed ration. Anim. Feed Sci. Technol. 2015, 207, 20–30. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. The 98th Statistical Yearbook of Ministry of Agriculture, Forestry and Fisheries. MAFF, 2025. Available online: https://www.maff.go.jp/e/data/stat/98th/index.html (accessed on 3 July 2025).
- Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Standard Tables of Food Composition in Japan (Eighth Revised Edition) [Supplement] 2023, Chapter 2. MEXT. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/mext_00001.html (accessed on 3 July 2025). (In Japanese)
- Hosen, M.; Rafii, M.Y.; Mazlan, N.; Jusoh, M.; Oladosu, Y.; Chowdhury, M.F.N.; Muhammad, I.; Khan, M.M.H. Pumpkin (Cucurbita spp.): A Crop to Mitigate Food and Nutritional Challenges. Horticulturae 2021, 7, 352. [Google Scholar] [CrossRef]
- Sathiya Mala, K.; Kurian, A.E. Nutritional composition and antioxidant activity of pumpkin wastes. Res. J. Pharm. Biol. Chem. Sci. 2016, 6, 336–344. [Google Scholar]
- Syed, Q.A.; Akram, M.; Shukat, R. Nutritional and Therapeutic Importance of the Pumpkin Seeds. Biomed. J. Sci. Tech. Res. 2019, 21, 15798–15803. [Google Scholar] [CrossRef]
- Aziz, A.; Noreen, S.; Khalid, W.; Ejaz, A.; Faiz ul Rasool, I.; Maham, Y.; Munir, A.; Arshad, F.; Javed, M.; Ercisli , S.; et al. Pumpkin and pumpkin by-products: Phytochemical constituents, food application and health benefits. Molecules 2023, 28, 8366. [Google Scholar] [CrossRef]
- Valdez-Arjona, L.P.; Ramírez-Mella, M. Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals 2019, 9, 769. [Google Scholar] [CrossRef]
- Ministry of the Environment, Japan. Fact Sheet: Heptachlor and Heptachlor Epoxide. 2004. Available online: https://www2.env.go.jp/chemi/prtr/factsheet/factsheet/pdf/fc00730.pdf (accessed on 3 July 2025). (In Japanese)
- Secretariat of the Stockholm Convention. Overview of the Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://www.pops.int/TheConvention/Overview/tabid/3351/ (accessed on 3 July 2025).
- Kataoka, C.; Nihei, M.; Nimata, M.; Sawadaishi, K. Development of a model immunoassay utilizing monoclonal antibodies of different specificities for quantitative determination of dieldrin and heptachlors in their mixtures. J. Agric. Food Chem. 2016, 64, 8950–8957. [Google Scholar] [CrossRef]
- Seike, N.; Otani, T. Relationship between Heptachlor Epoxide Concentration in Pumpkin (Cucurbita maxima) and Soil Concentration Extracted with 50% (v/v) Methanol–Water Solution. J. Environ. Chem. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Revision of pesticide component standards in feed. In Proceedings of the 50th Meeting of the Agricultural Materials Council, Feed Subcommittee; Document 10, 24 December 2019. Available online: https://www.maff.go.jp/j/council/sizai/siryou/50/attach/pdf/index-10.pdf (accessed on 3 July 2025). (In Japanese)
- Food and Agricultural Materials Inspection Center (FAMIC). Regulatory Frameworks to Ensure Feed Safety in Japan, 2022. Available online: https://www.famic.go.jp/ffis/feed/r_safety/r_feeds_safety22.html (accessed on 3 July 2025).
- Al-Hawadi, J.S. Banned Organochlorine Pesticides Still in Our Food: The Presence of Organochlorine Pesticide Residues in Milk, Meat, Liver, and Kidney in Jordan Cattle. Sys. Rev. Pharm. 2020, 11, 1491–1495. [Google Scholar]
- Okada, T.; Koike, Y.; Shoji, T.; Sudo, K. Validation of an Analytical Method for Organochlorine Pesticide Residues in Beef Products by GC-MS Using Sampling with Increment Reduction. Food Hyg. Saf. Sci. 2024, 65, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Oto, H.; Ishihara, H. Air Water Logistics Co., Ltd. Japan Patent No. 7506974, 27 June 2024. Available online: https://www.j-platpat.inpit.go.jp (accessed on 3 July 2025).
- Jikyū Shiryo Riyō Kenkyūkai (Ed.) Quality Evaluation Guidebook for Roughage, 3rd ed.; Japan Grassland Agriculture and Forage Seed Association: Tokyo, Japan, 2009. [Google Scholar]
- Japan Food Research Laboratories (Ed.) Key Points of Component Analysis for Nutrition Labeling; Chuohoki Publishing: Tokyo, Japan, 2007. (In Japanese) [Google Scholar]
- Yasui, A.; Watanabe, T. (Eds.) Analytical Manual and Commentary for the Standard Tables of Food Composition in Japan 2020 (Eighth Revised Edition); Japan Food Research Laboratories: Tokyo, Japan; Kenpakusha Publishing: Tokyo, Japan, 2023. (In Japanese) [Google Scholar]
- Hayashi, M.; Kido, K.; Hodate, K. Changes in Plasma Ghrelin Concentrations in Vitamin A–Restricted Japanese Black Steers. Bull. NARO Inst. Livest. Grassl. Sci. 2016, 16, 11–19. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Hase, M. Effect of Dispersed Form on the Bioavailability of β-Carotene from Daily Intake in Humans. Biosci. Biotechnol. Biochem. 2020, 84, 2545–2557. [Google Scholar] [CrossRef]
- Demeli, A.; Meyer, J.C. The role of beta-carotene in cattle infertility, mastitis and milk yield: A systematic review and meta-analysis. Reprod. Domest. Anim. 2024, 59, e14634. [Google Scholar] [CrossRef]
- Shevchenko, L.; Mykhalska, V. Fatty acids content in milk of cows under the influence of β-carotene. Anim. Sci. Food Technol. 2021, 12, 82–93. [Google Scholar] [CrossRef]
- Stephenson, R.C.; Ross, R.P.; Stanton, C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021, 10, 1263. [Google Scholar] [CrossRef]
- Šamec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, İ.T.; Tundis, R.; Suntar, İ.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo-Rodríguez, P.; et al. The potential of pumpkin seed oil as a functional food—A comprehensive review of chemical composition, health benefits, and safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Lv, J.; Lambo, M.T.; Wang, Y.; Wang, L.; Zhang, Y. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. J. Dairy Sci. 2023, 106, 1803–1814. [Google Scholar] [CrossRef]
- Lee, S.H.; Yang, Y.R.; Cheon, H.Y.; Shin, N.H.; Lee, J.W.; Bong, S.H.; Hwangbo, S.; Kong, I.K.; Shin, M.K. Effects of hydrogenated fat-spray-coated β-carotene supplement on plasma β-carotene concentration and conception rate after embryo transfer in Hanwoo beef cows. Animal 2021, 15, 100407. [Google Scholar] [CrossRef]
- Mitsuishi, H.; Natsubori, E.; Otsuka, T.; Yayota, M. High β-carotene concentration in plasma enhances cyclic progesterone production in nonpregnant Japanese Black cows. Anim. Sci. J. 2022, 93, e13782. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.N.; Fang, X.P.; Zhao, C.; Wu, H.Y.; Lan, Y.X.; Che, L.; Sun, Y.K.; Lv, J.Y.; Zhang, Y.G.; et al. Effects of replacing soybean meal with pumpkin seed cake and dried distillers grains with solubles on milk performance and antioxidant functions in dairy cows. Animal 2021, 15, 100004. [Google Scholar] [CrossRef]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. In vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its in vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats. Phytother. Res. 2006, 20, 780–783. [Google Scholar] [CrossRef]
- Chenni, A.; Cherif, F.Z.H.; Chenni, K.; Elius, E.E.; Pucci, L.; Yahia, D.A. Effects of pumpkin (Cucurbita pepo L.) seed protein on blood pressure, plasma lipids, leptin, adiponectin, and oxidative stress in rats with fructose-induced metabolic syndrome. Prev. Nutr. Food Sci. 2022, 27, 78–88. [Google Scholar] [CrossRef]
Sample No. | Manufacturing Date | Raw Material Field | Heptachlor Concentration (μg/g) |
---|---|---|---|
1 | 11 November 2023 | A·B·C | 0.089 |
2 | 22 November 2023 | A·C·D·E | 0.008 |
3 | 2 December 2023 | A·D·E | 0.100 |
4 | 9 January 2024 | A·D·E·F | 0.069 |
5 | 20 January 2024 | A·D·G | 0.005 |
6 | 5 February 2024 | A·B | 0.015 |
7 | 7 March 2024 | AW * | 0.006 |
8 | 16 March 2024 | AW * | <0.002 |
9 | 20 March 2024 | AW * | <0.002 |
10 | 1 April 2024 | AW * | 0.004 |
11 | 9 May 2024 | AW * | 0.007 |
Category | Item | Abbreviation | Unit | Result |
---|---|---|---|---|
Proximate Composition | Dry Matter | DM | % | 94.5 |
Crude Protein | CP | % | 21.5 | |
Ether Extract (Crude Fat) | EE | % | 19.4 | |
Ash | - | % | 5.5 | |
Fiber Analysis | Neutral Detergent Fiber | NDF | % | 38.3 |
Acid Detergent Fiber | ADF | % | 29.9 | |
Acid Detergent Lignin | ADL | % | 11.2 | |
Energy Evaluation | Total Digestible Nutrients | TDN | % | 75.3 |
Net Energy for Lactation | NEL | Mcal/kg | 1.86 | |
Net Energy for Maintenance | NEM | Mcal/kg | 1.86 | |
Net Energy for Gain | NEG | Mcal/kg | 1.25 | |
Mineral Analysis | Calcium | Ca | % | 0.06 |
Phosphorus | P | % | 0.65 | |
Magnesium | Mg | % | 0.24 | |
Potassium | K | % | 1,93 |
Fatty Acids | Concentration (g/100 g) |
---|---|
Total fatty acids | 18.7 |
Saturated fatty acids | 3.8 |
Monounsaturated fatty acids | 7.3 |
Polyunsaturated fatty acids | 7.6 |
Omega-3 polyunsaturated fatty acids | 0.2 |
Omega-6 polyunsaturated fatty acids | 7.4 |
Omega-9 polyunsaturated fatty acids | 7.2 |
Palmitic acid (C16:0) | 2.5 |
Stearic acid (C18:0) | 1.2 |
Oleic acid (C18:1 n-9) | 7.2 |
cis-Vaccenic acid (C18:1 n-7) | 0.1 |
Linoleic acid (C18:2 n-6) | 7.4 |
Alpha-linolenic acid (C18:3 n-3) | 0.2 |
Arachidic acid (C20:0) | 0.1 |
Sample No. | Manufacturing Date | Raw Material Field | β-Carotene Concentration (μg/100 g) |
---|---|---|---|
1 | 11 November 2023 | A·B·C | 4800 |
2 | 22 November 2023 | A·C·D·E | 6900 |
3 | 2 December 2023 | A·D·E | 13,000 |
4 | 9 January 2024 | A·D·E·F | 8100 |
5 | 20 January 2024 | A·D·G | 7300 |
6 | 5 February 2024 | A·B | 6400 |
7 | 7 March 2024 | AW * | 3800 |
8 | 16 March 2024 | AW * | 6800 |
9 | 20 March 2024 | AW * | 6500 |
10 | 1 April 2024 | AW * | 5500 |
11 | 9 May 2024 | AW * | 9200 |
Parameter | GOT | GGT | T-CHO | TP | ALB | A/G Ratio | BUN | GLU | NEFA | Ca | IP | Mg | 3-HB | VA | βC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | IU/L | IU/L | mg/100 mL | g/100 mL | g/100 mL | - | mg/100 mL | mg/100 mL | mmol/L | mg/100 mL | mg/100 mL | mg/100 mL | mmol/L | IU/dL | μg/dL | ||
Treatment group | Pre | 1 | 70 | 9 | 158 | 7.3 | 3.4 | 0.9 | 55 | 8.9 | 5.4 | 2.4 | 466 | 90 | 147 | 90 | 147 |
2 | 113 | 26 | 165 | 7.4 | 3.5 | 0.9 | 59 | 9.4 | 5.9 | 2.3 | 454 | 90 | 167 | 90 | 167 | ||
3 | 72 | 14 | 104 | 8.3 | 3.2 | 0.6 | 51 | 9.0 | 5.5 | 2.1 | 445 | 83 | 136 | 83 | 136 | ||
4 | 113 | 15 | 91 | 7.1 | 3.3 | 0.9 | 62 | 9.4 | 5.9 | 2.0 | 337 | 97 | 171 | 97 | 171 | ||
5 | 109 | 36 | 146 | 8.3 | 3.2 | 0.6 | 85 | 9.5 | 5.5 | 1.9 | 288 | 97 | 198 | 97 | 198 | ||
6 | 78 | 15 | 108 | 6.5 | 2.9 | 0.8 | 51 | 8.1 | 4.8 | 2.9 | 426 | 97 | 160 | 97 | 160 | ||
7 | 119 | 22 | 130 | 8.3 | 3.6 | 0.8 | 73 | 9.3 | 5.6 | 2.3 | 397 | 100 | 216 | 100 | 216 | ||
Mean ± SD | 96 ± 22 | 20 ± 9.1 | 129 ± 29 | 7.6 ± 0.71 | 3.3 ± 0.23 | 0.79 ± 0.13 | 62 ± 13 | 9.1 ± 0.49 | 5.5 ± 0.37 | 2.3 ± 0.33 | 402 ± 66 | 93 ± 6.0 | 171 ± 28 | 93 ± 6.0 | 171 ± 28 | ||
34 d | 1 | 42 | 12 | 137 | 5.4 | 2.7 | 1.0 | 34 | 6.9 | 4.7 | 1.9 | 296 | 80 | 220 | 80 | 220 | |
2 | 70 | 40 | 195 | 8.1 | 3.7 | 0.9 | 65 | 10.2 | 5.4 | 2.6 | 393 | 70 | 201 | 70 | 201 | ||
3 | 60 | 16 | 118 | 8.4 | 3.3 | 0.6 | 49 | 8.9 | 4.5 | 2.2 | 304 | 80 | 151 | 80 | 151 | ||
4 | 67 | 17 | 100 | 6.9 | 3.2 | 0.9 | 60 | 9.1 | 5.6 | 2.2 | 342 | 90 | 156 | 90 | 156 | ||
5 | 88 | 46 | 164 | 8.4 | 3.1 | 0.6 | 12 | 67 | 111 | 9.4 | 6.5 | 1.4 | 209 | 67 | 203 | ||
6 | 65 | 19 | 133 | 7.1 | 3.2 | 0.8 | 16 | 62 | 66 | 9.2 | 6.1 | 2.2 | 417 | 87 | 168 | ||
7 | 79 | 26 | 140 | 8.2 | 3.6 | 0.8 | 17 | 68 | 47 | 9.4 | 6.2 | 2.6 | 365 | 100 | 246 | ||
Mean ± SD | 67 ± 15 | 25 ± 13 | 141 ± 31 | 7.5 ± 1.1 | 3.3 ± 0.33 | 0.80 ± 0.15 | 14 ± 2.7 | 61 ± 7.0 | 62 ± 25 | 9.0 ± 1.0 | 5.6 ± 0.76 | 2.2 ± 0.42 | 332 ± 70 | 82 ± 11 | 192 ± 35 |
Parameter | GOT | GGT | T-CHO | TP | ALB | A/G Ratio | BUN | GLU | NEFA | Ca | IP | Mg | 3-HB | VA | βC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | IU/L | IU/L | mg/100 mL | g/100 mL | g/100 mL | - | mg/100 mL | mg/100 mL | mmol/L | mg/100 mL | mg/100 mL | mg/100 mL | mmol/L | IU/dL | μg/dL | ||
Control group | Pre | 1 | 83 | 6 | 139 | 7.1 | 3.2 | 0.8 | 51 | 9.6 | 6.9 | 1.9 | 377 | 100 | 174 | 100 | 174 |
2 | 72 | 7 | 144 | 6.8 | 3.4 | 1.0 | 56 | 9.2 | 6.9 | 2.5 | 408 | 90 | 156 | 90 | 156 | ||
3 | 79 | 12 | 151 | 7.1 | 3.6 | 1.0 | 87 | 9.9 | 6.2 | 2.2 | 437 | 117 | 219 | 117 | 219 | ||
4 | 54 | 17 | 143 | 7.1 | 3.3 | 0.9 | 52 | 9.4 | 6.2 | 2.1 | 448 | 87 | 141 | 87 | 141 | ||
5 | 87 | 7 | 130 | 6.8 | 3.4 | 1.0 | 142 | 9.4 | 5.9 | 2.2 | 301 | 97 | 157 | 97 | 157 | ||
6 | 81 | 6 | 151 | 7.2 | 3.4 | 0.9 | 40 | 9.5 | 6.5 | 2.0 | 306 | 80 | 151 | 80 | 151 | ||
Mean ± SD | 76 ± 12 | 9.2 ± 4.4 | 143 ± 7.9 | 7.0 ± 0.17 | 3.4 ± 0.13 | 0.93 ± 0.08 | 71 ± 38 | 10 ± 0.24 | 6.4 ± 0.41 | 2.2 ± 0.21 | 380 ± 64 | 95 ± 13 | 166 ± 28 | 95 ± 13 | 166 ± 28 | ||
34 d | 1 | 74 | 10 | 152 | 7.3 | 3.3 | 0.8 | 69 | 10.2 | 5.6 | 2.1 | 252 | 70 | 154 | 70 | 154 | |
2 | 72 | 14 | 144 | 6.6 | 3.3 | 1.0 | 54 | 9.2 | 6.5 | 2.7 | 327 | 90 | 198 | 90 | 198 | ||
3 | 70 | 15 | 144 | 7.1 | 3.6 | 1.1 | 60 | 10.1 | 5.9 | 2.2 | 282 | 70 | 121 | 70 | 121 | ||
4 | 52 | 12 | 154 | 7.4 | 3.5 | 0.9 | 88 | 9.3 | 5.8 | 2.1 | 300 | 77 | 165 | 77 | 165 | ||
5 | 78 | 16 | 132 | 6.8 | 3.4 | 1.0 | 93 | 9.5 | 5.9 | 2.2 | 250 | 93 | 177 | 93 | 177 | ||
6 | 76 | 1 | 150 | 7.3 | 3.5 | 0.9 | 41 | 9.8 | 5.6 | 2.1 | 267 | 103 | 73 | 103 | 73 | ||
Mean ± SD | 70 ± 9.4 | 11 ± 5.5 | 146 ± 8.0 | 7.1 ± 0.32 | 3.4 ± 0.12 | 1.0 ± 0.10 | 68 ± 20 | 10 ± 0.42 | 5.9 ± 0.33 | 2.2 ± 0.23 | 280 ± 30 | 84 ± 14 | 148 ± 45 | 84 ± 14 | 148 ± 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizuka, M.; Ishihara, H.; Nakahigashi, J.; Matsumoto, D.; Kobayashi, E. A Pilot Study on the Use of Pumpkin Waste as Cattle Feed. Metabolites 2025, 15, 511. https://doi.org/10.3390/metabo15080511
Nizuka M, Ishihara H, Nakahigashi J, Matsumoto D, Kobayashi E. A Pilot Study on the Use of Pumpkin Waste as Cattle Feed. Metabolites. 2025; 15(8):511. https://doi.org/10.3390/metabo15080511
Chicago/Turabian StyleNizuka, Minori, Hironobu Ishihara, Jun Nakahigashi, Daisaku Matsumoto, and Eiji Kobayashi. 2025. "A Pilot Study on the Use of Pumpkin Waste as Cattle Feed" Metabolites 15, no. 8: 511. https://doi.org/10.3390/metabo15080511
APA StyleNizuka, M., Ishihara, H., Nakahigashi, J., Matsumoto, D., & Kobayashi, E. (2025). A Pilot Study on the Use of Pumpkin Waste as Cattle Feed. Metabolites, 15(8), 511. https://doi.org/10.3390/metabo15080511