Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,498)

Search Parameters:
Keywords = Pseudomonas aeruginosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 7563 KiB  
Article
Design and Evaluation of a Inonotus obliquus–AgNP–Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential
by Ana-Maria Stanoiu, Cornelia Bejenaru, Adina-Elena Segneanu, Gabriela Vlase, Ionela Amalia Bradu, Titus Vlase, George Dan Mogoşanu, Maria Viorica Ciocîlteu, Andrei Biţă, Roxana Kostici, Dumitru-Daniel Herea and Ludovic Everard Bejenaru
Polymers 2025, 17(15), 2163; https://doi.org/10.3390/polym17152163 (registering DOI) - 7 Aug 2025
Abstract
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and [...] Read more.
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and bioavailability of its bioactive constituents. Two distinct delivery systems were designed to enhance the functionality of I. obliquus extracts: (i) microencapsulation in maltodextrin (MIO) and (ii) a sequential approach involving preparation of silver nanoparticle-loaded I. obliquus (IO–AgNPs), followed by microencapsulation to yield the hybrid MIO–AgNP system. Comprehensive metabolite profiling using GC–MS and ESI–QTOF–MS revealed 142 bioactive constituents, including terpenoids, flavonoids, phenolic acids, amino acids, coumarins, styrylpyrones, fatty acids, and phytosterols. Structural integrity and successful encapsulation were confirmed by XRD, FTIR, and SEM analyses. Both IO–AgNPs and MIO–AgNPs demonstrated potent antioxidant activity, significant acetylcholinesterase inhibition, and robust antimicrobial effects against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli. Cytotoxicity assays revealed pronounced activity against MCF-7, HCT116, and HeLa cell lines, with MIO–AgNPs exhibiting superior efficacy. The synergistic integration of maltodextrin and AgNPs enhanced compound stability and bioactivity. As the first report on Romanian I. obliquus, this study highlights its therapeutic potential and establishes polymer-based nanoencapsulation as an effective strategy for optimizing its applications in combating microbial resistance and cancer. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 1500 KiB  
Article
Structure-Activity Relationships in Alkoxylated Resorcinarenes: Synthesis, Structural Features, and Bacterial Biofilm-Modulating Properties
by Mariusz Urbaniak, Łukasz Lechowicz, Barbara Gawdzik, Maciej Hodorowicz and Ewelina Wielgus
Molecules 2025, 30(15), 3304; https://doi.org/10.3390/molecules30153304 - 7 Aug 2025
Abstract
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution [...] Read more.
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution patterns on molecular packing. Notably, detailed mass spectrometric analysis revealed that, under specific conditions, the reaction pathway may shift toward the formation of defined oligomeric species with supramolecular characteristics—an observation that adds a new dimension to the synthetic potential of this system. To complement the chemical analysis, selected derivatives were evaluated for biological activity, focusing on bacterial growth and biofilm formation. Using four clinically relevant strains (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis), we assessed both planktonic proliferation (OD600) and biofilm biomass (crystal violet assay). Compound 2c (2-pentanol derivative) consistently promoted biofilm formation, particularly in S. aureus and B. subtilis, while having limited cytotoxic effects. In contrast, compound 2e and the DMSO control exhibited minimal impact on biofilm development. The results suggest that specific structural features of the alkoxy chains may modulate microbial responses, potentially via membrane stress or quorum sensing interference. This work highlights the dual relevance of alkoxylated resorcinarenes as both supramolecular building blocks and modulators of microbial behavior. Full article
Show Figures

Figure 1

52 pages, 1574 KiB  
Review
Anti-QS Strategies Against Pseudomonas aeruginosa Infections
by Abdelaziz Touati, Nasir Adam Ibrahim, Lilia Tighilt and Takfarinas Idres
Microorganisms 2025, 13(8), 1838; https://doi.org/10.3390/microorganisms13081838 - 7 Aug 2025
Abstract
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of [...] Read more.
Pseudomonas aeruginosa poses significant health threats due to its multidrug-resistant profile, particularly affecting immunocompromised individuals. The pathogen’s ability to produce virulence factors and antibiotic-resistant biofilms, orchestrated through quorum-sensing (QS) mechanisms, complicates conventional therapeutic interventions. This review aims to critically assess the potential of anti-QS strategies as alternatives to antibiotics against P. aeruginosa infections. Comprehensive literature searches were conducted using databases such as PubMed, Scopus, and Web of Science, focusing on studies addressing QS inhibition strategies published recently. Anti-QS strategies significantly attenuate bacterial virulence by disrupting QS-regulated genes involved in biofilm formation, motility, toxin secretion, and immune evasion. These interventions reduce the selective pressure for resistance and enhance antibiotic efficacy when used in combination therapies. Despite promising outcomes, practical application faces challenges, including specificity of inhibitors, pharmacokinetic limitations, potential cytotoxicity, and bacterial adaptability leading to resistance. Future perspectives should focus on multi-target QS inhibitors, advanced delivery systems, rigorous preclinical validations, and clinical translation frameworks. Addressing current limitations through multidisciplinary research can lead to clinically viable QS-targeted therapies, offering sustainable alternatives to traditional antibiotics and effectively managing antibiotic resistance. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

11 pages, 910 KiB  
Article
Antimicrobial Effect of Gentamicin/Heparin and Gentamicin/Citrate Lock Solutions on Staphylococcus aureus and Pseudomonas aeruginosa Clinical Strains
by Daniel Salas-Treviño, Arantxa N. Rodríguez-Rodríguez, María T. Ramírez-Elizondo, Magaly Padilla-Orozco, Edeer I. Montoya-Hinojosa, Paola Bocanegra-Ibarias, Samantha Flores-Treviño and Adrián Camacho-Ortiz
Infect. Dis. Rep. 2025, 17(4), 98; https://doi.org/10.3390/idr17040098 - 6 Aug 2025
Abstract
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter [...] Read more.
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter model of lock solutions of gentamicin (LSG), gentamicin/heparin (LSG/H), and gentamicin/citrate (LSG/C) in clinical and ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The formation, minimum inhibitory concentration, and minimum inhibitory concentration of the biofilm and minimum biofilm eradication concentration of the lock solutions were determined. Additionally, colony-forming unit assays were performed to evaluate the antimicrobial efficacy of the lock solutions in a hemodialysis catheter inoculation model. Results: The minimum inhibitory concentration (MIC) of planktonic cells of both P. aeruginosa and S. aureus for LSG/H and LSG/C was 4 µg/mL. In the minimum biofilm inhibitory concentration (MBIC) tests, the LSG/H was less effective than LSG/C, requiring higher concentrations for inhibition, contrary to the minimum biofilm eradication concentration (MBEC), where LSG/H was more effective. All lock solutions eradicated P. aeruginosa biofilms in the HD catheter model under standard conditions. Nevertheless, under modified conditions, the lock solutions were not as effective versus ATCC and clinical strains of S. aureus. Conclusions: Our analysis shows that the lock solutions studied managed to eradicate intraluminal mature P. aeruginosa in non-tunneled HD catheters under standard conditions. Biofilm inhibition and eradication were observed at low gentamicin concentrations, which could optimize the gentamicin concentration in lock solutions used in HD catheters. Full article
Show Figures

Figure 1

24 pages, 10760 KiB  
Article
Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa
by Andrei V. Chaplin, Nina N. Sykilinda, George A. Skvortsov, Konstantin S. Troshin, Anna A. Vasilyeva, Sofia A. Shuraleva, Artem A. Malkov, Vladislav S. Simonov, Boris A. Efimov, Lyudmila I. Kafarskaia, Konstantin A. Miroshnikov, Anna A. Kuznetsova and Peter V. Evseev
Viruses 2025, 17(8), 1088; https://doi.org/10.3390/v17081088 - 6 Aug 2025
Abstract
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with [...] Read more.
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with lytic activity against multiple P. aeruginosa isolates, including multidrug-resistant strains. Genomic analysis revealed a 66,189 bp genome, lacking antibiotic resistance or virulence factors, and suggested a headful packaging mechanism and the presence of a bidirectional component in the replication. In vivo experiments using Galleria mellonella showed therapeutic potential, significantly improving larval survival (87% at 24 h). Host range analysis revealed activity against 13 of 30 P. aeruginosa isolates, including members of O1, O3, O5 and O6 in silico predicted serogroups. Phylogenomic analyses place phage Banzai within the genus Pbunavirus, sharing 94.8% intergenomic similarity with its closest relatives, supporting its classification as a novel species. These findings highlight phage Banzai as a potential candidate for phage therapy, demonstrating genomic stability, a strictly lytic lifestyle, and in vivo efficacy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

24 pages, 2930 KiB  
Article
Improved Antimicrobial Properties of White Wastewater Protein Hydrolysate Through Electrodialysis with an Ultrafiltration Membrane (EDUF)
by Diala Damen, Jacinthe Thibodeau, Sami Gaaloul, Steve Labrie, Safia Hamoudi and Laurent Bazinet
Membranes 2025, 15(8), 238; https://doi.org/10.3390/membranes15080238 - 6 Aug 2025
Abstract
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was [...] Read more.
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was divided into two key fractions: the cationic recovery compartment (CRC) and the anionic recovery compartment (ARC). The EDUF process effectively separated peptides, with peptide migration rates reaching 6.83 ± 0.59 g/m2·h for CRC and 6.19 ± 0.66 g/m2·h for ARC. Furthermore, relative energy consumption (REC) increased from 1.15 Wh/g to 2.05 Wh/g over three hours, in line with trends observed in recent studies on electrodialysis energy use. Although 29 peptides were statistically selected from the CRC (20) and ARC (9) compartments, no antibacterial activity was exhibited against Clostridium tyrobutyricum and Pseudomonas aeruginosa; however, antifungal activity was observed in the feed and ARC compartments. Peptides from the ARC demonstrated activity against Mucor racemosus (MIC = 0.156 mg/mL) and showed selective antifungal effects against Penicillium commune (MIC = 0.156 mg/mL). This innovative approach paves the way for improving the recovery of anionic peptides through further optimization of the EDUF process. Future perspectives include synthesizing selected peptides and evaluating their antifungal efficacy against these and other microbial strains, offering exciting potential for applications in food preservation and beyond. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

14 pages, 1033 KiB  
Systematic Review
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
by Matthew E. Falagas, Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara and Stylianos A. Kakoullis
Pathogens 2025, 14(8), 777; https://doi.org/10.3390/pathogens14080777 - 6 Aug 2025
Abstract
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four [...] Read more.
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four databases (Embase, PubMed, Scopus, and Web of Science), as well as backward citation searching, to identify studies containing data on resistance to cefepime-enmetazobactam. The data were extracted and analyzed according to the breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA), or the specific breakpoints reported by the authors of the respective studies. Analysis based on the type of lactamases produced by the isolates was also performed. Ten studies reported in vitro susceptibility testing and mechanisms of antimicrobial resistance. The total number of isolates was 15,408. The activity of cefepime-enmetazobactam against β-lactamase-producing isolates was variable. The resistance of the studied extended-spectrum β-lactamase (ESBL)-producing and ampicillin C β-lactamase (AmpC)-producing isolates was low (0–2.8% and 0%, respectively). The resistance was higher among oxacillinase-48 β-lactamase (OXA-48)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing isolates (3.4–13.2% and 36.7–57.8%, respectively). High resistance was noted among metallo-β-lactamase (MBL)-producing isolates (reaching 87.5% in one study), especially those producing New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM), which had the highest rates of resistance. The high activity of cefepime-enmetazobactam against Enterobacterales and selected lactose non-fermenting Gram-negative pathogens, including ESBL-producing and AmpC-producing isolates, makes it a potential carbapenem-sparing agent. The drug should be used after in vitro antimicrobial susceptibility testing in patients with infections caused by OXA-48, KPC, and MBL-producing isolates. Full article
Show Figures

Figure 1

24 pages, 1777 KiB  
Article
Development of a Bacterial Lysate from Antibiotic-Resistant Pathogens Causing Hospital Infections
by Sandugash Anuarbekova, Azamat Sadykov, Dilnaz Amangeldinova, Marzhan Kanafina, Darya Sharova, Gulzhan Alzhanova, Rimma Nurgaliyeva, Ardak Jumagaziyeva, Indira Tynybayeva, Aikumys Zhumakaeva, Aralbek Rsaliyev, Yergali Abduraimov and Yerkanat N. Kanafin
Microorganisms 2025, 13(8), 1831; https://doi.org/10.3390/microorganisms13081831 - 6 Aug 2025
Abstract
Biotechnological research increasingly focuses on developing new drugs to counter the rise of antibiotic-resistant strains in hospitals. This study aimed to create bacterial lysates from antibiotic-resistant pathogens isolated from patients and medical instruments across hospital departments. Identification was performed based on morphological, cultural, [...] Read more.
Biotechnological research increasingly focuses on developing new drugs to counter the rise of antibiotic-resistant strains in hospitals. This study aimed to create bacterial lysates from antibiotic-resistant pathogens isolated from patients and medical instruments across hospital departments. Identification was performed based on morphological, cultural, and biochemical characteristics, as well as 16S rRNA gene sequencing using the BLAST algorithm. Strain viability was assessed using the Miles and Misra method, while sensitivity to eight antibacterial drug groups and biosafety between cultures were evaluated using agar diffusion. From 15 clinical sources, 25 pure isolates were obtained, and their phenotypic and genotypic properties were studied. Carbohydrate fermentation testing confirmed that the isolates belonged to the genera Escherichia, Citrobacter, Klebsiella, Acinetobacter, Pseudomonas, Staphylococcus, Haemophilus, and Streptococcus. The cultures exhibited good viability (109–1010 CFU/mL) and compatibility with each other. Based on prevalence and clinical significance, three predominant hospital pathogens (Klebsiella pneumoniae 12 BL, Pseudomonas aeruginosa 3 BL, and Acinetobacter baumannii 24 BL) were selected to develop a bacterial lysate consortium. Lysates were prepared with physical disruption using a French press homogenizer. The resulting product holds industrial value and may stimulate the immune system to combat respiratory pathogens prevalent in Kazakhstan’s healthcare settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance: Challenges and Innovative Solutions)
Show Figures

Figure 1

23 pages, 2394 KiB  
Article
Functional, Antioxidant, and Antimicrobial Profile of Medicinal Leaves from the Amazon
by Gabriela Méndez, Elena Coyago-Cruz, Paola Lomas, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 965; https://doi.org/10.3390/antiox14080965 - 5 Aug 2025
Abstract
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), [...] Read more.
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), and Cyclanthemum bipartitum. Bioactive compounds (L-ascorbic acid, organic acids, carotenoids, phenolic compounds, and chlorophylls) were quantified using liquid chromatography. The ABTS and DPPH methods were used to assess the antioxidant capacity. Additionally, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis was evaluated. The results revealed a high content of L-ascorbic acid (7.6 mg/100 g dry weight) and total carotenoids (509.0 mg/100 g dry weight), as well as high antioxidant capacity (4.5 mmol TE/100 g dry weight) and broad antimicrobial activity in Brugmansia candida ‘pink’. The White variety had the highest concentration of total chlorophylls (1742.8 mg/100 g DW), Cyclanthemum bipartitum had the highest total organic acid content (2814.5 mg/100 g DW), and Allium schoenoprasum had the highest concentration of total phenolic compounds (11,351.6 mg/100 g DW). These results constitute a starting point for future research, emphasizing the potential health risks that certain species may pose. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

24 pages, 3027 KiB  
Article
Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
by Maria Cristina Rapi, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini and Guido Grilli
Animals 2025, 15(15), 2289; https://doi.org/10.3390/ani15152289 - 5 Aug 2025
Abstract
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died [...] Read more.
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died at the Wildlife Rescue Center in Vanzago, Lombardy, in 2024. Cloacal swabs were collected from 112 birds representing various ecological categories. A total of 157 Gram-negative bacteria were isolated and identified, including clinically relevant genera and species, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Salmonella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial susceptibility testing revealed resistance to first-line and critically important antimicrobials, including those exclusively authorized for human use. Notably, a phenotype compatible with Extended-Spectrum Beta-Lactamase (ESBL) production was detected in four out of ten (40%) K. pneumoniae isolates. In addition, 20 out of the 157 (12.7%) isolated bacteria phenotypically exhibited a resistance profile indicative of AmpC beta-lactamase (AmpC) production, including Enterobacter spp. and P. aeruginosa. Resistance patterns were particularly interesting in birds with carnivorous, scavenging, or migratory-associated behaviors. These findings highlight the role of wild birds in the ecology and dissemination of antimicrobial-resistant bacteria (ARB) and highlight the need for wildlife-based AMR monitoring programs as part of a One Health approach. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

12 pages, 388 KiB  
Article
Evolution of Respiratory Pathogens and Antimicrobial Resistance over the COVID-19 Timeline: A Study of Hospitalized and Ambulatory Patient Populations
by Luigi Regenburgh De La Motte, Loredana Deflorio, Erika Stefano, Matteo Covi, Angela Uslenghi, Carmen Sommese and Lorenzo Drago
Antibiotics 2025, 14(8), 796; https://doi.org/10.3390/antibiotics14080796 - 5 Aug 2025
Viewed by 38
Abstract
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial [...] Read more.
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial pathogens, antimicrobial resistance, and polymicrobial infections across three pandemic phases—pre-COVID (2018–2019), COVID (2020–2022), and post-COVID (2022–2024)—in hospitalized and ambulatory patients. Methods: We retrospectively analyzed 1827 respiratory bacterial isolates (hospitalized patients, n = 1032; ambulatory patients, n = 795) collected at a tertiary care center in Northern Italy. Data were stratified by care setting, anatomical site, and pandemic phase. Species identification and susceptibility testing followed EUCAST guidelines. Statistical analysis included chi-square and Fisher’s exact tests. Results: In hospitalized patients, a significant increase in Pseudomonas aeruginosa (from 45.5% pre-COVID to 58.6% post-COVID, p < 0.0001) and Acinetobacter baumannii (from 1.2% to 11.1% during COVID, p < 0.0001) was observed, with 100% extensively drug-resistant (XDR) rates for A. baumannii during the pandemic. Conversely, Staphylococcus aureus significantly declined from 23.6% pre-COVID to 13.7% post-COVID (p = 0.0012). In ambulatory patients, polymicrobial infections peaked at 41.2% during COVID, frequently involving co-isolation of Candida spp. Notably, resistance to benzylpenicillin in Streptococcus pneumoniae reached 80% (4/5 isolates) in hospitalized patients during COVID, and carbapenem-resistant P. aeruginosa (CRPA) significantly increased post-pandemic in ambulatory patients (0% pre-COVID vs. 23.5% post-COVID, p = 0.0014). Conclusions: The pandemic markedly shifted respiratory pathogen dynamics and resistance profiles, with distinct trends observed in hospital and community settings. Persistent resistance phenotypes and frequent polymicrobial infections, particularly involving Candida spp. in outpatients, underscore the need for targeted surveillance and antimicrobial stewardship strategies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

14 pages, 4892 KiB  
Article
Comparison of Susceptibility to Microbiological Contamination in FAMEs Synthesized from Residual and Refined Lard During Simulated Storage
by Samuel Lepe-de-Alba, Conrado Garcia-Gonzalez, Fernando A. Solis-Dominguez, Rafael Martínez-Miranda, Mónica Carrillo-Beltrán, José L. Arcos-Vega, Carlos A. Sagaste-Bernal, Armando Pérez-Sánchez, Marcos A. Coronado-Ortega and José R. Ayala-Bautista
Appl. Biosci. 2025, 4(3), 39; https://doi.org/10.3390/applbiosci4030039 - 4 Aug 2025
Viewed by 122
Abstract
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as [...] Read more.
The present research features an experimental comparative design and the objective of this work was to determine the susceptibility to microbiological contamination in fatty acid methyl esters (FAMEs) and the FAME–water interface of residual and refined lard, large volume simulating storage conditions as fuel supply chain, and to identify the microorganisms developed. The plates were seeded according to ASTM E-1259 and the instructions provided by the manufacturer of the Bushnell Haas agar. Microbiological growth was observed at the FAME–water interface of FAME obtained from residual lard. Using the MALDI-TOF mass spectrometry technique, Pseudomonas aeruginosa and Streptomyces violaceoruber bacteria were identified in the residual lard FAMEs, with the latter being previously reported in FAMEs. The implications of microorganism development on the physicochemical quality of FAMEs are significant, as it leads to an increase in the acid index, which may negatively impact metals by inducing corrosion. The refined lard FAMEs did not show any development of microorganisms. The present research concluded that residual lard tends to be more prone to microbiological attack if the conditions of water and temperature affect microbial growth. The findings will contribute to the knowledge base for a safer introduction of FAMEs into the biofuel matrix. Full article
Show Figures

Figure 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 190
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 - 1 Aug 2025
Viewed by 192
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 222
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

Back to TopTop