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Abstract: The Upper Pannonian (UP) sandstone formation has been utilised for thermal water
production in Hungary for several decades. Although sustainable utilisation requires the reinjection
of cooled geothermal brine into the host rock, only a fraction of the used water is reinjected in
the country. UP sandstone formation is reported to exhibit low injectivity, making reinjection
challenging, and its petrophysical properties are poorly known, which increases uncertainty in
designing operational parameters. The goal of the study is to provide experimental data and to gain
a better understanding of formation characteristics that control injectivity and productivity issues in
Upper Pannonian sandstone layers. Petrographical characterisation and petrophysical laboratory
experiments are conducted on cores retrieved from two wells drilled in the framework of an R&D
project at the depth of between 1750 m and 2000 m. The experiments, such as grain density, porosity,
permeability, and ultrasonic velocity, as well as thin section, grain size distribution, XRD, and SEM
analyses, are used to determine Petrophysical Rock Types (PRT) that share distinct hydraulic (flow
zone indicator, FZI) and petrophysical characteristics. These are used to identify well intervals
with lower potential for injectivity issues. The results imply that fines migration due to formation
erosion is one of the key processes that must be better understood and controlled in order to mitigate
injectivity issues at the study area. Future investigation should include numerical and experimental
characterisation of formation damage, including water–rock interaction tests, critical flow velocity
measurements, and fines migration analysis under reservoir conditions.

Keywords: Pannonian basin; sandstone; XRD analysis; SEM analysis; thin-section analysis;
permeability; porosity; Petrophysical Rock Typing; flow zone indicator; injectivity; formation damage

1. Introduction

The Upper Pannonian (UP) sandstone formation in Hungary has been utilised for
thermal water production, especially in the Szentes Geothermal Field, for over 60 years [1].
Although sustainable utilisation requires the reinjection of cooled geothermal brine into
the host rock, less than 10% of all geothermal wells have been used as reinjection wells in
the country [1]. This is linked to economic constraints posed by high-pressure injection
technology employed by the oil and gas industry, as well as several unsuccessful reinjection
operations in Pannonian sandstone formations [2–4].

Several underlying mechanisms were proposed that might cause reinjection issues,
but no effective mitigation strategy has been developed yet [5]. Markó et al. [6] have
recently proposed a methodology for the systematic identification of potential reasons for
the low injectivity of sandstone aquifers with suggested methods for eliminating them.
According to this study, possible processes that limit reinjection can occur in the near

Energies 2022, 15, 9136. https://doi.org/10.3390/en15239136 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15239136
https://doi.org/10.3390/en15239136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8310-0936
https://orcid.org/0000-0001-7742-5515
https://doi.org/10.3390/en15239136
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15239136?type=check_update&version=1


Energies 2022, 15, 9136 2 of 22

borehole area, or be related to reservoir or regional scale hydraulics. At borehole scale,
local clogging processes such as particle migration, e.g., sand production due to formation
damage [7–9], and mineral precipitation, e.g., scaling [10,11], as well as microbial activity,
e.g., biofilm formation [12,13], are possible. At reservoir scale, inadequate performance may
be associated with limited reservoir extent [14] and low permeability as well as reservoir
performance [15]. At regional scale, the potential presence of an overpressured zone may be
considered [16,17]. The injection problems may arise from a combination of these processes
as well. Using the workflow proposed by Markó et al. [6], Brehme et al. [18] report on
the successful implementation of this approach in a geothermal well at a depth of approx.
2000 m near Mezőberény in the Békés Basin, South-East Hungary. They conclude that low
injectivity of Újfalu Formation sandstone rock is associated with low reservoir permeability
and the precipitation of carbonates, iron, and manganese minerals. Injectivity enhancement
is achieved by the combination of tailored hydraulic and chemical stimulation.

Besides investigating possible sources for reduced injectivity, a major challenge in
planning field operations is the limited availability of petrophysical properties for UP
sandstone formations [18–21]. Willems et al. [20] have recently proposed a methodology
for filling this data gap based on laboratory tests conducted on Újfalu Formation core frag-
ments from two legacy wells in the Békés Basin and subsequent numerical flow simulation.
The experiments include petrographic methods, such as thin-section and X-ray Diffrac-
tion (XRD) analysis, and petrophysical techniques including helium gas porosimetry and
X-ray Computed Tomography (X-CT) imaging, as well as numerical flow simulation for
determining permeability indirectly. Although the applicability of upscaling these results
for reservoir scale studies is limited by the very small number of core fragments analysed,
i.e., solely three samples, this is enhanced by numerical flow simulation for determining
permeability indirectly.

Despite the previous efforts and proposed workflows discussed above, geothermal
doublets drilled in UP sandstone formations still experience injection problems. There-
fore, there is a need for better understanding of both formation characteristics and the
underlying mechanisms resulting in low injectivity in order to develop effective mitigation
strategies. The research and development (R&D) project “Development of a well com-
pletion technology for sustainable and cost-effective reinjection of thermal water” aims
at the multiscale characterisation of UP sandstone formations and development of a tar-
geted methodology for maintaining or enhancing the injectivity of geothermal wells with
a focus on the Szentes Geothermal Field in Hungary [18]. The project includes a series of
laboratory experiments, the drilling of new wells targeted at these formations including
geophysical logging and hydraulic investigations, and the recompletion of an existing well
for reinjection for Frac&Pack stimulation. We note that the construction of the well SZT-1
and the recompletion technology for the existing well SZT-VIII (also referred to as K-666)
are presented in Farkas et al. 2022 [15] in detail.

In this paper, we present the results of the laboratory experiments UP sandstone
samples in the framework of the R&D project. In this study, we focus on the core scale
and microscale features of the investigated samples in order to give an insight into the
petrophysical and petrological characteristics of UP sandstone rocks. The laboratory inves-
tigation includes petrographic characterisation, such as thin section, grain size distribution,
XRD and scanning electron microscope (SEM) analyses, and petrophysical experiments, i.e.,
grain density, helium gas porosity, and permeability, as well as ultrasonic wave velocity
measurements. The possibility of conducting these tests on several cores retrieved from
newly drilled exploration wells allows extending the limited public dataset on miner-
alogical and petrophysical characteristics of UP sandstones. Furthermore, the analyses
may contribute to the understanding of characteristics that control decline in injectivity
or productivity in UP unconsolidated sandstone reservoir. We apply the Petrophysical
Rock Typing (PRT) technique, which allows classifying rocks that share similar hydraulic
and petrophysical properties for identifying well intervals with lower potential for injectiv-
ity problems.
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This paper is structured as follows: in Section 2, the Szentes Geothermal Field is pre-
sented. In Section 3, the experimental methods are described. In Section 4, the petrographic
and petrophysical results are presented. In the same section, the results are compared; their
applicability and suggestions for future work are also discussed. In Section 5, conclusions
are drawn.

2. Szentes Geothermal Field
2.1. Field History

The Szentes Geothermal Field is located in South-East Hungary on the left bank of
the Tisza river (Figure 1). It is one of the most intensively utilised geothermal areas in
Hungary, with 40 active wells producing more than 5.5 million m3 of hot water per year [1].
The produced thermal water is utilised for district heating and balneology, as well as for
agricultural purposes. All the produced water is discharged in surface water [3].
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Figure 1. Location of the study area in Hungary, showing the active producing geothermal wells at
the Szentes Geothermal Field. The wells “SZT-1” and “SZSZT-IX” (well IDs in red) were drilled in
the framework of this study. The geological cross-section illustrates the stratigraphy of the study area
in Section 2.3.

The latest study on the production history of the Szentes Geothermal Field is published
by Bálint and Szanyi 2015 [1], who provide an in-depth overview of field development
and hydraulic characteristics, such as production history of the wells based on previous
hydraulic test reports [22–24] and the latest hydraulic test campaign, conducted in 20 wells
between 2009 and 2010 [2]. They point out that continuous production over decades without
reinjection results in a significant drop in production rate, i.e., approx. 7.6 million m3/year
in 1971–1972 vs. 5.5 million m3/year in 2009–2010, and a pressure drop of 1.5 to 4 bar with
respect to hydrostatic pressure, both factors contributing to the decline in injectivity of
the doublet.

2.2. Geological Setting

The area is part of the northern wedging of Makó Trough, where the depth of the
Pre-Neogene basement ranges in depth from 3000 to 5000 m [1,25]. The generalised chrono-
and lithostratigraphy of the study area is shown in Figure 2 and the depth map of the
basement top is illustrated in Figure 3. Basin subsidence began in the Miocene, with the
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highest rate in the Pannonian (Late Miocene to Pliocene), resulting in sediment deposition
with a thickness of more than 4000 m. Lower Pannonian (LP) sandstone formations, i.e.,
Endrőd Fm., Szolnok Fm., and Algyő Fm., are characterised by clay–marl and very fine-
grained powdered quartz layers. The lower part of the Upper Pannonian (UP) sandstone
formations is characterised as sandstone with clay–aleurite streaks or laminae as a result
of deposition in delta plain, moor, and smaller bay environments. The upper 300–400 m
of these sandstone layers are described as loose, poorly consolidated sandstone. The top
of the Pannonian sandstone formations in the study area is between 2000 and 2500 m,
where lower elevations are located towards Szegvár, south from Szentes (Figure 4). The UP
sandstone layers are covered by Pliocene and Pleistocene sediments (Figure 2). We note
that, according to the latest stratigraphic nomenclature, the Zagyva and Újfalu Fms. are
referred to as Transdanubian Formation Group, and the Algyő, Szolnok, and Endrőd Fms.,
as well as Tótkomlós marl, are referred to as Alföld Formation Group [26]. For the sake of
clarity, we use the term UP sandstone formation as lithofacies associations of Zagyva and
Újfalu Fms. in this paper.
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area simplified after [27]. Abbreviations: Pl = Pleistocene; H = Holocene [11].

In most of the geothermal wells at the Szentes Geothermal Field, the production inter-
vals are perforated in the Újfalu Fm. (Section 2.3); thus, we focus on this rock formation.
The formation is composed of fine and medium sandstone intercalated by thin marl and silt-
stone layers. Sandstone bodies are of estuary bar, delta branch riverbed filling, and crevasse
splay origin. The intercalating layers are associated with oxbow lake environment [25].
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2.3. Geothermal Reservoir Characterisation

Based on production history and well test analysis of the 40 active wells in the Szentes
Geothermal Field, three aquifer layer groups can be defined [1]. Most of the wells have a
completion with production intervals in the Újfalu Fm. A stratigraphic cross-section across
the study area with wells and their production intervals is shown in Figure 5. The upper
aquifer layer group, level A, consists of wells having a completion with production intervals
in the Újfalu and Zagyva Fms. between the depth of 1500 and 1800 m with an average
permeability of 1500 mD. The middle aquifer layer group, level B, includes wells with
production intervals between the depth of 1800 and 2000 m, mainly in Újfalu and partly in
Zagyva Fm. Rock, with an average permeability of 500 mD. The lower aquifer layer group,
level C, includes wells below the depth of 2000 m entirely in Újfalu Fm. with an average
permeability varying between 1000 and 2000 mD. Thermal water production is dominated
by wells screened in level B. A summary of 14 wells including well ID, location coordinates
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in the Hungarian national projection system (EOV), drilling year, depth, screening, and
production rate, as well as bottom-hole temperature, is presented in Table 1.
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Figure 5. Stratigraphic cross-section across the study area with wells and their production (screen)
interval. The section path illustrated is in Figure 1. The wells “SZT-1” and “SZSZT-IX” were drilled
within the framework of this study (modified after [1,28]).

Table 1. Characteristics of wells close to “SZT-1” and “SZSZT-IX” located in Szentes (based on Bálint
and Szanyi [1]).

Local Well
ID

National
Well ID

EOV Y
(m) EOV X (m) Drilling

Year
Depth

(m)
Production
Interval (m)

Bottom-Hole
Temperature (◦C)

Production
Rate (m3/year)

SZT-I K-498 747,458 149,539 1964 1995 1800–1975 85 154,860
SZT-II K-562 747,489 149,493 1970 1800 1640–1793 82 150,850
SZT-III K-563 746,484 148,355 1970 1992 1678–1936 78 170,150
SZT-IV K-586 747,234 149,283 1972 2303 2060–2235 96 178,604

SZT-V/1 K-640 747,855 150,857 1979 2240 2040–2210 94 134,800
SZT-V/2 K-641 747,800 150,800 1979 2000 1785–1993 84 155,100
SZT-VI/1 K-642 749,981 150,148 1978 2398 2046–2255 97 172,500
SZT-VI/2 K-643 749,982 151,063 1978 1998 1694–1989 86 189,000
SZT-VII/1 K-644 747,112 152,442 1979 2257 2053–2205 96 156,900
SZT-VII/2 K-639 747,111 152,480 1979 1806 1534–1754 76 174,300
SZT-VII/3 K-645 747,101 152,539 1980 1998 1800–1998 80 194,100
SZT-VIII K-666 749,166 151,854 1988 2300 2004–2143 90 128,900

AL/1 K-561 741,347 151,764 1969 2050 1801–2019 85 256,000
AL/2 K-578 742,231 151,198 1971 2401 2135–2401 94 256,000

3. Sample Collection and Experimental Methods
3.1. Core Sample Collection and Description

In the framework of this R&D project, two vertical exploration wells, referred to
as “SZT-1” and “SZSZT-IX”, were drilled in Szentes in 2020 to retrieve core samples for
laboratory experiments and to conduct a long-term reinjection test at well SZT-1. The coring
intervals were determined based on the stratigraphy of the offset wells, K-564 and K-515,
and the seismic interpretation of the study area reported by Bereczki et al. 2020 [29]. Cores
were collected between approximately 1740 m and 1970 m depth in order to penetrate level
B Újfalu sandstone layers approximated from the nearest offset wells, K-564 and K-515.
Table 2 summarises the main parameters of the wells. Figure 6 shows that the total length
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of collected samples is equal to 52.17 m with an average core recovery rate of 85 % from the
two boreholes.

Table 2. Well parameters and coring properties of boreholes SZT-1 and SZSZT-IX.

Local Well ID SZT-1 SZSZT-IX
National Well ID K-712 K-707

EOV Y (m) 748,464 747,995
EOV X (m) 149,886 149,416

Drilling year 2020 2020
Total depth—MD (m) 2000 2009.2
Bottom-holetemperature (◦C) 92.8 88.0

Screen intervals (m)
Top 1934.0 1932.4
Bottom 1981.4 1997.3

C
or

in
g

in
te

rv
al

s 1
Top 1740 m 1742.5 m
Bottom 1749.25 m 1755.38 m

2
Top 1930 m 1835 m
Bottom 1972.5 m 1840.33 m

Average core recovery 85.2% 85.1%
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Figure 6. Upper Pannonian sandstone core retrieved from well “SZT-1” at depth interval of
1970.7–1971.3 m.

After core retrieval and documentation (Figure 6), the logged samples were packed in
cling film in order to preserve their moisture content. These were transported in wooden
boxes to the laboratory.

Light grey, very fine-fine grained, poorly cemented, micaceous sandstone is the most
common rock type in the investigated depth intervals. It is carbonate cemented very well
in some places. Very fine-fine grained sandstone usually appears above fine-medium
grained and medium-coarse grained sandstone and below very fine grained sandstone,
with siltstone forming fining upward sequences. Coarsening upward sandstone sequences
also appear in the strata. The sandstones consist of quartz, feldspar, carbonate rock debris,
mica, and clay minerals (mainly kaolinite and illite), as well as coalified plant fragments.
Siltstone, argillaceous marl, and coaly argillaceous marl appear between the sequences,
which is a hint toward a low-energy environment. Based on the depositional environments,
several sedimentary structures can be observed in the cores, as shown in Figure 7.
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Figure 7. Sedimentary structures identified in the core samples. (A) SZSZT_IX_08: Horizontal
and of very fine sandy siltstone; (B) SZT1_20: Horizontal bedded coaly argillaceous marl and
clayey coal; (C) SZSZT_IX_27_T: Structureless fine-medium grained sandstone with clay intraclasts;
(D) SZT1_29_T2: Coalified plant fragment laminae in fine-medium grained sandstone according to
the bedding direction; (E) SZT1_85_T1: Structureless medium-coarse grained sandstone.

Figure 8 illustrates representative identified depositional facies in well SZT-1 showing
typical channel–overbank sequence of a meandering channel based on analysis of sedimen-
tary structures of core samples and the shape of the GR well log. For more details of the
stratigraphical model of the Upper Pannonian sandstone sequence in the study area, the
reader is referred to [30].
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(modified after [30]).

3.2. Sample Preparation

Grain density, porosity, permeability, and ultrasonic wave velocity measurements were
carried out on cylindrical rock samples. The plugs were drilled with a diameter of 1.5”,
both parallel and perpendicular to the core axis. After the drilling procedure, samples were
saw-cut and the end faces of the samples were carefully polished with a grinder machine
to reach the desired parallelism in accordance with ASTM and ISRM standards [31,32].

The plugs were dried at a temperature of 60 ◦C to preserve the chemically bound
water in the lattice of clay minerals and then were stored in a desiccator between each
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measurement. In order to prevent sample contamination, coupling media were not used
for ultrasonic velocity measurements.

Grain size distribution measurements, thin section analysis, XRD, and SEM measure-
ments were carried out on the remaining rock slabs of the plug samples. To reduce the
charging effect in the case of SEM imaging, the test specimens were coated with gold.

3.3. Laboratory Experiment Methods

First, thin sections of 15 samples from borehole SZSZT-IX were analysed. After that,
petrophysical measurements, including grain density, porosity, permeability, and ultrasonic
measurements, were performed on the 1.5” plug samples. Grain size distribution was
measured on the remaining rock slices after slabbing the plug samples.

Based on the petrophysical data processing results, representative samples of Petro-
physical Rock Types (Section “Petrophysical Rock Typing”) were selected according to
stratified sampling strategy [33] for further petrographic analysis, including SEM and XRD,
to investigate textural features.

The applied methods are presented based on their nature in subsequent Sections 3.3.1
and 3.3.2.

3.3.1. Petrographical Characterisation

The thin sections of the samples were analysed with a Carl Zeiss polarized light
microscope using plane-polarized and cross-polarized light. These were evaluated based
on grain size, sorting, roundness, and mineral composition.

Grain size distribution was measured by laser diffraction method using Cilas 1180 de-
vice. The filter cake was carefully removed from the core surfaces. The samples were
disaggregated using distilled water. Prior to measurement, each sample was ultrasonicated
for 180 s under stirring conditions and also during the measurement in order to ensure
sample dispersion. This measurement was performed at least 3 times on a sample.

The XRD patterns on the sandstone samples were collected using Cu-Kα radiation
(40 kV, 15 mA) with a Rigaku MiniFlex 600 (Rigaku, Tokyo, Japan). Scans were made at
room temperature from 5 to 70◦ 2θ, with a step of 0.02/s. XRD scans were evaluated for
quantitative phase composition using a full profile fit procedure. The total amount of iden-
tified (crystalline) phases is taken as 100%. Due to the unknown proportion of amorphous
components, the phase percentages reflect only relative abundances. The measurement
uncertainties are ±1%, due to the precise sample preparation and measurement.

SEM imaging was conducted with a Jeol JSM-IT500HR (Jeol, Tokyo, Japan) instrument.
Measurements were performed in a high vacuum chamber with a beam voltage of 5.0 kV.

3.3.2. Petrophysical Experiments
Grain Density

Matrix volume was measured by a Quantachrome Pentapyc 5200e (PPY-30T) instru-
ment. This test follows the principle of the Boyle–Mariotte Law. A known amount of He
flows through on a given pressure from the reference cell with VR volume to the sample
chamber. The volume of the sample chamber (VC) is determined by calibration of the
instrument with stainless steel reference spheres at a given temperature before the measure-
ment. Seven measurements were carried out on each sample but the average grain volume
was calculated from the last five values. Measurements were performed in a tempered
thermostat at a constant temperature of 25 ◦C. For grain density calculation, the weight of
the sample was measured by an analytical balance with 0.1 mg accuracy. The bulk volume
and porosity of the plugs were calculated from geometrical data of 3D scanning.

Porosity and Permeability

He gas porosity and permeability under reservoir pressure conditions were measured
by Vinci Technologies COREVAL-700 gas permeameter. The plug samples were measured
after He pycnometry. The plugs were held in an isostatic core holder during the tests. The
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applied confining pressure was 210 bar for each sample at lab temperature. The method
used for determining porosity in this case is called “Boyle’s Law Single Cell Method for di-
rect void volume measurement” [34]. He gas permeability was based on “Transient pressure
technique for gases: Pressure-Falloff, Axial Gas Flow measurements” [34]. This technique
has a useful permeability range of 0.001 to 5000 mD. The measured gas permeability was
corrected for the Klinkenberg effect to obtain water permeability.

We note that several historical permeability data for similar formation sandstone rock
are available in [35,36]. However, these present only a compilation of datasets instead of
original experimental data. For more details on these data, we refer to Willems et al. [20].

Ultrasonic Velocity

The ultrasonic velocity of compressional and shear waves was measured by SRL A1000
instruments using a pulse-transmission technique [31,32]. In this case, two transducers
were placed on the end faces of the samples. The frequency of the transducers used for
measurements was centered around 1 MHz, both for compressional and shear waves.
Travel times for velocity data were determined with „first-break” record using a modified
Akaike Information Criterion algorithm [37].

Experimental Setup for Porosity, Permeability, and Ultrasonic Velocity Measurements

Samples were put into a high-pressure isostatic core holder for porosity, permeability,
and ultrasonic velocity measurements to mimic in situ reservoir pressure conditions. The
applied pressure was calculated using the equation for linear poroelasticity [38]:

Pe f f = SL − αPp (1)

where Peff is the effective pressure, SL is the uniform lithostatic stress, α is Biot’s coefficent,
and Pp is pore pressure. Since α is not known for UP sandstone formation, α is estimated
to be equal to 1 as a conservative approximation for drained deformation condition. All
respective laboratory tests were conducted at SL = 210 bar based on the calculated weight
of the overburden acting on the cored sections of the wells. Since the depth difference
between the deepest and shallowest cored interval is approx. 230 m, the stress difference
arising from depth difference is negligible.

3.3.3. Data Processing
Petrophysical Rock Typing

Rock typing can be defined as dividing the reservoir into distinct units with charac-
teristic petrophysical and flow characteristics [39]. Core-based Petrophysical Rock Typing
methods can be classified into three separate categories:

1. Methods that utilise permeability–porosity relationship and connate water saturation
to some extent, excluding the so-called cut-off based methods [40];

2. Methods that are based on capillary pressure data (or J-function) and measured
R35, e.g., Winland’s R35 method, where R35 is the calculated pore-throat radius at
35% mercury saturation from a mercury-injection capillary pressure test [41];

3. Methods that rely on formation zone index (FZI), which is a modification of Kozeny–
Carman equation, and its derivates, e.g., the spontaneous imbibition rate-driven
method of FZI [42].

According to [41–43], the most widely used PRT methods for the classification of clastic
reservoirs are Winland’s R35 method [44] and FZI-based techniques [45]. The FZI method
has the advantage over the other two methods in that it allows the correlation between the
micro-scale attributes and macro-scale parameters, i.e., porosity and permeability, based
on the theoretical model. On the other hand, further approaches, such as Winland’s R35
method, are based on empirical relationships. Since connate water saturation is unknown
and no mercury intrusion porosimetry was conducted on all of the samples, we apply the
FZI-based PRT technique.
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According to Amaefule et al. [45], FZI-technique, Petrophysical Rock Typing (PRT) is
based on grouping samples by FZI values that describe both the storage capacity (porosity)
and fluid flow capacity (permeability) of the reservoir rock. This approach entails the
clustering of different lithofacies of similar internal textural grain–pore compositions and
petrophysical properties [46].

FZI is calculated from Reservoir Quality Index (RQI) in µm and normalized porosity
(ϕZ) using the formulas below [47]:

FZI =
RQI
ϕZ

(2)

RQI = 0.0314

√
k
ϕe

(3)

ϕZ =
ϕe

1 − ϕe
(4)

where

• ϕe—effective fractional porosity is the ratio between pore volume and grain volume
• k—permeability in mD

Statistical Methods

In order to reduce non-normality of the dataset, permeability and grain size data were
transformed to a logarithmic scale. In the case of He permeability, a base ten logarithm
of the values was used. Grain size data were transformed to phi scale as proposed by
Krumbein with the following formula [48]:

ϕ = −log2
(
dg
)

(5)

where dg is grain diameter in mm unit.
In order to test the normality of the variables, Shapiro–Wilk tests were performed.
A Kruskal–Wallis non-parametric hypothesis test was used to investigate statistical

differences between samples according to the horizontal and vertical orientation. The null
hypothesis of the test is that the mean ranks of the groups are the same [49].

Petrophysical Rock Typing is based on clustering samples into groups based on their
FZI values. In order to find these, mixture analysis was performed which estimates the
parameters of at least two normal distributions by maximum likelihood approach in PAST
software. The FZI values are divided into classes with normal distribution as a result of the
non-hierarchical clustering method [50]. The optimal number of Petrophysical Rock Types
was determined by Akaike Information Criterion [51]. A minimum value of AIC indicates
the number of groups that produces the best fit without overfitting [50].

For statistical data analysis, IBM SPSS Statistics 29 [52] and PAST 4 data package [50]
were used. For each identified PRT group, descriptive statistical parameters were calculated.

We note that the descriptive statistical properties of petrophysical parameters as well
as textural petrographic properties, i.e., grain density, grain diameter, clay, and silt, as well
as sand content, are discussed jointly in Section 4.2.

4. Results and Discussion
4.1. Pre-Petrophysical Thin Section Analysis

The thin section analysis reveals that the grey-light grey sandstones are characterised
by well to very well-sorted grains (Figure 9). The grain size ranges from very fine to
medium, but dominantly fine, and the grains are subangular to very angular, with low
sphericity in morphology. It mainly consists of quartz, feldspar (K-feldspar, plagioclase),
mica (muscovite, chloritized biotite), and carbonates with minor grenades and opaque
minerals (coalified plant fragments, hematite), as well as zircon, apatite staurolite, and tour-
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maline as accessory (Figure 9). The sandstones are mainly poorly cemented by carbonates
(calcite, dolomite) and clay minerals (sericite, montmorillonite, kaolinite, and illite). The
micritic calcite cement occurs only in patches and narrow bands. Weak textural orientation
is observed which is reflected by the presence of oriented mica plates.
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Figure 9. Photomicrographs of samples X. (a): chlorite grain in sandstone, (b): biotite, muscovite,
and K-feldspar crystals in sandstone and metamorphic rock fragments, (c): fragmented micrite, fiber
sparite, and plagioclase crystals in very fine-grained sandstone, (d): aleurite layer boundaries.

The dark grey argillaceous marl and siltstone appear as massive units and as alter-
nations of marl and siltstone laminae. In fine grained marls and siltstones, the amount of
mica is significant. The darkish colour is the result of an increased amount of coaly plant
fragments and clay minerals.

4.2. Petrophysical Measurement and Analysis Results

Table 3 summarises the descriptive statistical parameters of measured petrophysical
parameters regarding their mean, median, standard deviation, and minimum and maximum
values based on 121 samples. Since these characteristics may be biased by other factors,
e.g., sampling location, rock fabric, and heterogeneity, these are classified on an unsupervised
basis to reveal possible correlations. Figure 10 shows the histograms of porosity, permeability,
and the calculated FZI values. These histograms exhibit multimodal distributions.

We tested the dependence of porosity and permeability on sample orientation (hori-
zontal and vertical) using a Kruskal–Wallis non-parametric hypothesis test. The test results
indicate that these parameters are independent of orientation. Therefore, Petrophysical
Rock Typing was applied to the whole dataset with no respect to sample orientation.
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Table 3. Descriptive statistical values of 121 tested petrophysical and textural parameters.

Parameter Unit Mean Median Std. Deviation Minimum Maximum

Depth (RHO) (m) 1882 1938 93.5 1741 1971

Grain density (RHO_grain) (g/cm3) 2.710 2.709 0.015 2.683 2.750

Porosity (PHI) (-) 0.27 0.29 0.06 0.06 0.34

Permeability (K_Klink) (mD) 698 596 599 0.001 2157

FZI (-) 0.315 0.332 0.176 0.003 0.615

P-wave velocity (VP) (m/sec) 2878 2823 416 2070 4921

S-wave velocity (VS) (m/sec) 1840 1791 284 1477 3193

Median grain diameter (d50) (micron) 119 124 56 16 221

Clay + fine silt content
(CLAY+FSILT) (%) 16.9 14.7 8.2 9.5 49.2

Sand content (SAND) (%) 42.3 49.7 20.9 0.0 70.1
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Based on unsupervised clustering of FZI values, samples were classified into four
different groups (Figure 11), where group 1 has the lowest FZI and group 4 has the largest
one. These groups of samples are interpreted as Petrophysical Rock Types (PRT) that share
similar reservoir characteristics.
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Figure 11. Clustering of Petrophysical Rock Types based on the histogram of Flow Zone Indicator
(FZI). Based on the four modes of the histogram (red curve), four distinct Petrophysical Rock Types
(PRT) can be classified.

4.3. Characterisation of Petrophysical Rock Types

Figure 12 shows the box plots of petrophysical and textural parameters for each
classified PRT group. The descriptive statistics for each identified PRT are summarised in
Table 4. The figure shows that almost all tested parameters exhibit a clear dependence on
the PRT group, i.e., FZI value. However, the dependence is moderate for ultrasonic wave
velocities. Furthermore, higher PRT is associated with higher porosity and permeability as
well as grain diameter and sand content, but with lower grain density. Regarding porosity
and permeability, a clear distinction is visible between PRT 1 and PRT 2, i.e., mean porosity
of 11 % versus 26%, as well as 1>> mD versus 90 mD. On the other hand, PRT 3 and 4
exhibit only a slight difference with respect to porosity. The difference between these FZI
values, therefore, is associated with permeability contrast.

Table 4. Descriptive statistical values of each identified petrophysical rock type (PRT). The analysed
parameters are defined in Table 3.

Statistical
Parameter

PRT
RHO_grain PHI K_Klink FZI VP VS d50 CLAY+FSILT SAND

[g/cc] [%] [mD] [-] [m/sec] [m/sec] [micron] [%] [%]

Mean

1 2.725 13.34 0.36 0.017 3347 2264 36 32.0 7.8
2 2.718 25.48 61.9 0.131 2840 1867 65 18.9 22.5
3 2.709 29.53 649 0.340 2746 1720 128 14.3 48.3
4 2.698 29.46 1499 0.527 2862 1805 173 11.5 59.9

Std.
Deviation

1 0.015 5.30 0.77 0.015 763 456 19 10.7 11.7
2 0.013 2.43 39.9 0.044 222 77 22 3.8 13.4
3 0.014 1.70 283 0.055 213 127 37 1.8 11.5
4 0.009 2.42 419 0.048 258 144 33 1.7 6.6

Regarding textural parameters, larger PRT values show an inverse relationship with
grain density and clay content, as well as larger median grain size. Generally, smaller PRT
values can be associated with clay and clayey appearance, while PRT 3 and PRT 4 resemble
sandstone characteristics.
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Figure 12. Boxplots showing distribution of different physical and textural parameters: (a) poros-
ity, (b) gas permeability, (c,d) compressional (vp) and shear wave velocity (vs), (e) grain density,
(f) median grain diameter, (g) clay and fine silt content, (h) sand content. Black dots and * show the
outlier data points.

4.4. SEM and XRD Analysis of Petrophysical Rock Types

The results of XRD mineralogical analysis indicate that the amount of quartz does
not vary between different Petrophysical Rock Types. The number of carbonate miner-
als (including calcite and dolomite) and phyllosilicates (montmorillonite, kaolinite, and
muscovite) decreases with increasing PRT group number (Figure 13).

Scanning electron microscope analysis confirms that Petrophysical Rock Types charac-
terised by higher FZI have a bigger average grain size (Figure 14a–c). Tangential (point)
contacts of sandstone grains indicate a low level of compaction. With decreasing grain size,
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a higher amount of clay minerals can be observed. Authigenic clay minerals derived from
weathered feldspars can reduce the initial porosity and permeability due to blocking of
pore throats (Figure 14d).
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Figure 13. XRD patterns of four Upper Pannonian sandstone samples based on Petrophysical Rock
Typing (PRT). Sample numbers correspond to relevant PRT group number. Chl—chlorite; Sme—
smectite; Kln—kaolinite; Mca—mica; Qz—quartz; Pl—plagioclase; Cal—calcite; Dol—dolomite. The
intensity scale is the same for all patterns.
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Types (PRT) groups in the same resolution: (a) PRT-4; (b) PRT-3; (c) PRT-2; and (d) shows a pore
throat that is entirely filled with authigenic smectite in a sample from PRT-2.
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4.5. Discussion

Based on the laboratory results, the petrophysical parameters, i.e., porosity and perme-
ability, can be related to textural parameters, i.e., grain size, and clay and sand content. The
textural characteristics show that primary rock textural features are not disturbed, which
is a hint towards a low level of diagenetic processes, such as compaction, mineralization,
and cementation. Therefore, the petrophysical properties, including Petrophysical Rock
Types (PRT), can be associated with the depositional processes and textural features of
the samples.

Table 4 shows that samples belonging to PRT-4 classes exhibit the highest porosity,
approx. 30%, and a mean permeability of approx. 1400 mD. These sandstones can be
described as clean sands with large grain size and low clay and fine silt content, approx.
10%. Sandstone samples of the PRT-3 group also show a high porosity of approx. 30%, but
a lower permeability, around 650 mD. The petrographical analysis of the core samples from
this class indicates smaller grain size and higher clay content. Moreover, clay content can be
associated with authigenic clay minerals that are grown due to the weathering of feldspars.
These clay minerals can not only reduce permeability, but they can be a potential source for
fines migration eventually leading to injectivity decline. Samples assigned with PRT classes
2 and 1 show much lower mean permeability, 60 mD and 0.36 mD, as well as porosity, 25
and 13 %, and sand content compared to the previous classes. Consequently, rock samples
of PRT classes 1 and 2 are more inclined to fines migration than the other classes.

These findings can be applied to field scale to make recommendations for selecting
screen intervals with low potential for fines migration prior to injection or production
operation. Figure 15 shows the screen intervals I to V, core sections, and the PRTs, as well
as gamma ray (GR) logs of the lower sampling intervals in wells SZT-1 and SZSZT-IX
(Table 2).

In well SZT-1, three out of five perforation intervals are sampled by cores. In well
SZSZT-IX, core intervals are located above the perforated intervals. Regarding well SZT-1,
perforation interval I of 9 m length is dominated by PRT-3 classes with few PRT-2 samples.
Perforation interval II with a length of 3 m shows samples with PRT-4 class and perforation
interval IV of 6 m length is associated with samples from PRT-3 and 4 classes. According to
this comparison, perforation interval IV is the best candidate for sustainable reinjection.
Regarding screen intervals III and V, III is less preferred due to its short zone length of 3 m,
while screen interval V can be also a good candidate for reinjection operation based on the
shape of the GR log.

Concerning well SZSZT-IX, it can be noted that the core interval between 1835 and
1840 m implies ideal conditions for reinjection or production operation with lower potential
for injectivity or productivity problems, as the interval is associated with samples of PRT-
3 classes.

Regarding processes resulting in injectivity or productivity decline in Upper Pan-
nonian sandstone reservoirs, in other reservoirs with similar geological settings in Hungary,
further possible mechanisms are considered as well. These may include clogging due
to water–rock interaction, lack of continuous flow paths in the reservoir, and biofilm
production ([6,11,20]). The investigation of these processes should be the focus of future
research. Nonetheless, Szanyi et al. [3] report that in the Szeged geothermal system, in the
proximity of Szentes Geothermal Field, productivity issues related to fines migration occur
frequently, which may be treated by production with high flow rates.

We note that the application of the proposed methodology on GR logs for uncored
intervals in both wells using machine learning techniques (e.g., [42,43]) is a subject of future
research. It must be also pointed out that in our study, temperature differences between cold
injection water and hot reservoir fluid during reinjection are not considered. We expect that
introducing this effect may play an important role in coupled hydro-mechanical processes
in wellbores drilled in unconsolidated reservoirs, e.g., fines migration due to formation
damage, since fluid density and viscosity are strongly controlled by temperature [53]. The
numerical study conducted by Zhang et al. 2022 [54] shows that hydraulic gradient is
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one of the major controlling parameters in fines production. Thus, the investigation of
coupled thermal-hydraulic-mechanical analysis of near-wellbore fines migration should be
the focus of future investigation.
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5. Conclusions

In this study, we conducted a series of petrographical and petrophysical laboratory
experiments on 121 samples of Upper Pannonian sandstone formation obtained from two
exploration wells at the Szentes Geothermal Field. The goal of the study is to provide
experimental data and to gain a better understanding of the formation characteristics that
control injectivity and productivity issues in Upper Pannonian sandstone layers.

Based on hydro-mechanical properties of the tested rock samples, these can be clas-
sified into four representative Petrophysical Rock Types that share distinct petrophysical,
textural, and hydraulic characteristics, i.e., two with higher clay content and two with
higher sand content. Although sand layers are ideal for reinjection operations, one of
the sandy rock types is characterised by the presence of authigenic clay that may migrate
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during fluid flow, resulting in injectivity decline. Consequently, the proposed methodology
can be applied for identifying sand intervals with lower potential for formation damage.

The results imply that fines migration due to formation erosion is one of the key
processes that must be better understood and controlled in order to mitigate injectivity
issues related to the unconsolidated Upper Pannonian sandstone reservoir at Szentes
Geothermal Field. However, other processes, such as mineral precipitation due to water–
rock interaction processes and microbial activity, may be also considered.

Future investigation should include experimental characterisation of formation dam-
age, including water–rock interaction tests, critical flow velocity measurements, and fines
migration analysis under reservoir conditions. Furthermore, temperature effects arising
from the injection of cold water into hot formation should be also studied in detail, e.g., in
terms of a coupled thermal-hydraulic-mechanical numerical analysis of fines migration in
wellbores in unconsolidated reservoirs.
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Border Cooperation as an Essential Step to Transboundary Groundwater Management. J. Hydrol. Reg. Stud. 2018, 20, 128–144.
[CrossRef]

5. Toth, A. Hungarian country update 2010–2014. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25
April 2015.
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17. Mádlné Szőnyi, J. Felszínalatti Vízáramlások Mintázata Fedetlen és Kapcsolódó Fedett Karbonátos Víztartó Rendszerekben
a Budai-Termálkarszt Tágabb Környezetéenek Példéján. Ph.D. Thesis, Hungarian Academy of Sciences, ELTE, Budapest,
Hungary, 2020.

18. Brehme, M.; Zimmermann, G.; Weinzierl, W.; Aldaz, S.; Markó, Á.; Thiem, S.; Huenges, E. Deliverable [D 4.1]: Report on
Hydraulic, Thermal and Chemical Parameters, before and after Stimulation. WP [4]: Demonstration of Combined Hydraulic-
Thermal-Chemical Treatments in Sandstones, Carbonatic Rocks and Granites; Report for the European Union H2020 Project
“Demonstration of Soft Stimulation Treatments of Geothermal Reservoirs” (DESTRESS), Helmholtz Centre Potsdam, Potsdam,
Germany. 2021. Available online: http://www.destress-h2020.eu/en/what-we-do/wp4/ (accessed on 16 August 2022).

19. Koroncz, P.; Fedor, F.; Vizhányó, Z.; Kuncz, M.; Ács, P.; Fedor-Szász, A.; Farkas, M.; Sendula, E.; Pernyeszi, T.; Magyar, G.; et al.
Laboratory R&D related to the development of technology for water re-injection in poorly consolidated Upper Pannonian rocks.
In Proceedings of the European Geothermal Congress, Berlin, Germany, 17–21 October 2022.

20. Willems, C.; Cheng, C.; Watson, S.; Minto, J.; Williams, A.; Walls, D.; Milsch, H.; Burnside, N.; Westaway, R. Permeability and
Mineralogy of the Újfalu Formation, Hungary, from Production Tests and Experimental Rock Characterization: Implications for
Geothermal Heat Projects. Energies 2021, 14, 4332. [CrossRef]

21. Horváth, J.; Koroncz, P.; Fedor, F.; Hlatki, M. Petrophysical and geomechanical analysis of Upper Pannonian unconsolidated
sandstones. In Civil Engineering and Rock Mechanics; Török, Á., Görög, P., Vásárhelyi, B., Eds.; Hantken: Budapest, Hungary, 2013;
pp. 229–240. (In Hungarian)

22. Bélteky, L.; Budai, L.; Kassai, L.; Konyor, L.; Korim, K.; Mayerszky, B.; Szpiriev, B. Különleges Geotermikus Adottságaink Kiaknázási
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