Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = Pumped Hydro Systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6167 KB  
Article
Study of Hydraulic Disturbance Transient Processes in Pumped-Storage Power Stations Considering Electro-Mechanical Coupling
by Chengpeng Liu, Zhigao Zhao, Xiuxing Yin and Jiandong Yang
Sensors 2026, 26(1), 311; https://doi.org/10.3390/s26010311 - 3 Jan 2026
Viewed by 282
Abstract
Pumped-storage power stations, as a critical resource for supporting secure and stable grid operation, typically adopt a ’single-tunnel-multiple-unit’ configuration, where hydraulic disturbance becomes a key operating condition affecting system security. Existing studies have primarily focused on the impact of the hydro-mechanical subsystem on [...] Read more.
Pumped-storage power stations, as a critical resource for supporting secure and stable grid operation, typically adopt a ’single-tunnel-multiple-unit’ configuration, where hydraulic disturbance becomes a key operating condition affecting system security. Existing studies have primarily focused on the impact of the hydro-mechanical subsystem on the normally operating units, while the influence of the electrical subsystem on hydraulic disturbance has been insufficiently addressed. To bridge this gap, this study develops a coupled model of a grid-connected pumped-storage power station incorporating a detailed representation of the power system. The model comprehensively captures the multi-domain interactions among the hydraulic, mechanical, electrical, and grid subsystems, and its accuracy is validated using data from a physical model test platform. On this basis, the hydraulic transient responses under two modeling conditions—detailed grid representation and conventional simplified grid modeling—are systematically compared. Key parameters from the hydraulic, mechanical, and electrical domains are further examined to quantify their impacts on the dynamic characteristics of hydraulic disturbance. The results demonstrate that detailed grid modeling reveals novel characteristics of the hydraulic disturbance that cannot be simulated by the conventional model. Under the detailed model, the normally operating units compensate for the power deficit caused by the tripping unit, leading to reduced hydraulic pressure fluctuations and a significant increase in the maximum output of the operating units. Meanwhile, hydro-mechanical parameters strongly influence the transient behaviors of unit output and net head, whereas the guide vane regulation of the operating unit remains predominantly driven by grid-frequency deviations. Overall, this study enhances the understanding of hydraulic disturbance dynamics in grid-connected pumped-storage systems and provides important insights for ensuring their secure and stable operation. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 5120 KB  
Article
Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin
by Shuting Hu, Mingliang Du, Jiayun Yang, Yankun Liu, Ziyun Tuo and Xiaofei Ma
ISPRS Int. J. Geo-Inf. 2026, 15(1), 6; https://doi.org/10.3390/ijgi15010006 - 21 Dec 2025
Viewed by 389
Abstract
Accurate forecasting of groundwater level dynamics poses a critical challenge for sustainable water management in arid regions. However, the strong spatiotemporal heterogeneity inherent in groundwater systems and their complex interactions between natural processes and human activities often limit the effectiveness of conventional prediction [...] Read more.
Accurate forecasting of groundwater level dynamics poses a critical challenge for sustainable water management in arid regions. However, the strong spatiotemporal heterogeneity inherent in groundwater systems and their complex interactions between natural processes and human activities often limit the effectiveness of conventional prediction methods. To address this, a hybrid CNN-LSTM deep learning model is constructed. This model is designed to extract multivariate coupled features and capture temporal dependencies from multi-variable time series data, while simultaneously simulating the nonlinear and delayed responses of aquifers to groundwater abstraction. Specifically, the convolutional neural network (CNN) component extracts the multivariate coupled features of hydro-meteorological driving factors, and the long short-term memory (LSTM) network component models the temporal dependencies in groundwater level fluctuations. This integrated architecture comprehensively represents the combined effects of natural recharge–discharge processes and anthropogenic pumping on the groundwater system. Utilizing monitoring data from 2021 to 2024, the model was trained and tested using a rolling time-series validation strategy. Its performance was benchmarked against traditional models, including the autoregressive integrated moving average (ARIMA) model, recurrent neural network (RNN), and standalone LSTM. The results show that the CNN-LSTM model delivers superior performance across diverse hydrogeological conditions: at the upstream well AJC-7, which is dominated by natural recharge and discharge, the Nash–Sutcliffe efficiency (NSE) coefficient reached 0.922; at the downstream well AJC-21, which is subject to intensive pumping, the model maintained a robust NSE of 0.787, significantly outperforming the benchmark models. Further sensitivity analysis reveals an asymmetric response of the model’s predictions to uncertainties in pumping data, highlighting the role of key hydrogeological processes such as delayed drainage from the vadose zone. This study not only confirms the strong applicability of the hybrid deep learning model for groundwater level prediction in data-scarce arid regions but also provides a novel analytical pathway and mechanistic insight into the nonlinear behavior of aquifer systems under significant human influence. Full article
Show Figures

Figure 1

20 pages, 13784 KB  
Article
Modeling Water–Energy Autonomy on Remote Islands Through Hybrid RES, Pumped Hydro, and Hydrogen Storage Considering Low-Wind Conditions
by Athanasios-Foivos Papathanasiou and Evangelos Baltas
Hydropower 2026, 1(1), 2; https://doi.org/10.3390/hydropower1010002 - 15 Dec 2025
Viewed by 465
Abstract
The aim of this study is to evaluate the technical performance and resilience of a Hybrid Renewable Energy System (HRES), designed to achieve water and energy autonomy on a Skyros Island, Greece. The system integrates renewable energy sources with multiple storage technologies. A [...] Read more.
The aim of this study is to evaluate the technical performance and resilience of a Hybrid Renewable Energy System (HRES), designed to achieve water and energy autonomy on a Skyros Island, Greece. The system integrates renewable energy sources with multiple storage technologies. A high-resolution, 30-min simulation was developed, incorporating 10 years of historical weather data to model the operation of an HRES, which consists of wind turbines, photovoltaics, pumped hydro storage, and green hydrogen production. Reverse osmosis was used for desalination, and extended low-wind conditions were simulated to assess system resilience. Results indicate that the proposed system is, in fact, capable of meeting 89% of the annual energy demand and 99.99% of freshwater requirements by means of desalination. Wind power accounted for 53% of the total energy production, photovoltaics 2%, while pumped hydro and hydrogen storage contributed 17% and 6%, respectively. During artificially imposed windless periods, short-term deficits were addressed by the use of pumped hydro, while hydrogen ensured supply continuity in the final days, thereby demonstrating their complementary function. In this resilience stress-test, the system remained operational for 10 days during an artificial windless period, demonstrating the critical role of hybrid storage. The findings indicate that a combination of renewable energy with diversified storage and water management strategies can provide a reliable and self-sufficient water–energy nexus for remote islands. Finally, the novelty of this research work lies in the statistical analysis of calm-wind events and the development of the corresponding power-law relationship, conducted under the framework of the 30-min simulation. Full article
Show Figures

Graphical abstract

27 pages, 9620 KB  
Article
Stochastic Inversion of Hydrothermal Properties in Heterogeneous Porous Media
by Doan Thi Thanh Thuy, Chuen-Fa Ni, Nguyen Hoang Hiep, Hong-Son Vo, Thai-Vinh-Truong Nguyen, Le Nhu Y and Minh-Quan Dang
Water 2025, 17(24), 3544; https://doi.org/10.3390/w17243544 - 14 Dec 2025
Viewed by 405
Abstract
Permeability, thermal conductivity, and porosity distribution are key factors to control groundwater flow and heat transport in porous media. The parameter estimation procedure is widely used to understand flow and transport behavior in geothermal systems. As recognized in most studies, this parameter estimation [...] Read more.
Permeability, thermal conductivity, and porosity distribution are key factors to control groundwater flow and heat transport in porous media. The parameter estimation procedure is widely used to understand flow and transport behavior in geothermal systems. As recognized in most studies, this parameter estimation relies on the quality and quantity of spatiotemporal measurements. With the typically limited resources for conducting field investigations, understanding suitable sampling strategies is crucial before applying a model to site-specific conditions. This study aims to quantify uncertainties in hydro-thermal properties using Monte Carlo Simulation (MCS) and Ensemble Kalman Filter (EnKF). A synthetic two-dimensional aquifer profile is used to evaluate the accuracy of the estimated hydrothermal properties in accounting for variations in groundwater temperature resulting from cross-hole pumping and injection events. Based on the calculations of the mean absolute and squared errors for estimated hydrothermal properties, EnKF generally leads to more accurate estimates of hydrothermal properties than MCS. Furthermore, EnKF strikes a balance between accuracy and efficiency, making it the most effective method. This study highlights the strengths and limitations of each method, providing valuable insights for selecting appropriate inversion techniques to quantify uncertainties in geothermal systems. Additionally, well spacing and open screen locations are recommended to obtain optimal thermal energy in the geothermal system Full article
Show Figures

Figure 1

16 pages, 2182 KB  
Article
Optimal Scheduling of Hydro–Thermal–Wind–Solar–Pumped Storage Multi-Energy Complementary Systems Under Carbon-Emission Constraints: A Coordinated Model and SVBABC Algorithm
by Youping Li, Xiaojun Hua, Lei Wang, Rui Lv, Changhao Ouyang, Fangqing Zhang and Fang Yuan
Electronics 2025, 14(24), 4896; https://doi.org/10.3390/electronics14244896 - 12 Dec 2025
Viewed by 281
Abstract
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and [...] Read more.
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and system flexibility while reducing carbon emissions. To address issues such as premature convergence and low computational efficiency in traditional optimization algorithms for multi-energy complementary dispatch, an improved Artificial Bee Colony algorithm named Super-quality Variation Burst Artificial Bee Colony (SVBABC) is developed, which incorporates elite solution guidance and an explosion variation mechanism. Simulation results based on a regional practical power system demonstrate that compared to classical methods (e.g., Artificial Bee Colony, Fireworks Algorithm, and Ant Lion Optimizer), SVBABC exhibits significant advantages in global optimization capability and convergence stability. This study provides an innovative solution for efficient dispatch of multi-energy complementary systems. Through synergistic regulation of pumped storage and thermal power, the accommodation capability of renewable energy is effectively enhanced, thereby providing critical technical support for the development of new power systems. Full article
Show Figures

Figure 1

21 pages, 3779 KB  
Article
Modeling Aquifer Compaction and Lateral Deformation Due to Groundwater Extraction: A Comparative Study Using Terzaghi’s and Biot’s Theories
by Guojun Chen, Qingyun Huang, Hongxiu Gong and Yankun Sun
Processes 2025, 13(12), 4006; https://doi.org/10.3390/pr13124006 - 11 Dec 2025
Viewed by 297
Abstract
Land subsidence caused by groundwater withdrawal remains a significant challenge in urbanized regions, requiring robust predictive models to manage its impact effectively. In this study, a set of coupled partial differential equations is formulated using Biot’s poroelasticity theory and Darcy’s law to model [...] Read more.
Land subsidence caused by groundwater withdrawal remains a significant challenge in urbanized regions, requiring robust predictive models to manage its impact effectively. In this study, a set of coupled partial differential equations is formulated using Biot’s poroelasticity theory and Darcy’s law to model the hydro-mechanical behavior of a multi-aquifer system. The numerical models capture the coupled dynamics of fluid flow and subsurface deformation induced by groundwater table depression. Hydraulic head reductions, vertical compaction, and lateral deformation patterns over a 10-year pumping period are systematically examined. The results manifest that greater hydraulic gradients near geological discontinuities, such as bedrock steps, induce localized deformation and stress redistribution. While Terzaghi’s model effectively predicts vertical compaction in simple systems, Biot’s model accounts for lateral strain and coupled feedback mechanisms, providing a more comprehensive analyses and understanding of subsidence phenomena. This study highlights the importance of coupled hydro-mechanical modeling for accurately predicting land subsidence and offers insights into managing groundwater extraction in geologically complex regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 2653 KB  
Article
Sustainable Energy Management Through Optimized Hybrid Hydro–Solar Systems
by Michele Margoni, Pranav Dhawan and Maurizio Righetti
Energies 2025, 18(24), 6412; https://doi.org/10.3390/en18246412 - 8 Dec 2025
Viewed by 398
Abstract
This study investigates the optimization of Pumped Storage Hydropower (PSH) integrated with Floating Photovoltaic (FPV) systems, with a focus on sustainable energy management. A nonlinear programming framework combined with scenario analysis was applied to a real hydropower system in Trentino, Italy. The optimization [...] Read more.
This study investigates the optimization of Pumped Storage Hydropower (PSH) integrated with Floating Photovoltaic (FPV) systems, with a focus on sustainable energy management. A nonlinear programming framework combined with scenario analysis was applied to a real hydropower system in Trentino, Italy. The optimization maximizes revenues through energy arbitrage while accounting for water resource and environmental objectives. Upgrading the traditional hydropower plant to PSH operation increases revenues by 4–8% over two hydrological years. Multi-objective optimization further reveals large gains in water availability, confirming PSH’s dual role as energy storage and water management infrastructure. Different FPV configurations analyzed show a 2–3% increase in photovoltaic energy yield due to the water-cooling effect, while the overall hybrid PSH–FPV integration mainly reduces grid dependency and pumping-related emissions, with near-complete decarbonization achievable under optimized scheduling. Overall, PSH provides the primary economic and operational advantage, while FPV strengthens sustainability, enabling resilient hydro–solar operation and contributing to renewable integration and decarbonization in future energy systems. Full article
Show Figures

Figure 1

20 pages, 10791 KB  
Article
Developing Integrated Supersites to Advance the Understanding of Saltwater Intrusion in the Coastal Plain Between the Brenta and Adige Rivers, Italy
by Luigi Tosi, Marta Cosma, Pablo Agustín Yaciuk, Iva Aljinović, Andrea Artuso, Jadran Čarija, Cristina Da Lio, Lorenzo Frison, Veljko Srzić, Fabio Tateo and Sandra Donnici
J. Mar. Sci. Eng. 2025, 13(12), 2328; https://doi.org/10.3390/jmse13122328 - 8 Dec 2025
Viewed by 288
Abstract
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we [...] Read more.
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we propose “integrated coastal supersites”: wells equipped with multiparametric sensors and multilevel piezometers that couple high-resolution vertical conductivity–temperature–depth (CTD) profiling with continuous hydro-meteorological time series to monitor the hydrodynamic behavior of coastal aquifers and saltwater intrusion. This study describes the installation of two supersites and presents early insights from the first monitoring period, which, despite a short observation window limited to the summer season (July–September 2025), demonstrate the effectiveness of this approach. Two contrasting supersites were deployed in the coastal plain between the Brenta and Adige Rivers (Italy): Gorzone, characterized by a thick, laterally persistent aquitard, and Buoro, where the aquitard is thinner and discontinuous. Profiles and fixed sensors at both sites reveal a consistent fresh-to-saline transition in the phreatic aquifers and a secondary freshwater lens capping the confined systems. At Gorzone, the confining layer hydraulically isolates the deeper aquifer, preserving low salinity beneath a saline, tidally constrained phreatic zone. Groundwater heads oscillate by about 0.2 m, and rainfall events do not dilute salinity; instead, pressure transients—amplified by drainage regulation and inland-propagating tides—induce short-lived EC increases via upconing. Buoro shows smaller water-level variations, not always linked to rainfall, and, in contrast, exhibits partial vertical connectivity and faster dynamics: phreatic heads respond chiefly to internal drainage and local recharge, with rises rapidly damped by pumping, while salinity remains steady without episodic peaks. The confined aquifer shows buffered, delayed responses to surface forcings. Although the monitoring window is currently limited to 2025 through the summer season, these results offer compelling evidence that coastal supersites are reliable, scalable, and management-critical relevance platforms for groundwater calibration, forecasting, and long-term assessment. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Graphical abstract

22 pages, 2780 KB  
Article
Multi-Physical Modeling and Design of a Hydraulic Compression System for Hydrogen Refueling of Heavy-Duty Vehicles
by Andrea Fornaciari, Matteo Bertoli, Barbara Zardin, Marco Rizzoli, Eric Noppe, Massimo Borghi, Frederic Barth, Pavel Kučera, Peter Kloft, Francis Eynard, Louis Butstraen, Remi Marthelot and Emmanuel Sauger
Energies 2025, 18(23), 6333; https://doi.org/10.3390/en18236333 - 2 Dec 2025
Viewed by 332
Abstract
Heavy-duty vehicles cause a significant percentage of the harmful gas emissions from the automotive industry. This article presents the development of a compression system for hydrogen as part of the H2REF-DEMO hydrogen refueling station, joining the European efforts to promote hydrogen (H2 [...] Read more.
Heavy-duty vehicles cause a significant percentage of the harmful gas emissions from the automotive industry. This article presents the development of a compression system for hydrogen as part of the H2REF-DEMO hydrogen refueling station, joining the European efforts to promote hydrogen (H2) as a fuel that can play a key role in the energy transition of these types of vehicles. The H2REF-DEMO project, co-funded by the European Union’s “Horizon. Europe” programme under the “Clean Hydrogen Partnership” (grant agreement no. 101101517), involves a partnership between companies and research centers that aims to investigate the possibility of compressing hydrogen through hydraulic power to handle large vehicle refueling applications, such as bus fleet depots, trucks, or trains. The basic principle is the exploitation of hydraulic power to compress hydrogen through hydro-pneumatic bladder accumulators. The hydraulic power units, in fact, pump oil into the accumulators, causing a deformation of the bladder containing H2 and thus a consequent gas compression. In this article, we focus on the development of the compression system, from the theoretical starting point to the core final layout of the refueling station for large vehicles. We also exploit a lumped parameter numerical model to both support the system design and virtually test its first control logic. The latter, in particular, allows the system to operate in three modes—Bypass, Parallel, and Serial modes—thus leaving room for testing basic and more complex control strategies. The results of numerical simulations demonstrate the effectiveness of this innovative compression technology and its considerable efficiency in terms of refueling time and energy consumption, especially when compared to the standard systems used for this application. These are thus encouraging results that can support the development of an actual H2REF-DEMO hydraulic test rig for hydrogen compression. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

38 pages, 5289 KB  
Article
Forecasting Renewable Scenarios and Uncertainty Analysis in Microgrids for Self-Sufficiency and Reliability: Estimation of Extreme Scenarios for 2040 in El Hierro (Spain)
by Lucas Álvarez-Piñeiro, César Berna-Escriche, Paula Bastida-Molina and David Blanco-Muelas
Appl. Sci. 2025, 15(21), 11815; https://doi.org/10.3390/app152111815 - 5 Nov 2025
Viewed by 751
Abstract
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 [...] Read more.
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 GWh annually, assuming full economic decarbonization. Currently, El Hierro faces challenges due to its dependence on fossil fuels and inherent variability of renewable sources. To ensure system reliability, the study emphasizes the integration of renewable and storage technologies. Two scenarios are modeled using HOMER Pro 3.18.4 software with probabilistic methods to capture variability in generation and demand. The first scenario, BAU, represents the current system enhanced with electric vehicles. While the second, Efficiency, incorporates energy efficiency improvements and collective mobility policies. Both prioritize electrification and derive an optimal generation mix based on economic and technical constraints, to minimize Levelized Cost Of Energy (LCOE). The approach takes advantage of El Hierro’s abundant solar and wind resources, complemented by reversible pumped hydro storage and megabatteries. Fully renewable systems can meet demand reliably, producing about 30% energy surplus with an LCOE of roughly 10 c€/kWh. The final BAU scenario includes 53 MW of solar PV, 16 MW of wind, and a storage system of 40 MW–800 MWh. The Efficiency scenario has 42 MW of solar PV, 11.5 MW of wind, and 35 MW–550 MWh of storage. Uncertainty analysis indicates that maintaining system reliability requires an approximate 10% increase in both installed capacity and costs. This translates into an additional 7 MW of solar PV and 6 MW–23.5 MWh of batteries in the BAU, and 6 MW and 4 MW–16 MWh in the Efficiency. Full article
(This article belongs to the Special Issue Advanced Forecasting Techniques and Methods for Energy Systems)
Show Figures

Figure 1

23 pages, 5772 KB  
Article
Underground Pumped Hydroelectric Energy Storage in Salt Caverns in Southern Ontario, Canada: Impact of Operating Temperature on Cavern Stability and Interlayer Leakage
by Jingyu Huang, Yutong Chai, Jennifer Williams and Shunde Yin
Mining 2025, 5(4), 71; https://doi.org/10.3390/mining5040071 - 3 Nov 2025
Viewed by 578
Abstract
Underground pumped hydro storage (UPHS) in solution-mined salt caverns offers a promising approach to address the intermittency of renewable energy in flat geological regions such as Southern Ontario, Canada. This work presents the first fully coupled thermo-hydro-mechanical (THM) numerical model of a two-cavern [...] Read more.
Underground pumped hydro storage (UPHS) in solution-mined salt caverns offers a promising approach to address the intermittency of renewable energy in flat geological regions such as Southern Ontario, Canada. This work presents the first fully coupled thermo-hydro-mechanical (THM) numerical model of a two-cavern UPHS system in Southern Ontario, providing a foundational assessment of long-term cavern stability and brine leakage behavior under cyclic operation. The model captures the key interactions among deformation, leakage, and temperature effects governing cavern stability, evaluating cyclic brine injection–withdrawal at operating temperatures of 10 °C, 15 °C, and 20 °C over a five-year period. Results show that plastic deformation is constrained to localized zones at cavern–shale interfaces, with negligible risk of tensile failure. Creep deformation accelerates with temperature, yielding maximum strains of 2.6–3.2% and cumulative cavern closure of 1.8–2.6%, all within engineering safety thresholds. Leakage predominantly migrates through limestone interlayers, while shale contributes only local discharge pathways. Elevated temperature enhances leakage due to reduced brine viscosity, but cumulative volumes remain very low, confirming the sealing capacity of bedded salt. Overall, lower operating temperatures minimize both convergence and leakage, ensuring greater stability margins, indicating that UPHS operation should preferentially adopt lower brine temperatures to balance storage efficiency with long-term cavern stability. These findings highlight the feasibility of UPHS in Ontario’s salt formations and provide design guidance for balancing storage performance with geomechanical safety. Full article
Show Figures

Figure 1

41 pages, 4386 KB  
Article
A Two-Layer HiMPC Planning Framework for High-Renewable Grids: Zero-Exchange Test on Germany 2045
by Alexander Blinn, Joshua Bunner and Fabian Kennel
Energies 2025, 18(21), 5579; https://doi.org/10.3390/en18215579 - 23 Oct 2025
Viewed by 408
Abstract
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics, while detailed simulators lack multi-hour optimization, leaving investors without a unified basis for sizing storage, [...] Read more.
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics, while detailed simulators lack multi-hour optimization, leaving investors without a unified basis for sizing storage, shifting demand, or upgrading transfers. We present a two-layer Hierarchical Model Predictive Control framework that links 15-min scheduling with 1-s corrective action and apply it to Germany’s four TSO zones under a stringent zero-exchange stress test derived from the NEP 2045 baseline. Batteries, vehicle-to-grid, pumped hydro and power-to-gas technologies are captured through aggregators; a decentralized optimizer pre-positions them, while a fast layer refines setpoints as forecasts drift; all are subject to inter-zonal transfer limits. Year-long simulations hold frequency within ±2 mHz for 99.9% of hours and below ±10 mHz during the worst multi-day renewable lull. Batteries absorb sub-second transients, electrolyzers smooth surpluses, and hydrogen turbines bridge week-long deficits—none of which violate transfer constraints. Because the algebraic core is modular, analysts can insert new asset classes or policy rules with minimal code change, enabling policy-relevant scenario studies from storage mandates to capacity-upgrade plans. The work elevates predictive control from plant-scale demonstrations to system-level planning practice. It unifies adequacy sizing and dynamic-performance evaluation in a single optimization loop, delivering an open, scalable blueprint for high-renewables assessments. The framework is readily portable to other interconnected grids, supporting analyses of storage obligations, hydrogen roll-outs and islanding strategies. Full article
Show Figures

Figure 1

31 pages, 5934 KB  
Article
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
by Tuba Tezer
Processes 2025, 13(10), 3339; https://doi.org/10.3390/pr13103339 - 18 Oct 2025
Viewed by 1237
Abstract
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, [...] Read more.
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, a fuel cell-based combined heat and power (CHP) unit, and a boiler to meet both electrical and thermal demands. Within this broader optimization framework, six optimal configurations emerged, representing grid-connected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh), with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways, coordinated operation, waste heat utilization, and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE, confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE, particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers, while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall, these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

26 pages, 12326 KB  
Article
A Study on Energy Loss and Transient Flow Characteristics of a Large Volute Centrifugal Pump During Power-Off Process Under Cavitation Conditions
by Qingzhao Pang, Desheng Zhang, Gang Yang, Xi Shen, Qiang Pan, Linlin Geng and Qinghui Lu
J. Mar. Sci. Eng. 2025, 13(10), 1973; https://doi.org/10.3390/jmse13101973 - 15 Oct 2025
Viewed by 608
Abstract
A novel pumped storage system using centrifugal pumps to transfer water between reservoirs in coastal hydropower plants has significantly mitigated grid instability. However, frequent start–stop operations of large vertical centrifugal pumps, which serve as the core equipment, severely affect the operational stability of [...] Read more.
A novel pumped storage system using centrifugal pumps to transfer water between reservoirs in coastal hydropower plants has significantly mitigated grid instability. However, frequent start–stop operations of large vertical centrifugal pumps, which serve as the core equipment, severely affect the operational stability of these systems. In this study, the intrinsic connection between the cavitating flow field and irreversible losses during the process was analyzed using the entropy production theory. The time–frequency characteristics of pressure pulsation in pump were analyzed by using the continuous wavelet transform. The results indicate that with the reduction in the flow rate and rotational speed, the sheet cavitation at the impeller inlet rapidly weakens until it vanishes. The cavity cavitation within the draft tube commences to emerge in the turbine mode. Separation vortices are formed due to the mismatch in the flow angle at the impeller outlet. These vortices induce local cavitation, causing both a rapid energy loss increase and high-amplitude, low-frequency pressure pulsations. During transient processes, flow instabilities induce high-amplitude, low-frequency pressure pulsations within the stay vane region, with maximum amplitude attained during runaway condition. The research results provide a theoretical foundation for the stable operation of centrifugal pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 2293 KB  
Article
The Path Towards Decarbonization: The Role of Hydropower in the Generation Mix
by Fabio Massimo Gatta, Alberto Geri, Stefano Lauria, Marco Maccioni and Ludovico Nati
Energies 2025, 18(19), 5248; https://doi.org/10.3390/en18195248 - 2 Oct 2025
Viewed by 577
Abstract
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro [...] Read more.
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro resources or take it into account in terms of additional reservoir capacity. This paper analyzes a generation mix made of photovoltaic, wind, open-cycle gas turbines, electrochemical storage and hydroelectricity, focusing on the optimal generation mix’s reaction to different methane gas prices, hydroelectricity availabilities, pumped hydro reservoir capacities, and mean filling durations for hydro reservoirs. The key feature of the developed model is the sizing of both optimal peak power and reservoir energy content for hydropower. The results of the study point out two main insights. The first one, rather widely accepted, is that cost-effective decarbonization requires the greatest possible amount of hydro reservoirs. The second one is that, even in the case of totally exploited reservoirs, there is a strong case for increasing hydro peak power. Application of the model to the Italian generation mix (with 9500 MWp and 7250 MWp of non-pumped and pumped hydro fleets, respectively) suggests that it is possible to achieve methane shares of less than 10% if the operating costs of open-cycle gas turbines exceed 160 EUR/MWh and with non-pumped and pumped hydro fleets of at least 9200 MWp and 28,400 MWp, respectively. Full article
Show Figures

Figure 1

Back to TopTop