Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
Abstract
1. Introduction
Novelty and Contributions
- This study proposes a novel HRES configuration that simultaneously investigates three storage technologies (PHS, hydrogen, batteries) with CHP-based heat recovery.
- The broader search space allowed six distinct system configurations to be obtained and analyzed in detail, showing how the inclusion or exclusion of each storage option influences system performance, levelized cost, and excess energy utilization.
- It demonstrates the practical applicability of seawater-based PHS by using the sea as the lower reservoir in a coastal hotel case study.
- The system not only addresses electrical loads but also incorporates thermal load coverage through fuel cell waste heat recovery, offering a comprehensive evaluation of hotel-scale energy systems.
- Representative values for PHS were selected based on regional topography and comparable coastal seawater PHS projects, ensuring technical and economic relevance.
- The analysis extends beyond cost optimization by evaluating financial robustness under varying discount rates and component costs, as well as the sensitivity of system economics to load and meteorological variations.
2. Methodology
2.1. System Configuration and Dispatch Strategy
2.2. Meteorological Data and Load Profiles
2.3. Mathematical Model of System Components
2.3.1. PV Model
2.3.2. Wind Turbine Model
2.3.3. PHS Model
2.3.4. Battery Storage Model
2.3.5. Fuel Cell Model
2.3.6. Electrolyzer and Hydrogen Tank Models
2.4. Technical and Economic Parameters of Components
3. Objective Function
3.1. Constraints and Decision Variables
3.2. Financial Assumptions
4. Results and Discussion
4.1. Thermal Energy Management and Heat Recovery Performance
4.2. Optimum HRES Solution
4.3. Sensitivity Analysis
4.3.1. The Impact of Real Discount Rate on NPC and COE
4.3.2. Sensitivity of NPC and COE to Component Costs in Case 1
4.3.3. Sensitivity of NPC and COE to Storage Component Costs in Case 3
4.3.4. Sensitivity of NPC and COE to Load and Meteorological Parameters in Case 1
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilic, G.A.; Yalcin, E.; Aydin, A.A. Optimum Operating Temperature Range of Phase Change Materials Used in Cold Storage Applications: A Case Study. In Environmentally-Benign Energy Solutions; Dincer, I., Colpan, C.O., Ezan, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 711–726. [Google Scholar]
- Akyuz, E.; Tezer, T. Techno-economic feasibility and regression analysis of green hydrogen production from solar and wind energy in Türkiye. Int. J. Hydrogen Energy 2025, 142, 1184–1195. [Google Scholar] [CrossRef]
- Kılıç, G.A.; Al, K.; Dağtekin, E.; Ünver, Ü. Technical, economic and environmental investigation of grid-independent hybrid energy systems applicability: A case study. Energy Sources Part A 2020, 47, 461–476. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Review of the development of first-generation redox flow batteries: Iron–chromium system. ChemSusChem 2021, 14, 4699–4721. [Google Scholar] [CrossRef] [PubMed]
- Tezer, T.; Akyuz, E.; Gul, M. Optimal and reliable design of stand-alone hybrid renewable energy systems: A multi-objective approach. Energy Sources Part A 2024, 46, 10948–10963. [Google Scholar] [CrossRef]
- Baumann, M.; Weil, M.; Peters, J.F.; Chibeles-Martins, N.; Moniz, A.B. A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications. Renew. Sustain. Energy Rev. 2019, 107, 516–534. [Google Scholar] [CrossRef]
- Toufani, P.; Karakoyun, E.Ç.; Nadar, E.; Fosso, O.B.; Kocaman, A.S. Optimization of pumped hydro energy storage systems under uncertainty: A review. J. Energy Storage 2023, 73, 109306. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Dincer, I.; Rosen, M.A. Hybrid solar–fuel cell combined heat and power systems for residential applications: Energy and exergy analyses. J. Power Sources 2013, 221, 372–380. [Google Scholar] [CrossRef]
- Zafar, S.; Dincer, I. Thermodynamic analysis of a combined PV/T–fuel cell system for power, heat, fresh water and hydrogen production. Int. J. Hydrogen Energy 2014, 39, 9962–9972. [Google Scholar] [CrossRef]
- Devrim, Y.; Bilir, L. Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region—Ankara, Turkey. Energy Convers. Manag. 2016, 126, 759–766. [Google Scholar] [CrossRef]
- Pürlü, M.; Andiç, C.; Aydın, E.; Solak, B. Optimal design of hybrid renewable energy system for a region in Turkey using HOMER. Turk. J. Electr. Power Energy Syst. 2023, 3, 146–155. [Google Scholar] [CrossRef]
- Pattnaik, A.; Dauda, A.K.; Panda, A. Optimal utilization of clean energy and its impact on hybrid power systems incorporating STATCOM and pumped hydro storage. Renew. Sustain. Energy Rev. 2023, 187, 113713. [Google Scholar] [CrossRef]
- Ali, S.; Stewart, R.A.; Sahin, O. Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Clean. Eng. Technol. 2021, 5, 100281. [Google Scholar] [CrossRef]
- Anagnostopoulos, J.S.; Papantonis, D.E. Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy. Renew. Energy 2008, 33, 1685–1694. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L.; Peng, J. An optimization sizing model for solar photovoltaic power generation system with pumped storage. Energy Procedia 2014, 61, 5–8. [Google Scholar] [CrossRef]
- Jurasz, J.; Dąbek, P.B.; Kaźmierczak, B.; Kies, A.; Wdowikowski, M. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland). Energy 2018, 161, 183–192. [Google Scholar] [CrossRef]
- Simão, M.; Ramos, H.M. Hybrid Pumped Hydro Storage Energy Solutions towards Wind and PV Integration: Improvement on Flexibility, Reliability and Energy Costs. Water 2020, 12, 2457. [Google Scholar] [CrossRef]
- Gioutsos, D.M.; Blok, K.; van Velzen, L.; Moorman, S. Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe. Appl. Energy 2018, 226, 437–449. [Google Scholar] [CrossRef]
- Guezgouz, M.; Jurasz, J.; Bekkouche, B.; Ma, T.; Javed, M.S.; Kies, A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Convers. Manag. 2019, 199, 112046. [Google Scholar] [CrossRef]
- Samatar, A.M.; Lekbir, A.; Mekhilef, S.; Mokhlis, H.; Tey, K.S.; Alassaf, A. Techno-economic and environmental analysis of a fully renewable hybrid energy system for sustainable power infrastructure advancement. Sci. Rep. 2025, 15, 12140. [Google Scholar] [CrossRef]
- Dufo-López, R.; Lujano-Rojas, J.M. Optimization of size and operation of stand-alone renewable-based systems with diesel and hybrid pumped hydro storage–battery storage considering uncertainties. Batteries 2025, 11, 70. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Jurasz, J.; Hassan, H.; Mohamed, A.M. Optimized energy management strategy for grid-connected double storage (pumped storage–battery) system powered by renewable energy resources. Energy 2020, 192, 116615. [Google Scholar] [CrossRef]
- Ramos, H.M.; Sintong, J.E.; Kuriqi, A. Optimal integration of hybrid pumped storage hydropower toward energy transition. Renew. Energy 2024, 221, 119732. [Google Scholar] [CrossRef]
- Taşcıkaraoğlu, A.; Erdinç, O. A profit optimization approach based on the use of pumped-hydro energy storage unit and dynamic pricing. J. Eng. Archit. Fac. Eskiseh. Osman. Univ. 2018, 26, 74–87. [Google Scholar]
- Kocaman, A.S. Optimization of hybrid energy systems with pumped hydro storage: A case study for Turkey. J. Fac. Eng. Archit. Gazi Univ. 2019, 34, 53–67. [Google Scholar] [CrossRef]
- Kumcu, Ş.Y. Pumped-hydro energy storage alternative site evaluation: A case study in Turkey. J. Int. Environ. Appl. Sci. 2019, 14, 70–74. [Google Scholar]
- Saltuk, M.F. Prefeasibility analysis of the pumped hydro storage (PHS) system in Türkiye: A case study on a hybrid system. Energy Storage Convers. 2023, 1, 215. [Google Scholar] [CrossRef]
- Yurter, G.; Nadar, E.; Kocaman, A.S. The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables. Renew. Energy 2024, 222, 119906. [Google Scholar] [CrossRef]
- Ünver, Ü.; Bilgin, H.; Güven, A. Pompaj depolamalı hidroelektrik sistemler. Mühendis Ve Makina 2015, 56, 57–64. [Google Scholar]
- Sertkaya, A.A.; Saraç, M.; Arslan, M.A.O. The importance of pumped-storage hydroelectric power plants for Turkey. Gazi J. Eng. Sci. 2015, 1, 369–382. [Google Scholar]
- Gürsakal, H.; Uyumaz, A. Pompaj depolamalı hidroelektrik santrallerin optimizasyonunda kârlılık analizi ve çalışma süresi tayini. Mühendislik Bilim. Tasar. Derg. 2021, 9, 436–452. [Google Scholar] [CrossRef]
- Awan, A.B.; Zubair, M.; Sidhu, G.A.S.; Bhatti, A.R.; Abo-Khalil, A.G. Performance analysis of various hybrid renewable energy systems using battery, hydrogen, and pumped hydro-based storage units. Int. J. Energy Res. 2019, 43, 6296–6321. [Google Scholar] [CrossRef]
- Alili, H.; Mahmoudimehr, J. Techno-economic assessment of integrating hydrogen energy storage technology with hybrid photovoltaic/pumped storage hydropower energy system. Energy Convers. Manag. 2023, 294, 117437. [Google Scholar] [CrossRef]
- HOMER Energy. HOMER Pro, Version 3.14.2; HOMER Energy, LLC: Boulder, CO, USA, 2017. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 2nd ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Oshima, K.; Kawai, J.; Otsuka, S.; Wada, T.; Imano, H. Development of Pump-Turbine for Seawater Pumped Storage Power Plant. In Waterpower ’99: Hydro’s Future: Technology, Markets, and Policy, Proceedings of the International Conference on Hydropower, Las Vegas, NV, USA, 6–9 July 1999; American Society of Civil Engineers (ASCE): Reston, VA, USA, 1999; pp. 1–6. [Google Scholar]
- Ansorena Ruiz, L.H.; de Vilder, E.B.; Prasasti, M.; De Luca, A.; Geisseler, B.; Terheiden, K.; Scanu, S.; Miccoli, A.; Roeber, V.; Marence, M.; et al. Low-Head Pumped Hydro Storage: A Review on Civil Structure Designs, Legal and Environmental Aspects to Make Its Realization Feasible in Seawater. Renew. Sustain. Energy Rev. 2022, 160, 112281. [Google Scholar] [CrossRef]
- HOMER Energy. HOMER Help: Pumped Hydro, Version 3.14.2; HOMER Energy, LLC: Boulder, CO, USA, 2017. [Google Scholar]
- Majoral Oller, G. Anàlisi de Viabilitat de Salts Hidràulics Reversibles Tancats de Capacitat Mitjana i Petita per Emmagatzematge d’Energia/Feasibility Study on Closed-loop Small-Scale Pumped Hydro Energy Storage Systems. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 26 June 2020. Available online: https://upcommons.upc.edu/server/api/core/bitstreams/17bc95ed-3130-4388-827d-3db8d3ee5cd8/content (accessed on 1 September 2025).
- Hoffstaedt, J.P.; Truijen, D.P.K.; Fahlbeck, J.; Gans, L.H.A.; Qudaih, M.; Laguna, A.J.; De Kooning, J.D.M.; Stockman, K.; Nilsson, H.; Storli, P.-T.; et al. Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling. Renew. Sustain. Energy Rev. 2022, 158, 112119. [Google Scholar] [CrossRef]
- Google LLC. Google Earth Pro, Version 7.3.6.10441; Google LLC: Mountain View, CA, USA, 2025; Çenger, Manavgat, Türkiye. Elevation data retrieved from the Google Earth Pro application. [Google Scholar]
- Munson, B.R.; Young, D.F.; Okiishi, T.H.; Huebsch, W.W. Fundamentals of Fluid Mechanics, 7th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kilic, G.A. Performance Evaluation of Triply Periodic Minimal Surface Heat Exchangers Using Nanofluids at High Flow Rates for Enhanced Energy Efficiency. Appl. Sci. 2025, 15, 4140. [Google Scholar] [CrossRef]
- Penche, C. Guide on How to Develop a Small Hydropower Plant; European Small Hydropower Association (ESHA): Brussels, Belgium, 2004. [Google Scholar]
- Tsuanyo, D.; Amougou, B.; Aziz, A.; Nnomo, B.N.; Fioriti, D.; Kenfack, J. Design models for small run-of-river hydropower plants: A review. Sustain. Energy Res. 2023, 10, 3. [Google Scholar] [CrossRef]
- Maleki, A.; Askarzadeh, A. Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system. Int. J. Hydrogen Energy 2014, 39, 9973–9984. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Singh, N.J. Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm. Int. J. Hydrogen Energy 2020, 45, 10070–10088. [Google Scholar] [CrossRef]
- Song, K.; Hou, T.; Jiang, J.; Grigoriev, S.A.; Fan, F.; Qin, J.; Wang, Z.; Sun, C. Thermal management of liquid-cooled proton exchange membrane fuel cell: A review. J. Power Sources 2025, 648, 237227. [Google Scholar] [CrossRef]
- Budak, Y.; Devrim, Y. Investigation of micro-combined heat and power application of PEM fuel cell systems. Energy Convers. Manag. 2018, 160, 486–494. [Google Scholar] [CrossRef]
- Tezer, T.; Yaman, R. A Pareto optimum approach and a power management strategy for a stand-alone wind turbine–PV–hydrogen with reformer hybrid renewable energy system. Environ. Prog. Sustain. Energy 2022, 41, e13772. [Google Scholar] [CrossRef]
- Ren, F.K.; Wang, J.J.; Zhu, S.T.; Chen, Y. Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies. Energy Convers. Manag. 2019, 197, 111866. [Google Scholar] [CrossRef]
- Li, L.L.; Ren, X.Y.; Tseng, M.L.; Wu, D.S.; Lim, M.K. Performance evaluation of solar hybrid combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm. Energy Convers. Manag. 2022, 258, 115541. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Shabani, B. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Convers. Manag. 2020, 204, 112328. [Google Scholar] [CrossRef]
- Mohamed, W.A.N.W.; Singh, B.; Mohamed, M.F.; Aizuwan, A.M.; Zubair, A.B.M. Effects of fuel cell vehicle waste heat temperatures and cruising speeds on the outputs of a thermoelectric generator energy recovery module. Int. J. Hydrogen Energy 2021, 46, 25634–25649. [Google Scholar] [CrossRef]
- Lilienthal, P.; Lambert, T.; Gilman, P. Computer modeling of renewable power systems. Encycl. Energy 2004, 1, 633–647. [Google Scholar] [CrossRef]
- Das, B.K.; Hasan, M.; Rashid, F. Optimal sizing of a grid-independent PV/diesel/pumped-hydro hybrid system: A case study in Bangladesh. Sustain. Energy Technol. Assess. 2021, 44, 100997. [Google Scholar] [CrossRef]
- Akhtari, M.R.; Baneshi, M. Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat, and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Convers. Manag. 2019, 188, 131–141. [Google Scholar] [CrossRef]
- Das, B.K.; Tushar, M.S.H.K.; Zaman, F. Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads. Energy 2021, 215, 119141. [Google Scholar] [CrossRef]
- Jamshidi, M.; Askarzadeh, A. Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustain. Cities Soc. 2019, 44, 310–320. [Google Scholar] [CrossRef]
- Tezer, T. Multi-Objective Optimization of Hybrid Renewable Energy Systems with Green Hydrogen Integration and Hybrid Storage Strategies. Int. J. Hydrogen Energy 2025, 142, 1249–1271. [Google Scholar] [CrossRef]
- Khan, T.; Ullah, Z.; Agyekum, E.B.; Hasanien, H.M.; Yu, M. Multi-objective optimization of combined heat and power system integrated with multi-energy storage systems for rural communities. J. Energy Storage 2024, 99, 113433. [Google Scholar] [CrossRef]
- El Boujdaini, L.; Jurado, F.; Mezrhab, A.; Moussaoui, M.A.; Vera, D. Cost and size optimization of hybrid solar and hydrogen subsystem using HomerPro software. Int. J. Hydrogen Energy 2023, 48, 24018–24036. [Google Scholar] [CrossRef]
- HOMER Energy. HOMER Help: Boiler, Version 3.14.2; HOMER Energy, LLC: Boulder, CO, USA, 2017. [Google Scholar]
- Tehrani, M.M.; Akhtari, M.; Kasaeian, A.; Rad, M.A.V.; Toopshekan, A.; Motlagh, M.S. Techno-economic investigation of a hybrid biomass renewable energy system to achieve the goals of SDG-17 in deprived areas of Iran. Energy Convers. Manag. 2023, 291, 117319. [Google Scholar] [CrossRef]
- Gül, M.; Akyüz, E. Hydrogen generation from a small-scale solar photovoltaic thermal (PV/T) electrolyzer system: Numerical model and experimental verification. Energies 2020, 13, 2997. [Google Scholar] [CrossRef]
- Altunsoy, Ü. Kargo taşımacılık sisteminde elektrikli araçlar kullanımı üzerine inceleme. Int. Anatolia Acad. Online J. Sci. J. 2021, 7, 1–14. [Google Scholar]
- Bilal, M.; Oladigbolu, J.O.; Mujeeb, A.; Al-Turki, Y.A. Cost-effective optimization of on-grid electric vehicle charging systems with integrated renewable energy and energy storage: An economic and reliability analysis. J. Energy Storage 2024, 100, 113170. [Google Scholar] [CrossRef]
Reference | System Configuration | Storage Types | Heat Recovery/Thermal Integration | Key Limitation/Gap |
---|---|---|---|---|
Hosseini et al. [8] | PV–Electrolyzer–FC-HT | Hydrogen | SOFC-CHP | Single storage; no PHS; no CHP coupling |
Pürlü et al. [11] | PV–Wind–Battery–DG | Battery | No | Single storage; no PHS; no CHP coupling |
Pattnaik et al. [12] | Wind–PV–Thermal–PHS | PHS | Partial (thermal) | Single storage; no CHP coupling |
Ma et al. [15] | PV–PHS | PHS | No | Single storage; no CHP coupling |
Jurazs et al. [16] | PV–Wind–PHS | PHS | No | Single storage; No CHP coupling |
Simão and Ramos [17] | PV–Wind–PHS | PHS | No | Single storage; no CHP coupling |
Gioutsos et al. [18] | PV–Wind–PHS–Battery | PHS, Battery | No | No hydrogen storage; no CHP coupling |
Guezgouz et al. [19] | PV–Wind–PHS–Battery | PHS, Battery | No | No hydrogen storage; no CHP coupling |
Samatar et al. [20] | PV–Wind–Diesel–PHS–Battery | PHS, Battery | No | No hydrogen storage; no CHP coupling |
Dufo-López & Lujano-Rojas [21] | PV–Wind–Diesel–PHS–Battery | PHS, Battery | No | No hydrogen storage; no CHP coupling |
Abdelshafy et al. [22] | Grid-connected PV–Wind–Battery–PHS | PHS, Battery | No | No hydrogen storage; no CHP coupling |
Ramos et al. [23] | Grid-connected PV–Wind–PHS | PHS | No | Single storage; no CHP coupling |
Awan et al. [32] | PV–Wind–Diesel (nine scenarios with single storage) | Battery/PHS/H2 (evaluated individually) | No | Evaluated individually; Single storage; no CHP coupling |
Alili et al. [33] | PV–PHS–Electrolyzer–FC-HT | PHS, Hydrogen | FC waste heat recovery | Only PV-based; no battery storage |
This study | (grid connected or off grid) PV–Wind–PHS–Battery–Electrolyzer–FC-HT–FC-CHP | PHS, Battery, Hydrogen | FC waste heat recovery | Triple storage option and CHP coupling |
Component | Type | Capacity | Capital Cost ($) | Replacement Cost ($) | Operation & Maintenance Cost | Lifetime | Refs. |
---|---|---|---|---|---|---|---|
PV | SunPower E20-327 | 1 kW | 1300 | 1300 | 20 $/year | 25 years | [56] |
WT | Eocycle EOX S-16 | 30 kW | 60,000 | 54,000 | 500 $/turbine/yr | 30 years | [57] |
PHS | Generic 245 kWh | 22 kW | 22,000 | 500 | 100 $/year | 25 years | [34,56] |
Fuel cell | Generic | 1 kW | 3000 | 2500 | 0.01 $/h | 50,000 h | [58,59] |
Electrolyzer | Generic | 1 kW | 1500 | 1000 | 20 $/year | 15 years | [60,61] |
Hydrogen tank | Generic | 1 kg | 1300 | 1200 | 15 $ | 25 years | [62] |
Battery | Generic 100 kWh Li-Ion | 100 kWh | 28,000 | 28,000 | 500 $/year | 20 years/ 300,000 kWh | [20] |
Boiler | Generic | - | - | - | - | 25 years | [63] |
Converter | Generic | 1 kW | 300 | 300 | - | 15 years | [49] |
Component | Variable | Type | Range/Values | Unit |
---|---|---|---|---|
PV | Discrete | 125–140–200–250–300–400–500 | kW | |
Wind turbine | Discrete | 0–3–5–10–15 | unit | |
Grid | Discrete | 25–35–50 | kW | |
PHS | Continuous | 0–20 | unit | |
Fuel cell | Discrete | 0–10–15–20–25 | kW | |
Electrolyzer | Discrete | 0–10–15–20–25–30–40 | kW | |
Hydrogen tank | Discrete | 0–3–4–5–7 | kg | |
Battery | Continuous | 0–100 | kWh | |
Boiler | Continuous | Unlimited | kW | |
Converter | Continuous | 0–600 | kW |
Parameter | Value | Unit |
---|---|---|
Project lifetime | 25 | years |
Discount rate | 6 | % |
Inflation rate | 2 | % |
Real discount rate | ≈3.92 | % |
Grid electricity purchase price | 0.12 | $/kWh |
Natural gas price (for boiler use) | 0.15 | $/m3 |
Components | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
---|---|---|---|---|---|---|
PV | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
WT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Fuel Cell | ✘ | ✘ | ✓ | ✓ | ✓ | ✘ |
Electrolyzer | ✘ | ✘ | ✓ | ✓ | ✓ | ✘ |
Hydrogen Tank | ✘ | ✘ | ✓ | ✓ | ✓ | ✘ |
PHS | ✓ | ✓ | ✓ | ✓ | ✘ | ✘ |
Battery storage | ✘ | ✘ | ✘ | ✘ | ✓ | ✓ |
Grid | ✓ | ✘ | ✓ | ✘ | ✓ | ✓ |
Converter | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Boiler | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
---|---|---|---|---|---|---|
PV (kW) | 250 | 250 | 250 | 250 | 300 | 250 |
WT (30 kW) | 10 | 10 | 10 | 10 | 10 | 10 |
Fuel Cell (kW) | - | - | 10 | 10 | 10 | - |
Electrolyzer (kW) | - | - | 10 | 10 | 10 | - |
Hydrogen Tank (kg) | - | - | 3 | 4 | 4 | - |
PHS (245 kWh) string | 8 | 10 | 9 | 10 | - | - |
Battery | - | - | - | - | 19 | 22 |
Grid | 50 | - | 50 | - | 50 | 50 |
Converter | 189.05 | 187.50 | 125.00 | 156.57 | 139 | 167 |
NPC ($) | 1,326,962 | 1,370,273 | 1,370,176 | 1,406,142 | 2,027,252 | 2,027,022 |
COE ($/kWh) | 0.1527 | 0.1577 | 0.1577 | 0.1619 | 0.2337 | 0.2336 |
Initial capital ($) | 1,157,715 | 1,201,250 | 1,209,400 | 1,242,170 | 1,614,050 | 1,591,059 |
Operating cost ($/yr) | 10,744.24 | 10,729.97 | 10,206.45 | 10,409.34 | 26,231.02 | 27,676.05 |
Renewable Fraction (%) | 96.34 | 96.63 | 96.38 | 96.63 | 96.51 | 96.32 |
Total Electrical Production (kWh/yr) | 791,986 | 790,307 | 791,938 | 790,432 | 888,042 | 792,053 |
Unmet Electric Load (%) | 0.0488 | 0.0602 | 0.0513 | 0.0619 | 0.0561 | 0.0482 |
Excess Electricity (kWh/yr) | 166,812 | 164,703 | 166,403 | 164,481 | 273,164 | 195,222 |
Excess Electricity (%) | 21.1 | 20.8 | 21 | 20.8 | 30.8 | 24.6 |
CO2 Emissions Reduction (ton/yr) | 259 | 259.9 | 259.2 | 260.1 | 255.2 | 247.2 |
Boiler fuel consumption (m3/kg) | 2424 | 2424 | 2421 | 2423 | 2277 | 2424 |
Case | Fuel Cell Thermal Output (kWh/yr) | Fuel Cell Share (%) | Boiler Output (kWh/yr) | Boiler Share (%) | Excess Thermal (kWh/yr) | Excess Thermal (%) |
---|---|---|---|---|---|---|
1 | – | – | 19,151 | 100 | – | – |
2 | – | – | 19,151 | 100 | – | – |
3 | 113 | 0.588 | 19,125 | 99.4 | 87.1 | 0.455 |
4 | 71 | 0.37 | 19,138 | 99.6 | 57.8 | 0.302 |
5 | 4101 | 18.6 | 17,988 | 81.4 | 2938 | 15.3 |
6 | – | – | 19,151 | 100 | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tezer, T. Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel. Processes 2025, 13, 3339. https://doi.org/10.3390/pr13103339
Tezer T. Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel. Processes. 2025; 13(10):3339. https://doi.org/10.3390/pr13103339
Chicago/Turabian StyleTezer, Tuba. 2025. "Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel" Processes 13, no. 10: 3339. https://doi.org/10.3390/pr13103339
APA StyleTezer, T. (2025). Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel. Processes, 13(10), 3339. https://doi.org/10.3390/pr13103339