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Abstract: This paper presents an analysis of the potential risks of chemicals that can affect an aquifer
storage transfer and recovery (ASTR) site. ASTR is a water supply system that injects surface water
into an aquifer and then extracts naturally filtered groundwater. The pilot site of the ASTR supplying
drinking water is located downstream of the Nakdong River in South Korea. Hazard analysis and
critical control points (HACCP) was adopted to ensure suitable water quality in response to the
deteriorated water quality of the Nakdong River. HACCP is a proactive management system for
ensuring consistent confidence in food (or water). Hazard analysis, the first of the seven principles
of HACCP, assesses physical, microbial, chemical, and radioactive hazards. This study focuses on
the chemicals that are most likely to be involved in major hazardous events. Pollutant release and
transfer register (PRTR) data were used to analyze potential risks of chemicals. A PRTR is a national
environmental database of potentially hazardous chemicals. Potential risk analysis considers the
total amount of chemicals transferred off-site for treatment or disposal. Fifty-five cities and the top
10 chemicals released in the Nakdong River basin were investigated. Potential risk was defined as a
function of total transfers, the relative distance, and toxicity. The top 10 cities with high potential
risks were identified, and the city with the highest potential risk turned out to be Ulju.

Keywords: drinking water; HACCP; chemical hazard; aquifer storage transfer and recovery;
pollutant release and transfer register

1. Introduction

As water resources planning and management become a global issue, South Korea is also
promoting relevant projects to meet the challenges from environmental pollution and climate change.
The Nakdong River, one of the largest rivers in the country, is a major drinking water source for
more than ten million people. The water quality of the Nakdong River has been deteriorated due to
routine emission and spills of chemicals. According to a consumer survey in South Korea [1], 32.5%
of respondents do not drink tap water because they have concerns about raw water quality even
though purification process of the tap water complies with the drinking water guideline. Hence,
there is presently a heightened need to improve drinking water quality and protect raw water from
pollution. This paper deals with an effort in which aquifer storage transfer and recovery (ASTR) is
combined with hazard analysis and critical control points (HACCP) to satisfy the needs for better
drinking water quality.

ASTR can be an alternative to the direct intake from the surface source for drinking water
production, and is an enhanced method to improve drinking water quality [2,3]. ASTR is a method
to store surface water in an aquifer through an injection well and to employ the water through an
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extraction well (Figure 1). Water injected into an aquifer is purified naturally by soil particles and
indigenous microorganisms. Injection and extraction of water can be performed simultaneously,
thereby ensuring a continuous water supply. In addition, the depletion of an aquifer and ground
subsidence can be significantly reduced.
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Pretreatment is necessary to control water quality of the injected water to avoid well clogging
and contamination of the aquifer as it could lead to some environmental problems. To prevent these
problems, some countries have strong guidelines [4,5]. After the injection and extraction in the ASTR,
the water is distributed to the consumer through the supply process including post-treatment, storage
tanks, and distribution network. The water can be contaminated by internal and external hazards
during the supply process as well. HACCP is implemented to control all these hazards.

HACCP can protect and control the water quality in the entire process of drinking water supply.
An increasing number of cases is being reported that HACCP is incorporated to drinking water
production [6–9]. Since HACCP analyzes and controls hazards from the watershed to the consumer,
proactive prevention of risks is feasible. Lee and Ji [10] analyzed hazards that exist in all processes
of drinking water production using ASTR. They found 114 hazardous events, and nine out of those
114 hazardous events were major (Table 1). Seven out of nine major hazardous events turned out
to occur in watersheds, not in the purification facility. They also discovered that eight out of the
major events were related with toxic chemicals. The fact indicated that most major hazards could be
eliminated, if the chemicals generated in the watersheds were carefully managed.

In conventional water supply systems, there is no right to control chemical accidents happening
upstream. Therefore, the purification facility has no choice but to stop supplying water when accidents
occur. Here, potential risk assessment was designed to solve the problem.

The objective of the present study is to develop a quantitative method to evaluate potential risks
of chemical substances transferred in a watershed. Risk, generally expressed by product of damage and
uncertainty [11], can be extensively applied to various situations for various purposes. For instance,
there can be the effects on human health, the loss of asset, the destruction of building, or leakage of
substances, etc. In the case of human health, risk of leakage of carbon dioxide in Carbon Capture and
Storage [12], chemical risk [13], ecological risk [13], microbial risk [13–15], risk associated with hazards
of drinking water to human health [16], etc., were studied. The present study deals with potential
risk to a drinking water supply facility by chemicals in a watershed. The approach does not directly
express risk, but it assesses the potential of risk.

The results of potential risk assessment are prioritized for preemptive management of chemicals
to reduce the risk. Potential risk can be a basis to establish a cooperative relationship between cities and
ASTR site to supply the safer water. This study will strengthen the first phase of HACCP (i.e., “perform
hazard analysis”), as shown in Figure 2.
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Table 1. Major hazardous events in the process of drinking water production [10].

Process Hazardous Event Type 1 Hazards

Catchment
Area

Illegal release of waste water from
restaurants and private waste water
treatment plants

M, C

Pathogens, nutrients,
surfactants, metal, heavy metal,
non-biodegradable organics,
color, odor, taste

Discharge of waste water from factories in
the upstream C Metal, heavy metal,

non-biodegradable organics

Release by accidents of major chemicals
from industrial complex C Non-biodegradable organics

Frequent oil leakage accidents C Non-Aqueous Phase Liquids (NAPLs)

Land use M, C, P
Pathogens, sulfur oxides, nutrients,
turbidity, color, surfactants, organic
matter, oil-contaminant

Rapid change of river water quality by
flood and drought M, C Pathogens, nutrients, turbidity, color,

algae, toxic material, odor, taste

Year-round occurrence of eutrophication M, C Algae, toxic material,
color, odor, taste

Storage Rapid growth of cyanobacteria by
abnormal high temperature in storage tank M Algae

Storage of
treated water

Regrowth of pathogens or carcinogen
(THMs) by inappropriate maintenance of
residual chlorine

C Pathogens, disinfection by-products

Note: 1 M: Microbial, C: Chemical, P: Physical.
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2. Materials and Methods

2.1. Study Area

The drinking water production facility using ASTR is located in the delta of the Nakdong River
in South Korea (Figure 3). Surrounding cities have suffered from water quality degradation of the
Nakdong River. ASTR has been adopted as a measure to resolve the water quality issues.
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The facility aims at 2000 m3/day of water production and 1,000,000 m3 of storage in the aquifer.
Surface water is taken and pre-treated before injection. As shown in Figure 1, water injected into the
confined aquifer pushes out saltwater and forms a freshwater body. The injected water travels through
the aquifer and is purified naturally by soil particles and indigenous microbes [17–19]. The extracted
water is supplied to consumers through the existing purification plant.

Since the ASTR site is located at the mouth of the Nakdong River, chemicals discharged
deliberately or accidentally to the environment in the basin ultimately pass through the site. The basin
has previously experienced serious water quality degradation due to chemical leaks [20]. Therefore,
it is necessary to analyze the potential risk from chemicals used in the basin in order to supply high
quality drinking water in a reliable manner and to prevent from possible chemical-related accidents.
The Nakdong River basin consists of 55 cities and, for convenience of analysis, we assigned a number
to each city, as shown in Figure 4.
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2.2. Pollutant Release and Transfer Register (PRTR)

The pollutant release and transfer register (PRTR) provides emission sources and amounts of
chemical substances released from a city. The PRTR publicly discloses voluntarily released data that
identifies and reports amounts of chemical substances emitted from each firm, as shown in Figure 5.
The aim of the PRTR is to induce voluntary reductions in emissions of chemical substances [21].
The disclosure strategy of the PRTR has been evaluated as strong and cost-effective environmental
monitoring. Due to this advantage, the U.S. Environmental Protection Agency (EPA) has considered
the PRTR to be one of the most valuable tools in protecting human health and the environment [22].
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The PRTR was first adopted in the Netherlands in 1976 and was later adopted in the United
States as the Toxics Release Inventory (TRI), which has significantly contributed to reductions in
emissions of harmful chemicals [24]. In South Korea, investigations into toxic releases by the Ministry
of Environment in Korea have been conducted since 1999 and official reports have been published
since 2002. As of 2011, 415 chemicals were designated as watch list chemicals, the number of actual
reported chemicals was 242, and the number of firms that reported chemical releases was 3159 [25].

The PRTR provides two types of data: the emission that represents the amount of chemicals
discharged to water systems, the atmosphere, and soils; and the transfer that represents the amount
of chemicals transferred to either external treatment companies or public wastewater treatment
facilities [26]. Although the emissions influence the environment directly, onsite emission regulations
are enforced according to environmental laws. Thus, concentrations of emitted substances would be
relatively low, resulting in minimal environmental damage from a short- and midterm perspective.
On the other hand, concentrations and toxicity of transferred chemicals will be relatively high. If an
accident were to occur during transfer, irreversible damage to nature could be done. Thus, the present
study considered a transfer as a potential hazard of chemical-related accidents, thereby analyzing the
potential risk of total transfers to drinking water production facilities using ASTR.

2.3. Chemicals for Analysis

From PRTR information published from 2001 to 2012, top 10 chemicals discharged to the Nakdong
River basin were selected for analysis (Table 2). Xylene and toluene are used in many products
including adhesives, inks, and thinners. Other chemicals are also used as basic raw material of many
products such as cosmetics, solvents, catalysts, and dyes.

For toxicity, the NFPA 704 index was used. NFPA 704 is a standard maintained by the U.S.
National Fire Protection Association, which shows the risks for flammability, health, reactivity, and
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special notices posed by hazardous materials [27]. The risks range from 0 (low) to 4 (high). The index
on health is used to determine the potential risk.

Table 2. Top ten chemicals released in the Nakdong River Basin in 2011 and toxicity.

Rank Chemical CAS No. 1 Molecular Formula Toxicity 2

1 Xylene 1330-20-7 C8H10 2
2 Toluene 108-88-3 C7H8 2
3 Dichloromethane 75-09-2 CH2Cl2 2
4 Methyl alcohol 67-56-1 CH3OH 1
5 Ethyl acetate 141-78-6 C4H8O2 1
6 Methyl ethyl ketone 78-93-3 CH3COC2H5 1
7 Isopropanol 67-63-0 C3H8O 1
8 Ethylbenzene 100-41-4 C6H5C2H5 2
9 N,N-Dimethylformamide 68-12-2 HCON(CH3)2 1

10 Trichloroethylene 79-01-6 C2HCl3 2

Notes: 1 Chemical Abstract Service Registry Number; 2 Index about health by National Fire Protection
Association. Low (0)–high (4); Source: [28].

2.4. Mathematical Formulation

We considered that PRTR data, distance, and toxicity are related to both the scale of damage by
chemical accidents and the probability of chemical accidents. According to this basic premise, the
function of potential risk is constituted by three components of total transfer, distance, and toxicity.
The three components are defined below.

The total transfer provides the quantity of chemicals transferred per city. The total transfer can be
calculated by using Equation (1).

It
qc “

xt
qc ´minpxt0

q q

maxpxt0
q q ´minpxt0

q q
(1)

where, It
qc is relative transfer at a specific chemical, city, and time as a dimensionless number [29], xt

qc
is amount of chemical transferred, t is time, t0 is reference time, q represents chemical type, and c
represents city. Equation (1) can consider time change by evaluation of transfer amount based on t0.
Equation (2) shows a total amount of Iqc over time.

Iqc “

n
ÿ

t“1

It
qc (2)

Iqc refers to the sum of relative transfer of chemicals over time and n represents the number of
years of the chemical transfer data.

The amount of chemicals is reduced as they are transferred due to adsorption and evaporation.
Therefore, a distance between the ASTR site and chemical discharge is one of the key factors that
determine the risk from chemicals. The farther the discharge site from the ASTR site is, the lower the
potential risk posed by chemicals becomes. Reversely, the closer the discharge site to the ASTR site,
the higher the chemical risk. Thus, a distance can be represented as shown in Equation (3).

Dc “
maxpdq ´ dc

maxpdq ´minpdq
` 1 (3)

Dc refers to the relative distance and d is, the distance between the location of interest and the
centroid of a city, which can be calculated using a GIS tool. Subscript c represents a specific city. The
reason for adding 1 in the formula is because potential risk cannot be 0 no matter how far the distance
is. According to this formula, Dc ranges from 1 to 2. The closer the discharge location is to the location
of interest, the closer Dc is to 2. The farther the discharge location is, the closer Dc is to 1. The relative
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distance combined with the relative transfer of chemicals can be represented as a potential risk of the
chemical in each city, as shown in Equation (4).

Rqc “

g

f

f

e

n
ÿ

t“1

It
qc ˆ hq ˆDc (4)

Rqc refers to the potential risk of chemicals in each city, and h is toxicity of a chemical as defined
by the health risk index of NFPA 704, as shown in Table 2. Equation (5) can evaluate the potential risk
for all chemicals. In addition, Equation (5) incorporates toxicity.

Rc “

g

f

f

f

f

f

f

e

m
ř

q“1

ˆ n
ř

t“1
It
qc ˆ hq

˙

ˆDc

m
ř

q“1
hq

(5)

Rc refers to the potential risk of all the chemicals in each city. m refers to the number of chemicals,
and n refers to the number of total years for measured data. The potential risk posed by all the
chemicals from a city is assumed as the weighted sum of potential risk of each chemical. Here, toxicity
acts as a weighting factor. A square root plays a role in reducing the extreme value by narrowing a
range of potential risk.

If It
qc is used instead of

řn
t“1 It

qc an in Equation (5) to focus on a specific time, the yearly change in
potential risk can be determined as shown in Equation (6).

Rt
c “

g

f

f

f

f

f

f

e

m
ř

q“1
It
qc ˆ hq ˆDc

m
ř

q“1
hq

(6)

3. Results and Discussion

A relative transfer of each chemical (Iqc) was obtained using Equation (2) with the incorporation
of total transfer data from 2001 to 2012 with regards to 10 chemicals in 55 cities (Table 3). Generally
speaking, coastal cities in the southeast had a relatively large amount of transfer. There, many industrial
complexes are located along the coastline of the Nakdong River basin. The ranking of cities based on
the Iqc values in Table 3 speaks for such an industrial background.

The potential risk (Rqc) of each chemical was assessed using Equation (4) (Table 3). Iqc and Rqc

appeared to be the same in most cities. However, if Dc of a lower ranked city of Iqc is larger than high
rank, Rqc ranking can be changed like in the case of city 28 and 37 of xylene. The most frequently
high ranked cities were city 36 (Ulju) and 12 (Gumi). City of Ulju (No. 36) had a high potential risk
from nine of the 10 chemicals, save for N,N-Dimethylformamide while city of Gumi (No. 12) had a
high potential risk from six chemicals—toluene, trichloroethylene, ethyl acetate, methyl ethyl ketone,
methyl alcohol, and isopropanol. Notice that four out of six chemicals transferred from Gumi (No. 12)
had relatively low toxicity. This fact would affect the comprehensive potential risk (Rc), which accounts
for toxicity of chemicals.

Next, the comprehensive potential risk (Rc) of all chemicals was analyzed. To see a change in
potential risk over time, the time of PRTR inventory (n) was divided into three periods: four years
(2001~2004), eight years (2001~2008), and twelve years (2001~2012). The results are shown in Figure 6,
which gives geologic information of the distribution. The variation becomes much larger while the
potential risk is accumulated over time. The maximum values in (a), (b), and (c) are 2.31, 4.34, and
12.32 when the minimum value is always zero. Especially, the difference between (b) and (c) is serious.
It seems that industries increased during this time gap. The potential risk caused by cities close to the
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coast was relatively high: Cities in the coastal regions (city 36, 37, 48) posed higher potential risk to
ASTR site than inland cities. City 12 (Gumi) is the only exception. Special attention must be paid to
cities whose recent potential risk was ranked low but their past potential risk was high.

Table 3. Relative transfer (Iqc) and potential risk (Rqc) of each chemical from 2001 to 2012.

Chemical
The Ranking of Cities Based on Iqc and Rqc

1 2 3 4 5

Xylene 36 1 (52.1 2) 48 (26.7) 28 (11.1) 37 (10.6) 15 (9.33)
36 3 (13.7 4) 48 (10.0) 37 (6.35) 28 (6.08) 50 (6.04)

Toluene
50 (4.49) 21 (2.80) 12 (2.28) 45 (1.70) 36 (1.66)
50 (4.21) 21 (3.01) 12 (2.56) 45 (2.46) 36 (2.45)

Dichloromethane
45 (22.3) 48 (5.10) 44 (3.25) 36 (2.50) 37 (1.63)
45 (8.91) 48 (4.37) 44 (3.29) 36 (3.01) 37 (2.49)

Methyl alcohol 45 (11.0) 12 (10.1) 36 (9.62) 19 (5.06) 44 (4.83)
45 (4.43) 36 (4.27) 12 (3.81) 49 (3.07) 19 (2.90)

Ethyl acetate 12 (104) 36 (85.9) 45 (33.2) 37 (18.9) 50 (11.7)
36 (12.5) 12 (12.2) 45 (7.69) 37 (6.00) 50 (4.80)

Methyl ethyl ketone 12 (11.0) 36 (6.95) 37 (4.09) 15 (3.39) 18 (2.53)
12 (3.97) 36 (3.55) 37 (2.79) 15 (2.28) 50 (2.07)

Isopropanol 12 (80.1) 37 (10.1) 48 (7.72) 36 (4.40) 45 (4.32)
12 (10.7) 37 (4.37) 48 (3.80) 36 (2.82) 45 (2.77)

Ethylbenzene 36 (514) 48 (151) 19 (69.4) 37 (56.6) 28 (56.0)
36 (43.2) 48 (23.8) 19 (15.2) 37 (14.7) 28 (13.7)

N,N-Dimethylformamide 20 (7.03) 50 (5.68) 27 (4.02) 19 (1.80) 16 (1.69)
20 (3.36) 50 (3.35) 27 (2.60) 19 (1.73) 16 (1.56)

Trichloroethylene 19 (4.94) 36 (4.60) 12 (1.72) 27 (1.35) 48 (1.28)
36 (4.08) 19 (4.05) 12 (2.22) 48 (2.20) 27 (2.13)

Notes: 1 City number; 2 Value of Iqc; 3 City number; 4 Value of Rqc; Note: bold font highlights the most frequently
high ranked cities.

Table 4 lists the top 10 cities whose potential risk was high in cumulative times of 4, 8, and 12 years.
Rankings have changed over time. In particular, the top rank has changed from city 37 (Yangsan) to
48 (Chanwon) and then, to 36 (Ulju). Yangsan (No. 37) was the top ranked city during 2001~2004 but
its ranking has fallen to the third over time. Ulju (No. 36) was the second ranked city during 2001~2004
but its rank is number one over the period of 2001~2012. The difference of city 36 between (a) and (c)
is 10.28.

Ulju (No. 36) and Yangsan (No. 37) have been on the top 3 ever since 2001. City of Changwon
(No. 48) has emerged since 2005. Gumi (No. 12) became fourth (from third in early 2000s) ranked over
time. This change can be interpreted as a result of low toxicity chemicals from the city and the rapid
increase in potential risk of other cities.

For the top five cities (36, 48, 37, 12, and 19 of the third column in Table 4 (c)), the change in annual
potential risk (Rt

c) was calculated using Equation (6). As can be seen in Figure 7, the potential risk of
five cities in the 2000s was comparable to each other, but since 2007, the potential risk of city No. 36
(Ulju) and No. 48 (Chanwon) increased. Especially, the potential risk of Ulju increased sharply in
2011, indicating that the transfer of chemicals was increased in that year. To verify this result, original
transfer data of 10 chemicals in Ulju were carefully investigated. It was found out that the reason
for the sudden increase in the potential risk was largely attributable to ethylbenzene: the transfer of
ethylbenzene in this city was in the order of 103 kg/year in the past but it increased significantly in
2011 to the order of 105 kg/year. It can be said that the annual potential risk (Rt

c) gives the clue about
the priority of measures to take in reducing potential risks to the facility to be protected: Monitoring
and safe management of ethylbenzene of Ulju in this case.
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Table 4. The ranking table of potential risk (Rc) of cities in the Nakdong River Basin.

Rank
(a) 1 (b) 2 (c) 3

City No. Rc City No. Rc City No. Rc

1 37 2.31 48 4.34 36 12.3
2 36 2.15 36 4.31 48 6.90
3 12 2.02 37 3.66 37 4.73
4 48 1.50 19 3.57 12 4.64
5 50 1.27 12 3.48 19 4.38
6 49 1.19 45 2.69 28 4.03
7 15 1.12 15 1.89 45 3.75
8 45 1.12 50 1.69 50 3.45
9 51 0.95 49 1.69 43 2.72

10 28 0.94 28 1.61 15 2.60

Notes: 1 (a) n = 4 years (2001~2004); 2 (b) n = 8 years (2001~2008); 3 (c) n = 12 years (2001~2012).
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The results of potential risk calculated from these three variables show the usefulness and
applicability of PRTR data. Being a voluntary report system, PRTR may have a problem in the
accuracy of data. Reports can be found that there are discrepancies between PRTR data and real release
data [30–32]. The gap between PRTR and real data generally occurs in all chemicals rather than a
specific chemical. Nevertheless, the gap does not affect the results of this study because it is not the
potential risk value itself but the rank of a city that matters.

The strength of the present study is the fact that the relative comparison of potential risk between
cities is feasible. The rank of potential risk of each city gives specific information to decision-makers
by prioritizing the management target. The generality of the potential risk function is another merit of
the method developed here. Although the function was demonstrated for an ASTR site in this study, it
can be applied to any purification plants. The function can be used for the assessment of potential
risk created by both a single chemical and multiple chemicals. Additionally, the potential risk can be
assessed either at a specific time or over a certain period of time.

4. Conclusions

Based on the assessment result of potential risk due to chemicals transferred in a watershed, it
was found that most major hazards of the ASTR site could be eliminated if the chemicals generated
in city 36, 48, and 37 are carefully managed. The potential risk was derived from total amount of
chemicals transferred in the PRTR database, distance, and toxicity.
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Conventionally, the PRTR has aimed to reduce the amount of chemical release voluntarily through
the open access of information. This study, however, showed the feasibility that PRTR data can be used
for potential risk assessment. Regarding the distance, the geographic distance between the location of
interest and a city turned out to be a reasonable metric, even though it may not represent the detail
physical or chemical processes in the watershed.

In most risk assessment practice, toxicity usually represents the degree of harm to human health.
As an index of toxicity, Reference Dose for oral exposure (RfD) or Reference Concentration for
Inhalation exposure (RfC) of EPA is typically adopted. It must be emphasized that the present
study does not directly address the risk to human health. Instead, we deal with potential risk posed by
chemicals transferred in a watershed to a drinking water supply facility. For this purpose, the present
study adopted NFPA 704 which is included in Material Safety Data Sheet (MSDS) and uses a simple
rating system (0~4) to hazardous substances.

Even if the research was motivated to extend the hazard analysis in the HACCP application to the
drinking water supply system using the aquifer storage transfer and recovery process, it is believed
that the tool developed here to assess the potential risk caused by chemicals in a basin can find a wide
range of application including various water-related facilities.
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