Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = PrtR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 564 KiB  
Review
Pharmacokinetics of Different Tacrolimus Formulations in the Early Post-Liver Transplant Period: A Scoping Review
by Paloma Barriga-Rodríguez, Marta Falcón-Cubillo, Marta Mejías-Trueba, Pablo Ciudad-Gutiérrez, Ana Belén Guisado-Gil, Miguel Ángel Gómez-Bravo, Manuel Porras-López, María Victoria Gil-Navarro and Laura Herrera-Hidalgo
Pharmaceutics 2025, 17(5), 619; https://doi.org/10.3390/pharmaceutics17050619 - 6 May 2025
Viewed by 582
Abstract
Background: Tacrolimus (TAC) is the cornerstone of immunosuppression after liver transplantation (LT). TAC has a narrow therapeutic index and high inter- and intra-individual pharmacokinetic (PK) variability, requiring dose individualization. This variability is more noticeable in the early post-LT period. Objectives: This study aimed [...] Read more.
Background: Tacrolimus (TAC) is the cornerstone of immunosuppression after liver transplantation (LT). TAC has a narrow therapeutic index and high inter- and intra-individual pharmacokinetic (PK) variability, requiring dose individualization. This variability is more noticeable in the early post-LT period. Objectives: This study aimed to compare the PK of different TAC formulations in the early post-LT period and describe the main PK characteristics and plasma levels obtained with each TAC formulation used. Methods: The search was conducted in MEDLINE (PubMed) and EMBASE in accordance with PRISMA-ScR guidelines. The main inclusion criteria were clinical trials and observational studies focusing on the PK parameters of TAC in LT recipients during the first month post-transplant. Results: A total of 2169 articles were identified, of which 23 met the inclusion criteria. Various PK parameters were analyzed after LT for the different TAC formulations: intravenous (iv) and oral forms, such as immediate-release (IRT), prolonged-release (PRT), and extended-release (LCPT) formulations. PK variability was higher in the initial days after LT, with different TAC exposure between formulations. IV TAC allows the rapid attainment of therapeutic levels, but it has fallen into disuse. Regarding oral formulations, IRT reaches target levels faster than PRT and LCPT. PRT and LCPT exposure seem more stable during the first month post-LT than when using IRT. Conclusions: TAC formulations exhibit relevant differences in their PK profile in the early post-LT period. PK differences might influence the dose regimen and the time to achieve PK targets. Given these variations, therapeutic drug monitoring (TDM) is essential for optimizing treatment. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

20 pages, 4405 KiB  
Article
Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage
by Yuyan Fan, Wen Li, Limin Zhang, Jinxiao Song, Depeng Wang, Jianfu Xue, Yuechao Wang and Zhiqiang Gao
Agronomy 2025, 15(3), 588; https://doi.org/10.3390/agronomy15030588 - 27 Feb 2025
Viewed by 645
Abstract
No-tillage (NT) has been widely recognized for significantly enhancing crop yield and nitrogen (N) use efficiency in dryland agricultural systems globally. However, in irrigated fields, NT has demonstrated adverse effects on wheat yield, and limited information is available regarding its impact on N [...] Read more.
No-tillage (NT) has been widely recognized for significantly enhancing crop yield and nitrogen (N) use efficiency in dryland agricultural systems globally. However, in irrigated fields, NT has demonstrated adverse effects on wheat yield, and limited information is available regarding its impact on N uptake and use efficiencies, and grain protein characteristics. Previous studies concluded that drip fertigation (DF) achieved superior yield gain over the conventional N fertilizer broadcasting with flood irrigation (BF) under NT compared to rotary tillage (RT) and intensive tillage (PRT; first plowing followed by rotary tillage). This study measured tissue N concentration, grain protein content and composition, dough processing quality traits, and the activities of N metabolism enzymes in flag leaves and developing grains. The objectives were to (1) evaluate the response of N use traits and grain quality to DF, and (2) elucidate the relationship between gains in yield and N uptake across varying tillage methods. Results revealed that DF significantly increased N uptake by 35.4–38.0%, 22.1–22.2%, and 16.0–16.6% over BF under NT, RT, and PRT, respectively. This boosted N uptake predominantly contributed to enhanced N use efficiency (grain production per unit of total soil mineral and fertilizer N input). Regression analysis indicated that increased N pre-anthesis uptake was the primary driver of yield improvement by DF (r2 > 0.99, P < 0.01). Furthermore, NT demonstrated superior improvements by DF in N nutrition index, grain protein content, gliadin content, wet gluten content, and water absorption rate compared to RT and PRT. In conclusion, wheat N use and grain protein under NT responded greater to DF than intensive tillage. Therefore, our findings emphasize that transitioning from conventional water and N management to DF is an effective and practical strategy for enhancing N uptake, achieving high yield, improving N use efficiency, and enriching grain protein content, particularly under NT conditions. Full article
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Development of Aspergillus oryzae BCC7051 as a Robust Cell Factory Towards the Transcriptional Regulation of Protease-Encoding Genes for Industrial Applications
by Sarocha Panchanawaporn, Chanikul Chutrakul, Sukanya Jeennor, Jutamas Anantayanon and Kobkul Laoteng
J. Fungi 2025, 11(1), 6; https://doi.org/10.3390/jof11010006 - 25 Dec 2024
Viewed by 1768
Abstract
Enzyme-mediated protein degradation is a major concern in industrial fungal strain improvement, making low-proteolytic strains preferable for enhanced protein production. Here, we improved food-grade Aspergillus oryzae BCC7051 by manipulating the transcriptional regulation of protease-encoding genes. Genome mining of the transcription factor AoprtR and [...] Read more.
Enzyme-mediated protein degradation is a major concern in industrial fungal strain improvement, making low-proteolytic strains preferable for enhanced protein production. Here, we improved food-grade Aspergillus oryzae BCC7051 by manipulating the transcriptional regulation of protease-encoding genes. Genome mining of the transcription factor AoprtR and computational analysis confirmed its deduced amino acid sequence sharing evolutionary conservation across Aspergillus and Penicillium spp. The AoPrtR protein, which is classified into the Zn(II)2-Cys6-type transcription factor family, manipulates both intra- and extracellular proteolytic enzymes. Our transcriptional analysis indicated that the regulation of several protease-encoding genes was AoPrtR-dependent, with AoPrtR acting as a potent activator for extracellular acid-protease-encoding genes and a likely repressor for intracellular non-acid-protease-encoding genes. An indirect regulatory mechanism independent of PrtR may enhance proteolysis. Moreover, AoPrtR disruption increased extracellular esterase production by 2.55-fold, emphasizing its role in protein secretion. Our findings highlight the complexity of AoPrtR-mediated regulation by A. oryzae. Manipulation of regulatory processes through AoPrtR prevents secreted protein degradation and enhances the quantity of extracellular proteins, suggesting the low-proteolytic variant as a promising platform for the production of these proteins. This modified strain has biotechnological potential for further refinement and sustainable production of bio-based products in the food, feed, and nutraceutical industries. Full article
(This article belongs to the Special Issue Current Trends in Mycological Research in Southeast Asia)
Show Figures

Figure 1

25 pages, 4786 KiB  
Article
Air Pollution Measurement and Dispersion Simulation Using Remote and In Situ Monitoring Technologies in an Industrial Complex in Busan, South Korea
by Naghmeh Dehkhoda, Juhyeon Sim, Juseon Shin, Sohee Joo, Sung Hwan Cho, Jeong Hun Kim and Youngmin Noh
Sensors 2024, 24(23), 7836; https://doi.org/10.3390/s24237836 - 7 Dec 2024
Cited by 2 | Viewed by 1908
Abstract
Rapid industrialization and the influx of human resources have led to the establishment of industrial complexes near urban areas, exposing residents to various air pollutants. This has led to a decline in air quality, impacting neighboring residential areas adversely, which highlights the urgent [...] Read more.
Rapid industrialization and the influx of human resources have led to the establishment of industrial complexes near urban areas, exposing residents to various air pollutants. This has led to a decline in air quality, impacting neighboring residential areas adversely, which highlights the urgent need to monitor air pollution in these areas. Recent advancements in technology, such as Solar Occultation Flux (SOF) and Sky Differential Optical Absorption Spectroscopy (SkyDOAS) used as remote sensing techniques and mobile extraction Fourier Transform Infrared Spectrometry (MeFTIR) used as an in situ technique, now offer enhanced precision in estimating the pollutant emission flux and identifying primary sources. In a comprehensive study conducted in 2020 in the Sinpyeong Jangrim Industrial Complex in Busan City, South Korea, a mobile laboratory equipped with SOF, SkyDOAS, and MeFTIR technologies was employed to approximate the emission flux of total alkanes, sulfur dioxide (SO2), nitrogen dioxide (NO2), formaldehyde (HCHO), and methane (CH4). Using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) diffusion model, pollutant dispersion to residential areas was simulated. The highest average daily emission flux was observed for total alkanes, with values of 69.9 ± 71.6 kg/h and 84.1 ± 85.8 kg/h in zones S1 and S2 of the Sinpyeong Jangrim Industrial Complex, respectively. This is primarily due to the prevalence of metal manufacturing and mechanical equipment industries in the area. The HYSPLIT diffusion model confirmed elevated pollution levels in residential areas located southeast of the industrial complex, underscoring the influence of the dominant northwesterly wind direction and wind speed on pollutant dispersion. This highlights the urgent need for targeted interventions to address and mitigate air pollution in downwind residential areas. The total annual emission fluxes were estimated at 399,984 kg/yr and 398,944 kg/yr for zones S1 and S2, respectively. A comparison with the Pollutant Release and Transfer Registers (PRTRs) survey system revealed that the total annual emission fluxes in this study were approximately 24.3 and 4.9 times higher than those reported by PRTRs. This indicates a significant underestimation of the impact of small businesses on local air quality, which was not accounted for in the PRTR survey system. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

24 pages, 8052 KiB  
Article
Measuring Collision Risk in Mixed Traffic Flow Under the Car-Following and Lane-Changing Behavior
by Mengya Zhang, Jie Yang, Xiaoguang Yang and Xingyan Duan
Appl. Sci. 2024, 14(23), 11400; https://doi.org/10.3390/app142311400 - 7 Dec 2024
Viewed by 1399
Abstract
This study proposes a risk measurement approach to assess collision risks in mixed traffic flow, focusing on the integrated behavior of car-following and lane-changing. A new surrogate safety measure (SSM), denoted as Rtotal, is developed to provide a comprehensive risk assessment. [...] Read more.
This study proposes a risk measurement approach to assess collision risks in mixed traffic flow, focusing on the integrated behavior of car-following and lane-changing. A new surrogate safety measure (SSM), denoted as Rtotal, is developed to provide a comprehensive risk assessment. Numerical analysis is used to determine the weights of parameters within Rtotal, and its validity is substantiated using an empirical dataset, with a risk threshold of 0.49 established when the time to collision (TTC) is set to 2 s. The study incorporates scenarios of connected and automated vehicle (CAV) degradation and evaluates the influence of penetration rates, perception–reaction time (PRT), and lane-changing modes on risk levels. Simulation results reveal that a CAV penetration rate between 0.4 and 0.6 represents a critical range where collision risks significantly increase, reflecting safety dynamics under CAV degradation. Furthermore, in scenarios involving lane-changing, the degradation of the following vehicle in the target lane poses the highest risk. At lower PRTs, the penetration rate exerts a more significant influence on collision risks. Rtotal has been validated across various scenarios, showing strong applicability and more sensitive trends than other SSMs, making it well-suited for assessing long-term comprehensive traffic flow risks. These findings offer practical guidance for traffic management to establish real-time risk prediction and warning systems for identifying high-risk car-following and lane-changing behaviors. Future research can explore the applicability of the proposed risk index in more complex traffic scenarios and its effectiveness across different levels of vehicle automation and connectivity. Full article
Show Figures

Figure 1

19 pages, 5206 KiB  
Article
Genomic Insights into Pseudomonas protegens E1BL2 from Giant Jala Maize: A Novel Bioresource for Sustainable Agriculture and Efficient Management of Fungal Phytopathogens
by Esaú De la Vega-Camarillo, Josimar Sotelo-Aguilar, Adilene González-Silva, Juan Alfredo Hernández-García, Yuridia Mercado-Flores, Lourdes Villa-Tanaca and César Hernández-Rodríguez
Int. J. Mol. Sci. 2024, 25(17), 9508; https://doi.org/10.3390/ijms25179508 - 1 Sep 2024
Cited by 2 | Viewed by 1948
Abstract
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work [...] Read more.
The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain’s plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 6682 KiB  
Article
Experimental Rock Characterisation of Upper Pannonian Sandstones from Szentes Geothermal Field, Hungary
by Péter Koroncz, Zsanett Vizhányó, Márton Pál Farkas, Máté Kuncz, Péter Ács, Gábor Kocsis, Péter Mucsi, Anita Fedorné Szász, Ferenc Fedor and János Kovács
Energies 2022, 15(23), 9136; https://doi.org/10.3390/en15239136 - 2 Dec 2022
Cited by 8 | Viewed by 2348
Abstract
The Upper Pannonian (UP) sandstone formation has been utilised for thermal water production in Hungary for several decades. Although sustainable utilisation requires the reinjection of cooled geothermal brine into the host rock, only a fraction of the used water is reinjected in the [...] Read more.
The Upper Pannonian (UP) sandstone formation has been utilised for thermal water production in Hungary for several decades. Although sustainable utilisation requires the reinjection of cooled geothermal brine into the host rock, only a fraction of the used water is reinjected in the country. UP sandstone formation is reported to exhibit low injectivity, making reinjection challenging, and its petrophysical properties are poorly known, which increases uncertainty in designing operational parameters. The goal of the study is to provide experimental data and to gain a better understanding of formation characteristics that control injectivity and productivity issues in Upper Pannonian sandstone layers. Petrographical characterisation and petrophysical laboratory experiments are conducted on cores retrieved from two wells drilled in the framework of an R&D project at the depth of between 1750 m and 2000 m. The experiments, such as grain density, porosity, permeability, and ultrasonic velocity, as well as thin section, grain size distribution, XRD, and SEM analyses, are used to determine Petrophysical Rock Types (PRT) that share distinct hydraulic (flow zone indicator, FZI) and petrophysical characteristics. These are used to identify well intervals with lower potential for injectivity issues. The results imply that fines migration due to formation erosion is one of the key processes that must be better understood and controlled in order to mitigate injectivity issues at the study area. Future investigation should include numerical and experimental characterisation of formation damage, including water–rock interaction tests, critical flow velocity measurements, and fines migration analysis under reservoir conditions. Full article
(This article belongs to the Special Issue The Advancement of Geothermal Energy Utilisation by New Developments)
Show Figures

Figure 1

13 pages, 1908 KiB  
Article
The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171
by Huixin Zhang, Mengfan Xu, Shanhu Hu, Hongfei Zhao and Bolin Zhang
Microorganisms 2022, 10(9), 1724; https://doi.org/10.3390/microorganisms10091724 - 26 Aug 2022
Cited by 8 | Viewed by 2403
Abstract
The purpose of this study was to explore the hydrolytic ability of Lactobacillus helveticus CICC 22171 with regard to protein and the expression of enzyme genes during protein utilization. The results revealed that the strain hydrolyzed casein from the C-terminal, reached the maximum [...] Read more.
The purpose of this study was to explore the hydrolytic ability of Lactobacillus helveticus CICC 22171 with regard to protein and the expression of enzyme genes during protein utilization. The results revealed that the strain hydrolyzed casein from the C-terminal, reached the maximum level in 6 h, and the number of amino acids in the hydrolyzed peptide was 7–33. The molecular weight was 652.4–3432.74 kDa. Hydrophobic peptides produced by hydrolysis were the source of β-casein bitterness. Leucine and glutamine were the preferred cleavage points after 1 h; tyrosine and tryptophan subsequently increased. The first step of hydrolysis was controlled by PrtP and PrtM genes and coordinated with the action of PrtH1 and PrtH2. The transport system consisted of DtpT, OppB, OppD and OppF. The hydrolytic third step endopeptidase system consisted of the aminopeptidases (PepN, PepC, PepM and PepA), the endopeptidases (PepE, PepF and PepO); the dipeptidases (PepV and PepD), the tripeptidase PepT; the proline peptidases (PepX, PepP, PepQ, PepR and PepI). The expression of CEP genes was significantly different, and the expression level of genes related to the transport system significantly increased from 0 to 1 h. The specificity of the substrate and action site of endopeptidase was abundant. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 6117 KiB  
Article
Study of Chemical Substances Emitted during Paint Manufacturing through VOC Speciation
by Min-Gyu Kim, Ji Yun Lee, Jeong Hun Kim, Hyo Eun Lee, Sung Hwan Cho, Jeong Ung Yu, Cheon Woong Kang and Kyong Whan Moon
Atmosphere 2022, 13(8), 1245; https://doi.org/10.3390/atmos13081245 - 5 Aug 2022
Cited by 7 | Viewed by 3485
Abstract
Volatile organic compounds (VOCs) emitted from the paint manufacturing industry include substances that are highly volatile, such as toluene, and highly carcinogenic, such as benzene. In the Republic of Korea, the emission of volatile organic compounds is regulated under the Clean Air Conservation [...] Read more.
Volatile organic compounds (VOCs) emitted from the paint manufacturing industry include substances that are highly volatile, such as toluene, and highly carcinogenic, such as benzene. In the Republic of Korea, the emission of volatile organic compounds is regulated under the Clean Air Conservation Act, but it is found that individual substances are systematically insufficient. Although the Pollutant Release and Transfer Register (PRTR) is maintained to report the expected emissions from each plant every year, actual measurements are not performed. This study measured and analyzed VOCs at the site fenceline boundary. The ratio of PRTR and VOCs speciation results for xylene and toluene was similar to that of xylene 29% and toluene 28%, but ethylbenzene accounted for 2% in PRTR. Still, the actual measurement result showed a big difference of 11%. Because it is a solvent that is treated in large quantities in the resin manufacturing process and the reactivity of ethylbenzene, it is vaporized at high temperature and high pressure, resulting in many measurements. This study classified a large amount of VOCs emitted through the fence line monitoring system in the paint manufacturing industry and confirmed which VOCs were emitted the most. We compared whether this produced similar results to the actual emission survey method conducted by the EPA. Some substances have produced similar results, but certain substances have significant differences. This indicates that priority VOCs should be selected for each location through continuous measurement. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 4104 KiB  
Article
Characterization of Cell-Envelope Proteinases from Two Lacticaseibacillus casei Strains Isolated from Parmigiano Reggiano Cheese
by Lisa Solieri, Laura Sola, Amanda Vaccalluzzo, Cinzia Lucia Randazzo, Serena Martini and Davide Tagliazucchi
Biology 2022, 11(1), 139; https://doi.org/10.3390/biology11010139 - 14 Jan 2022
Cited by 8 | Viewed by 2884
Abstract
In the present work, two cell-envelope proteinases (CEPs) from Lacticaseibacillus casei strains PRA205 and 2006 were characterized at both the biochemical and genetic levels. The genomes of both L. casei strains included two putative CEPs genes prtP2 and prtR1, but only prtR1 [...] Read more.
In the present work, two cell-envelope proteinases (CEPs) from Lacticaseibacillus casei strains PRA205 and 2006 were characterized at both the biochemical and genetic levels. The genomes of both L. casei strains included two putative CEPs genes prtP2 and prtR1, but only prtR1 was transcribed. The extracted PrtR1 proteinases were serine proteinases with optimal activity at 40 °C and pH 7.5, and were activated by Ca2+ ions. Interestingly, PrtR1 from L. casei PRA205 exhibited high residual activity at pH 4 and at 5 °C, suggesting its possible exploitation for fermented food production. The caseinolytic activity against αS1- and β-casein indicated that both PrtR1s belonged to the PI/PIII type. These PrtR1s cleaved β-casein peptide bonds preferentially when amino acid M or N was present at the P1 subsite and amino acids A and D were at the P1′ subsite. Several bioactive peptides were found to be released from PrtR1 after αs1- and β-casein hydrolysis. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

19 pages, 7063 KiB  
Article
Changes in Power Plant NOx Emissions over Northwest Greece Using a Data Assimilation Technique
by Ioanna Skoulidou, Maria-Elissavet Koukouli, Arjo Segers, Astrid Manders, Dimitris Balis, Trissevgeni Stavrakou, Jos van Geffen and Henk Eskes
Atmosphere 2021, 12(7), 900; https://doi.org/10.3390/atmos12070900 - 13 Jul 2021
Cited by 12 | Viewed by 3025
Abstract
In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power [...] Read more.
In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively). Full article
(This article belongs to the Special Issue Air Quality in Greece)
Show Figures

Figure 1

12 pages, 1759 KiB  
Article
Accumulation of Saponins in Underground Parts of Panax vietnamensis at Different Ages Analyzed by HPLC-UV/ELSD
by Kim Long Vu-Huynh, Huy Truong Nguyen, Thi Hong Van Le, Chi Thanh Ma, Gwang Jin Lee, Sung Won Kwon, Jeong Hill Park and Minh Duc Nguyen
Molecules 2020, 25(13), 3086; https://doi.org/10.3390/molecules25133086 - 7 Jul 2020
Cited by 15 | Viewed by 5775
Abstract
Panax vietnamensis (PV), a wild Panax species discovered in Vietnam in 1973, has been increasingly overexploited due to its economic value and therapeutic uses. This resulted in the development of PV cultivation to meet the market demand. There is little information on the [...] Read more.
Panax vietnamensis (PV), a wild Panax species discovered in Vietnam in 1973, has been increasingly overexploited due to its economic value and therapeutic uses. This resulted in the development of PV cultivation to meet the market demand. There is little information on the accumulation of saponins in PV during cultivation, but this information could serve as an indication of the appropriate harvest time. In this study we developed an HPLC-UV/ELSD method to simultaneously determine the content of 10 characteristic saponins in PV from 2–7 years old, including G-Rb1, G-Rd, G-Rg1, G-Re, N-R1, M-R1, M-R2, V-R2, V-R11, and p-RT4. The result indicated that from 2 to 5 years, the content of saponins in PV rhizome and radix increase 3.02 and 4.2 times, respectively, whereas from 5 to 7 years, no significant changes were observed. Hence, our study suggests that after 5 years of growth could be considered as an appropriate time for PV to be harvested. Among the analyzed saponins, G-Rg1, G-Rb1, G-Rd, and especially M-R2 were the major saponins that contributed to the change of PV’s saponin content through the years. In addition, the developed and validated HPLC method was proven to be reliable and effective for quality control of PV. Full article
Show Figures

Graphical abstract

12 pages, 3246 KiB  
Article
Estimating the Possibility of Surface Soil Pollution with Atmospheric Lead Deposits Using the ADMER Model
by Binh Nguyen Thi Lan, Takeshi Kobayashi, Atsushi Suetsugu, Xiaowei Tian and Takashi Kameya
Sustainability 2018, 10(3), 720; https://doi.org/10.3390/su10030720 - 6 Mar 2018
Cited by 6 | Viewed by 4034
Abstract
The literature assessing the risks of soil pollution from atmospheric lead (Pb) deposition is still insufficient, given that Pb deposition can cause large-scale surface soil pollution. This study estimated the possibility of Pb deposition causing soil pollution by calibrating a numerical model of [...] Read more.
The literature assessing the risks of soil pollution from atmospheric lead (Pb) deposition is still insufficient, given that Pb deposition can cause large-scale surface soil pollution. This study estimated the possibility of Pb deposition causing soil pollution by calibrating a numerical model of deposition flux with a measured Pb content dataset in proximity to a pollution source. A total 34 surface soil samples were collected around an industrial park that emits Pb into the atmosphere. The sample’s Pb content was determined using hydrochloric acid extraction and an ICP-MS. The amount of annual Pb deposition was estimated using the atmospheric dispersion model for exposure and risk assessment (ADMER model). This approach resulted in accurate predictions of Pb distribution for most sites (<800 m from the pollution source), but the results indicated that the dry deposition velocity of Pb-containing particles was a significant determinant of horizontal Pb distribution. We conducted a sensitivity analysis of the ADMER’s estimated Pb deposition flux values by changing the diameter of Pb-containing particles. This analysis showed large fluctuations in soil Pb content within 1 km of the source, within the range of the previously reported dry deposition velocity. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

13 pages, 2713 KiB  
Article
Assessment of Risk Due to Chemicals Transferred in a Watershed: A Case of an Aquifer Storage Transfer and Recovery Site
by Hyon Wook Ji and Sang-Il Lee
Water 2016, 8(6), 242; https://doi.org/10.3390/w8060242 - 4 Jun 2016
Cited by 5 | Viewed by 6416
Abstract
This paper presents an analysis of the potential risks of chemicals that can affect an aquifer storage transfer and recovery (ASTR) site. ASTR is a water supply system that injects surface water into an aquifer and then extracts naturally filtered groundwater. The pilot [...] Read more.
This paper presents an analysis of the potential risks of chemicals that can affect an aquifer storage transfer and recovery (ASTR) site. ASTR is a water supply system that injects surface water into an aquifer and then extracts naturally filtered groundwater. The pilot site of the ASTR supplying drinking water is located downstream of the Nakdong River in South Korea. Hazard analysis and critical control points (HACCP) was adopted to ensure suitable water quality in response to the deteriorated water quality of the Nakdong River. HACCP is a proactive management system for ensuring consistent confidence in food (or water). Hazard analysis, the first of the seven principles of HACCP, assesses physical, microbial, chemical, and radioactive hazards. This study focuses on the chemicals that are most likely to be involved in major hazardous events. Pollutant release and transfer register (PRTR) data were used to analyze potential risks of chemicals. A PRTR is a national environmental database of potentially hazardous chemicals. Potential risk analysis considers the total amount of chemicals transferred off-site for treatment or disposal. Fifty-five cities and the top 10 chemicals released in the Nakdong River basin were investigated. Potential risk was defined as a function of total transfers, the relative distance, and toxicity. The top 10 cities with high potential risks were identified, and the city with the highest potential risk turned out to be Ulju. Full article
(This article belongs to the Special Issue Watershed Protection and Management)
Show Figures

Graphical abstract

22 pages, 1485 KiB  
Article
Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea
by Sung-Ok Baek, Lakshmi Narayana Suvarapu and Young-Kyo Seo
Sensors 2015, 15(8), 19102-19123; https://doi.org/10.3390/s150819102 - 5 Aug 2015
Cited by 18 | Viewed by 7319
Abstract
This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. [...] Read more.
This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving the air quality of the city. Full article
(This article belongs to the Special Issue Modern Technologies for Sensing Pollution in Air, Water, and Soil)
Show Figures

Figure 1

Back to TopTop