Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Crop Management
2.3. Sampling and Measurements
2.3.1. Soil N Content Before Sowing
2.3.2. N Uptake, Utilization, and Use Efficiencies
2.3.3. Nitrogen Nutrition Index
2.3.4. Grain Protein and Processing Quality
2.3.5. Nitrate Reductase (NR) and Glutamine Synthetase (GS) Activities
2.4. Data Analysis
3. Results
3.1. Nitrogen Uptake and Translocation
3.2. Nitrogen Use, Uptake, and Utilization Efficiencies
3.3. Nitrogen Nutrition Index at Anthesis
3.4. Grain Protein Content and Composition
3.5. Dough Processing Quality
3.6. Activity of Nitrate Reductase and Glutamine Synthetase in Grains and Flag Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Dai, X.; Jia, D.; Li, H.; Wang, Y.; Li, C.; Xu, H.; He, M. Effects of Plant Density on Grain Yield, Protein Size Distribution, and Breadmaking Quality of Winter Wheat Grown under Two Nitrogen Fertilisation Rates. Eur. J. Agron. 2016, 73, 1–10. [Google Scholar] [CrossRef]
- Yao, C.; Li, J.; Gao, Y.; Zhang, Z.; Liu, Y.; Sun, Z.; Wang, Z.; Zhang, Y. Delayed Application of Water and Fertilizer Increased Wheat Yield but Did Not Improve Quality Parameters. Field Crops Res. 2024, 319, 109649. [Google Scholar] [CrossRef]
- Tong, J.; Xiong, Y.; Lu, Y.; Li, W.; Lin, W.; Xue, J.; Sun, M.; Wang, Y.; Gao, Z. Drip Fertigation Enhances the Responses of Grain Yield and Quality to Nitrogen Topdressing Rate in Irrigated Winter Wheat in North China. Plants 2024, 13, 1439. [Google Scholar] [CrossRef]
- Tong, J.; Xiong, Y.; Lu, Y.; Li, W.; Lin, W.; Xue, J.; Sun, M.; Wang, Y.; Gao, Z. Drip Fertigation with Moderate Nitrogen Topdressing Rate Achieves High Nitrogen and Water Use Efficiencies forIrrigated Wheat. Agronomy 2025, 15, 259. [Google Scholar] [CrossRef]
- Cui, H.; Luo, Y.; Li, C.; Chang, Y.; Jin, M.; Li, Y.; Wang, Z. Effects of Nitrogen Forms on Nitrogen Utilization, Yield, and Quality of Two Wheat Varieties with Different Gluten Characteristics. Eur. J. Agron. 2023, 149, 126919. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Li, S.; Zhang, X.; Virk, A.L.; Qi, J.; Kan, Z.; Wang, X.; Ma, S.; Zhang, H. Meta-analysis of Management-induced Changes in Nitrogen Use Efficiency of Winter Wheat in the North China Plaine. J. Clean. Prod. 2020, 251, 119632. [Google Scholar] [CrossRef]
- Adil, M.; Lv, F.; Li, T.; Chen, Y.; Gul, I.; Lu, H.; Lu, S.; Qiu, L. Long-term Effects of Management Practices on Soil Water, Yield and Water Use of Dryland Wheat: A Global Meta-analysis. Eur. J. Soil Sci. 2024, 75, e13541. [Google Scholar] [CrossRef]
- Liu, E.; Zhao, B.; Mei, X.; So, H.; Li, J.; Li, X. Effects of no-tillage management on soil biochemical characteristics in northern China. J. Agric. Sci. 2010, 148, 217–223. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity Limits and Potentials of the Principles of Conservation Agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of Straw Mulch on Growth and Yield of Durum Wheat during Transition to Conservation Agriculture in Mediterranean Environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Adil, M.; Lv, F.; Cao, L.; Lu, H.; Lu, S.; Gul, I.; Bashir, S.; Wang, Z.; Li, T.; Feng, W. Long-term Effects of Agronomic Practices on Winter Wheat Yield and NUE in Dryland Regions of USA and China: A Long-term Meta-analysis. Sci. Rep. 2024, 14, 24777. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X.; Jing, J.; Zhang, Y.; Li, P.; Zong, Y.; Zhang, D.; Hao, X. Long-Term No Tillage Straw Mulching Increased Soil Water and Nitrogen Storage in Dryland Wheat on the Loess Plateau, but May Increase Dissolved Organic Nitrogen Leaching. Field Crops Res. 2025, 322, 109705. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.A.; Wen, T.; Guo, X.; Fan, G. The Combined Effects of Maize Straw Mulch and No-tillage on Grain Yield and Water and Nitrogen Use Efficiency of Dry-land Winter Wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Zhao, K.; Wu, J.; Huang, M.; Li, Y.; Zhao, G.; Fu, G.; Wang, C.; Zhang, Z.; Hou, Y.; Yang, Z. Meta Anlysis of the Effects of Tillage Methods on Grain Yield and Water Use Efficiency in Henan. J. Triticeae Crops 2021, 41, 891–903. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Li, W.; Yan, T.; Wang, D.; Xue, J.; Gao, Z. Wheat Yield, Biomass, and Radiation Interception and Utilization Under Conservation Tillage: Greater Response to Drip Fertigation Compared to Intensive Tillage. Agronomy 2024, 14, 2849. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling Effects of Water and Fertilizer on Yield, Water and Fertilizer Use Efficiency of Drip-Fertigated Cotton in Northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, Y.; Guo, J.; Tang, Z.; Zhao, S.; Wang, H.; Li, Z.; Zhang, F. Coupling Effect Analysis of Drip Irrigation and Mixed Slow-release Nitrogen Fertilizer on Yield and Physiological Characteristics of Winter Wheat in Guanzhong Area. Field Crops Res. 2023, 302, 109103. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Xiang, Y.; Zhang, F.; Yan, S.; Zhang, X.; Zheng, J.; Li, Y.; Tang, Z.; Li, Z. Coupling Effects of Irrigation Amount and Nitrogen Fertilizer Type on Grain Yield, Water Productivity and Nitrogen Use Efficiency of Drip-Irrigated Maize. Agric. Water Manag. 2022, 261, 107389. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Zhang, F.; Wang, X.; Liao, Z.; Zhang, S.; Yang, Q.; Fan, J. Effects of Irrigation and Fertilization Regimes on Tuber Yield, Water-nutrient Uptake and Productivity of Potato under Drip Fertigation in Sandy Regions of Northern China. Agric. Water Manag. 2023, 287, 108459. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Yan, S.; Xiang, Y. Evaluation of Drip Fertigation Uniformity Affected by Injector Type, Pressure Difference and Lateral Layout. Irrig. Drain. 2017, 66, 520–529. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L. Quantifying Grain Yield, Protein, Nutrient Uptake and Utilization of Winter Wheat Under Various Drip Fertigation Regimes. Agric. Water Manag. 2022, 261, 107380. [Google Scholar] [CrossRef]
- Delbaz, R.; Ebrahimian, H.; Abbasi, F.; Ghameshlou, A.N.; Liaghat, A.; Ranazadeh, D. A Global Meta-analysis on Surface and Drip Fertigation for Annual Crops under Different Fertilization Levels. Agric. Water Manag. 2023, 289, 108504. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Dang, T.; Sainju, U.M. Nitrogen Fertilization Effect on Soil Water and Wheat Yield in the Chinese Loess Plateau. Agron. J. 2013, 105, 143–149. [Google Scholar] [CrossRef]
- Bai, S.; Kang, Y.; Wan, S. Drip Fertigation Regimes for Winter Wheat in the North China Plain. Agric. Water Manag. 2020, 228, 105885. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, M.; Zhu, B.; Fan, J.; Lin, H.; Ren, B.; Zhang, F. Drip Fertigation Sustains Crop Productivity while Mitigating Reactive Nitrogen Losses in Chinese Agricultural Systems: Evidence from a Meta-analysis. Sci. Total Environ. 2023, 886, 163804. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip Fertigation Significantly Increased Crop Yield, Water Productivity and Nitrogen Use Efficiency with Respect to Traditional Irrigation and Fertilization Practices: A meta-Analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Wagner, R. A New Method for Automated Nitrate Determination in Sea Water Using the AutoAnalyzer. In Technicon Symposium; Technicon GmbH: Frankfurt, Germany, 1974. [Google Scholar]
- Benesch, R.; Mangelsdorf, P. Eine Methode Zur Colorimetrischen Bestimmung von Ammoniak in Meerwasser. Helgoländer Wiss. Meeresunters 1972, 23, 365–375. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.-M.; Machet, J.-M.; Thelier-Huchu, L. Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Yao, C.; Ren, J.; Li, H.; Zhang, Z.; Wang, Z.; Sun, Z.; Zhang, Y. Can Wheat Yield, N Use Efficiency and Processing Quality Be Improved Simultaneously? Agric. Water Manag. 2023, 275, 108006. [Google Scholar] [CrossRef]
- Rossmann, A.; Buchner, P.; Savill, G.P.; Hawkesford, M.J.; Scherf, K.A.; Mühling, K.H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen. Eur. J. Agron. 2019, 109, 125909. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists; AACCI: St. Paul, MN, USA, 2000; Available online: https://books.google.com/books/about/Approved_Methods_of_the_American_Associa.html?id=pagQAQAAMAAJ (accessed on 26 February 2025).
- AACC. Approved Methods of Analysis, 11th ed.; AACCI: St. Paul, MN, USA, 2010; Available online: https://www.cerealsgrains.org/resources/methods/Pages/default.aspx (accessed on 26 February 2025).
- Passioura, J.B.; Angus, J.F. Improving Productivity of Crops in Water-Limited Environments. Advan. Agron. 2010, 106, 37–75. [Google Scholar] [CrossRef]
- Karlen, D.L.; Cambardella, C.A.; Kovar, J.L.; Colvin, T.S. Soil Quality Response to Long-Term Tillage and Crop Rotation Practices. Soil Tillage Res. 2013, 133, 54–64. [Google Scholar] [CrossRef]
- Huang, G.; Chai, Q.; Feng, F.; Yu, A. Effects of Different Tillage Systems on Soil Properties, Root Growth, Grain Yield, and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China. J. Integr. Agric. 2012, 11, 1286–1296. [Google Scholar] [CrossRef]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till Management Impacts on Crop Productivity, Carbon Input and Soil Carbon Sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and Soil Physical Environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Abubakar, S.A.; Hamani, A.K.M.; Chen, J.; Traore, A.; Abubakar, N.A.; Ibrahim, A.U.; Wang, G.; Gao, Y.; Duan, A. Optimized Drip Fertigation Scheduling Improves Nitrogen Productivity of Winter Wheat in the North China Plain. J. Soil Sci. Plant Nutr. 2022, 22, 2955–2968. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, X.; Kong, L.; Zhang, L.; Zhang, Y.; Liu, Z. Improving Nitrogen Contribution in Maize Post-Tasseling Using Optimum Management under Mulch Drip Irrigation in the Semiarid Region of Northeast China. Front. Plant Sci. 2022, 13, 1095314. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wei, Y.; Laghari, A.H.; Yang, X.; Wang, T. Modelling Effect of Different Irrigation Methods on Spring Maize Yield, Water and Nitrogen Use Efficiencies in the North China Plain. Math. Biosci. Engin. 2021, 18, 9651–9668. [Google Scholar] [CrossRef]
- Zhang, D.; Hao, X.; Fan, Z.; Hu, X.; Ma, J.; Guo, Y.; Wu, L. Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems. Agriculture 2022, 12, 1264. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Yu, Z. Subsoiling Improves Soil Physical and Microbial Properties, and Increases Yield of Winter Wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2019, 187, 182–193. [Google Scholar] [CrossRef]
- Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.-M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-Term Effects of Conventional and Reduced Tillage on Soil Structure, Soil Ecological and Soil Hydraulic Properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Izumi, Y.; Yoshida, T.; Iijima, M. Effects of Subsoiling to the Non-Tilled Field of Wheat-Soybean Rotation on the Root System Development, Water Uptake, and Yield. Plant Prod. Sci. 2009, 12, 327–335. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-Irrigation Improves Grain Yield and Resource Use Efficiency by Co-Locating the Roots and N-Fertilizer Distribution of Winter Wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Dong, X.; Qian, T.; Yin, L.; Dong, S.; Chu, J.; He, M. Delayed Sowing Can Increase Lodging Resistance While Maintaining Grain Yield and Nitrogen Use Efficiency in Winter Wheat. Crop J. 2017, 5, 541–552. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Yang, J. Yang a Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop Environ. 2023, 2, 192–201. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Wu, G.; Huang, X.; Fan, G. Maize Straw Mulching with No-Tillage Increases Fertile Spike and Grain Yield of Dryland Wheat by Regulating Root-Soil Interaction and Nitrogen Nutrition. Soil Tillage Res. 2023, 228, 105652. [Google Scholar] [CrossRef]
- Yin, L.; Dai, X.; He, M. Delayed Sowing Improves Nitrogen Utilization Efficiency in Winter Wheat without Impacting Yield. Field Crops Res. 2018, 221, 90–97. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis Tool for Plant and Crop N Status in Vegetative Stage Theory and Practices for Crop N Management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Yao, B.; Wang, X.L.; Lemaire, G.; Makowski, D.; Cao, Q.; Liu, X.J.; Liu, L.L.; Liu, B.; Zhu, Y.; Cao, W.X.; et al. Uncertainty Analysis of Critical Nitrogen Dilution Curves for Wheat. Eur. J. Agron. 2021, 128, 126315. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and Distribution in Plant Canopies. In Diagnosis of the Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Heidelberg, Germany, 1997; pp. 3–43. [Google Scholar]
- Jeuffroy, M.; Bouchard, C. Intensity and Duration of Nitrogen Deficiency on Wheat Grain Number. Crop Sci. 1999, 39, 1385–1393. [Google Scholar] [CrossRef]
- Ye, T.; Liu, B.; Wang, X.; Zhou, J.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y. Effects of Water-Nitrogen Interactions on the Fate of Nitrogen Fertilizer in a Wheat-Soil System. Eur. J. Agron. 2022, 136, 126507. [Google Scholar] [CrossRef]
- Hu, C.; Sadras, V.O.; Lu, G.; Zhang, P.; Han, Y.; Liu, L.; Xie, J.; Yang, X.; Zhang, S. A Global Meta-Analysis of Split Nitrogen Application for Improved Wheat Yield and Grain Protein Content. Soil Tillage Res. 2021, 213, 105111. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Jönsson, J.Ö. Effects of Wheat Cultivar and Nitrogen Application on Storage Protein Composition and Breadmaking Quality. Cereal Chem. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Zhang, P.; He, Z.; Zhang, Y.; Xia, X.; Chen, D.; Zhang, Y. Association between % SDS-unextractable Polymeric Protein (%UPP) and End-use Quality in Chinese Bread Wheat Cultivars. Cereal Chem. 2008, 85, 696–700. [Google Scholar] [CrossRef]
- Xue, C.; Auf’M Erley, G.S.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.-H. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Liu, Y.; Li, N.; Ku, L.; Hou, Y.; Wen, X. Foliar Applications of Various Nitrogen (N) Forms to Winter Wheat Affect Grain Protein Accumulation and Quality via N Metabolism and Remobilization. Crop J. 2022, 10, 1165–1177. [Google Scholar] [CrossRef]
Season | Tillage | WN | GPC % | GLU % | GLI % | GLO % | ALB % | OP % | GLU/GLI |
---|---|---|---|---|---|---|---|---|---|
2022–2023 | NT | BF | 12.76 c | 5.19 c | 3.87 c | 0.78 a | 2.19 a | 0.73 a | 1.34 a |
DF | 13.90 a | 5.47 ab | 4.72 a | 0.79 a | 2.18 a | 0.74 a | 1.16 d | ||
RT | BF | 13.00 bc | 5.21 bc | 4.06 bc | 0.80 a | 2.20 a | 0.73 a | 1.29 b | |
DF | 13.95 a | 5.53 a | 4.70 a | 0.79 a | 2.19 a | 0.73 a | 1.18 d | ||
PRT | BF | 13.25 b | 5.24 bc | 4.27 b | 0.80 a | 2.20 a | 0.74 a | 1.23 c | |
DF | 13.80 a | 5.45 abc | 4.65 a | 0.79 a | 2.19 a | 0.73 a | 1.17 d | ||
MEAN | NT | 13.33 A | 5.33 A | 4.30 B | 0.79 A | 2.18 A | 0.73 A | 1.25 A | |
RT | 13.48 A | 5.37 A | 4.38 AB | 0.80 A | 2.20 A | 0.73 A | 1.23 AB | ||
PRT | 13.53 A | 5.34 A | 4.46 A | 0.79 A | 2.19 A | 0.73 A | 1.20 B | ||
BF | 13.00 B | 5.22 B | 4.07 B | 0.79 A | 2.19 A | 0.73 A | 1.28 A | ||
DF | 13.89 A | 5.48 A | 4.69 A | 0.79 A | 2.19 A | 0.73 A | 1.17 B | ||
ANOVA | T | ns | ns | ns | ns | ns | ns | * | |
WN | ** | ** | ** | ns | ns | ns | ** | ||
T × WN | * | ns | * | ns | ns | ns | * | ||
2023–2024 | NT | BF | 13.20 c | 5.41 b | 3.97 c | 0.81 a | 2.26 a | 0.75 a | 1.36 a |
DF | 14.39 a | 5.79 a | 4.75 a | 0.82 a | 2.26 a | 0.77 a | 1.22 c | ||
RT | BF | 13.46 bc | 5.47 b | 4.11 bc | 0.83 a | 2.27 a | 0.78 a | 1.33 ab | |
DF | 14.43 a | 5.80 a | 4.80 a | 0.82 a | 2.27 a | 0.73 a | 1.21 c | ||
PRT | BF | 13.71 b | 5.54 b | 4.31 b | 0.83 a | 2.28 a | 0.75 a | 1.29 b | |
DF | 14.29 a | 5.78 a | 4.68 a | 0.82 a | 2.27 a | 0.74 a | 1.24 c | ||
MEAN | NT | 13.80 A | 5.60 A | 4.36 A | 0.81 A | 2.26 A | 0.76 A | 1.29 A | |
RT | 13.95 A | 5.64 A | 4.46 A | 0.82 A | 2.27 A | 0.76 A | 1.27 A | ||
PRT | 14.00 A | 5.66 A | 4.49 A | 0.82 A | 2.27 A | 0.75 A | 1.26 A | ||
BF | 13.46 B | 5.48 B | 4.13 B | 0.82 A | 2.27 A | 0.76 A | 1.33 A | ||
DF | 14.37 A | 5.79 A | 4.74 A | 0.82 A | 2.26 A | 0.75 A | 1.22 B | ||
ANOVA | T | ns | ns | ns | ns | ns | ns | ns | |
WN | ** | ** | ** | ns | ns | ns | ** | ||
T × WN | * | ns | * | ns | ns | ns | ** |
Season | Tillage | WN | WAR % | DDT min | DST min | WGC % | AS cm2 | MTR BU |
---|---|---|---|---|---|---|---|---|
2022–2023 | NT | BF | 58.70 c | 4.17 a | 3.58 a | 28.70 c | 43.30 b | 216.44 b |
DF | 62.20 a | 3.12 c | 2.71 d | 31.30 abc | 37.20 c | 193.32 c | ||
RT | BF | 59.70 bc | 4.13 a | 3.50 ab | 29.60 bc | 47.11 a | 238.09 a | |
DF | 62.40 a | 3.26 b | 2.82 cd | 31.50 ab | 38.62 c | 197.87 c | ||
PRT | BF | 60.20 b | 4.09 a | 3.38 b | 30.50 abc | 46.92 a | 236.27 a | |
DF | 63.00 a | 3.27 b | 2.90 c | 32.30 a | 37.38 c | 192.56 c | ||
MEAN | NT | 60.45 B | 3.65 A | 3.15 A | 30.00 A | 40.25 B | 204.88 B | |
RT | 61.05 AB | 3.70 A | 3.16 A | 30.55 A | 42.87 A | 217.98 A | ||
PRT | 61.60 A | 3.68 A | 3.14 A | 31.40 A | 42.15 A | 214.42 A | ||
BF | 59.53 B | 4.13 A | 3.49 A | 29.60 B | 45.78 A | 230.27 A | ||
DF | 62.53 A | 3.22 B | 2.81 B | 31.70 A | 37.73 B | 194.58 B | ||
ANOVA | T | * | ns | ns | ns | * | * | |
WN | ** | ** | ** | * | ** | ** | ||
T × WN | ns | ** | ** | ns | ** | ns | ||
2023–2024 | NT | BF | 60.88 a | 4.49 a | 3.82 a | 29.28 b | 46.16 b | 232.73 bc |
DF | 64.59 a | 3.25 b | 2.89 b | 32.51 a | 39.18 c | 203.83 d | ||
RT | BF | 61.36 a | 4.46 b | 3.68 a | 30.86 ab | 50.86 a | 259.70 a | |
DF | 64.85 a | 3.47 b | 2.99 b | 32.18 ab | 40.65 c | 214.65 cd | ||
PRT | BF | 61.43 a | 4.44 a | 3.66 a | 31.04 ab | 50.28 a | 254.54 ab | |
DF | 64.84 a | 3.38 b | 3.06 b | 32.97 a | 40.39 c | 208.07 d | ||
MEAN | NT | 62.74 A | 3.87 A | 3.35 A | 30.90 A | 42.67 A | 218.28 B | |
RT | 63.11 A | 3.96 A | 3.33 A | 31.52 A | 45.75 A | 237.18 A | ||
PRT | 63.14 A | 3.91 A | 3.36 A | 32.00 A | 45.33 A | 231.31 AB | ||
BF | 61.23 B | 4.46 A | 3.72 A | 30.40 B | 49.10 A | 248.99 A | ||
DF | 64.76 A | 3.37 B | 2.98 B | 32.55 A | 40.07 B | 208.85 B | ||
ANOVA | T | ns | ns | ns | ns | ns | * | |
WN | * | ** | ** | ** | ** | ** | ||
T × WN | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Li, W.; Zhang, L.; Song, J.; Wang, D.; Xue, J.; Wang, Y.; Gao, Z. Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage. Agronomy 2025, 15, 588. https://doi.org/10.3390/agronomy15030588
Fan Y, Li W, Zhang L, Song J, Wang D, Xue J, Wang Y, Gao Z. Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage. Agronomy. 2025; 15(3):588. https://doi.org/10.3390/agronomy15030588
Chicago/Turabian StyleFan, Yuyan, Wen Li, Limin Zhang, Jinxiao Song, Depeng Wang, Jianfu Xue, Yuechao Wang, and Zhiqiang Gao. 2025. "Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage" Agronomy 15, no. 3: 588. https://doi.org/10.3390/agronomy15030588
APA StyleFan, Y., Li, W., Zhang, L., Song, J., Wang, D., Xue, J., Wang, Y., & Gao, Z. (2025). Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage. Agronomy, 15(3), 588. https://doi.org/10.3390/agronomy15030588