Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin
Abstract
Share and Cite
Hu, S.; Du, M.; Yang, J.; Liu, Y.; Tuo, Z.; Ma, X. Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin. ISPRS Int. J. Geo-Inf. 2026, 15, 6. https://doi.org/10.3390/ijgi15010006
Hu S, Du M, Yang J, Liu Y, Tuo Z, Ma X. Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin. ISPRS International Journal of Geo-Information. 2026; 15(1):6. https://doi.org/10.3390/ijgi15010006
Chicago/Turabian StyleHu, Shuting, Mingliang Du, Jiayun Yang, Yankun Liu, Ziyun Tuo, and Xiaofei Ma. 2026. "Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin" ISPRS International Journal of Geo-Information 15, no. 1: 6. https://doi.org/10.3390/ijgi15010006
APA StyleHu, S., Du, M., Yang, J., Liu, Y., Tuo, Z., & Ma, X. (2026). Application of a Hybrid CNN-LSTM Model for Groundwater Level Forecasting in Arid Regions: A Case Study from the Tailan River Basin. ISPRS International Journal of Geo-Information, 15(1), 6. https://doi.org/10.3390/ijgi15010006

