Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (480)

Search Parameters:
Keywords = Pol-SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 707 KB  
Review
Application of Multispectral Imagery and Synthetic Aperture Radar Sensors for Monitoring Algal Blooms: A Review
by Vikash Kumar Mishra, Himanshu Maurya, Fred Nicolls and Amit Kumar Mishra
Phycology 2025, 5(4), 71; https://doi.org/10.3390/phycology5040071 - 2 Nov 2025
Viewed by 345
Abstract
Water pollution is a growing concern for aquatic ecosystems worldwide, with threats like plastic waste, nutrient pollution, and oil spills harming biodiversity and impacting human health, fisheries, and local economies. Traditional methods of monitoring water quality, such as ground sampling, are often limited [...] Read more.
Water pollution is a growing concern for aquatic ecosystems worldwide, with threats like plastic waste, nutrient pollution, and oil spills harming biodiversity and impacting human health, fisheries, and local economies. Traditional methods of monitoring water quality, such as ground sampling, are often limited in how frequently and widely they can collect data. Satellite imagery is a potent tool in offering broader and more consistent coverage. This review explores how Multispectral Imagery (MSI) and Synthetic Aperture Radar (SAR), including polarimetric SAR (PolSAR), are utilised to monitor harmful algal blooms (HABs) and other types of aquatic pollution. It looks at recent advancements in satellite sensor technologies, highlights the value of combining different data sources (like MSI and SAR), and discusses the growing use of artificial intelligence for analysing satellite data. Real-world examples from places like Lake Erie, Vembanad Lake in India, and Korea’s coastal waters show how satellite tools such as the Geostationary Ocean Colour Imager (GOCI) and Environmental Sample Processor (ESP) are being used to track seasonal changes in water quality and support early warning systems. While satellite monitoring still faces challenges like interference from clouds or water turbidity, continued progress in sensor design, data fusion, and policy support is helping make remote sensing a key part of managing water health. Full article
Show Figures

Figure 1

19 pages, 3014 KB  
Article
Integrating PolSAR and Optical Data for Forest Aboveground Biomass Estimation with an Interpretable Bayesian-Optimized XGBoost Model
by Xinshao Zhou, Zhiqiang Wang, Zhaosheng Wang, Yonghong Wang, Chaokui Li and Tian Huang
Sustainability 2025, 17(21), 9749; https://doi.org/10.3390/su17219749 - 1 Nov 2025
Viewed by 212
Abstract
As a pivotal indicator in terrestrial ecosystems, forest aboveground biomass (AGB) reflects the capacity for carbon sequestration, the sustenance of biodiversity, and the provision of key ecosystem services. Precise quantification of AGB is therefore fundamental to evaluating forest quality and optimizing management strategies. [...] Read more.
As a pivotal indicator in terrestrial ecosystems, forest aboveground biomass (AGB) reflects the capacity for carbon sequestration, the sustenance of biodiversity, and the provision of key ecosystem services. Precise quantification of AGB is therefore fundamental to evaluating forest quality and optimizing management strategies. However, there are bottlenecks in estimating forest AGB from a single data source, and traditional parameter optimization methods are not competent in complex environmental areas. This study proposes an interpretable Bayesian-optimized XGBoost model to improve forest AGB estimation, integrating polarimetric SAR (PolSAR) and optical remote-sensing data for forest AGB mapping in Quanzhou County, southern China. The results demonstrate that the proposed Bayesian-optimized XGBoost (BO-XGBoost) significantly outperforms traditional non-parametric models, achieving a final R2 of 0.75 and root-mean-square error (RMSE) of 9.82 Mg/ha. The integration of PolSAR and optical data improved forest AGB estimation accuracy compared with using single data sources alone, reducing the RMSEs by 36.2% and 20.9%, respectively. Furthermore, the proposed method enhances the interpretability of the contributions made by remote-sensing features to forest AGB modeling, offering a new reference for future forest surveys and resource monitoring, which is particularly valuable for sustainable forestry development. Full article
Show Figures

Figure 1

24 pages, 4796 KB  
Article
Forest Height Estimation in Jiangsu: Integrating Dual-Polarimetric SAR, InSAR, and Optical Remote Sensing Features
by Fangyi Li, Yiheng Jiang, Yumei Long, Wenmei Li and Yuhong He
Remote Sens. 2025, 17(21), 3620; https://doi.org/10.3390/rs17213620 - 31 Oct 2025
Viewed by 358
Abstract
Forest height is a key structural parameter for evaluating ecological functions, biodiversity, and carbon dynamics. While LiDAR and Synthetic Aperture Radar (SAR) provide vertical structure information, their large-scale use is restricted by sparse sampling (LiDAR) and temporal decorrelation (SAR). Optical remote sensing offers [...] Read more.
Forest height is a key structural parameter for evaluating ecological functions, biodiversity, and carbon dynamics. While LiDAR and Synthetic Aperture Radar (SAR) provide vertical structure information, their large-scale use is restricted by sparse sampling (LiDAR) and temporal decorrelation (SAR). Optical remote sensing offers complementary spectral information but lacks direct height retrieval. To address these limitations, we developed a multi-modal framework integrating GEDI waveform LiDAR, Sentinel-1 SAR (InSAR and PolSAR), and Sentinel-2 multispectral data, combined with machine learning, to estimate forest canopy height across Jiangsu Province, China. GEDI L2A footprints were used as training labels, and a suite of structural and spectral features was extracted from SAR, GEDI, and Sentinel-2 data as input variables for canopy height estimation. The performance of two ensemble algorithms, Random Forest (RF) and Gradient Tree Boosting (GTB) for canopy height estimation, was evaluated through stratified five-fold cross-validation. RF consistently outperformed GTB, with the integration of SAR, GEDI, and optical features achieving the best accuracy (R2 = 0.708, RMSE = 2.564 m). The results demonstrate that InSAR features substantially enhance sensitivity to vertical heterogeneity, improving forest height estimation accuracy. These findings highlight the advantage of incorporating SAR, particularly InSAR with optical data, in enhancing sensitivity to vertical heterogeneity and improving the performance of RF and GTB in estimating forest height. The framework we proposed is scalable to other regions and has the potential to contribute to global sustainable forest monitoring initiatives. Full article
Show Figures

Figure 1

21 pages, 49278 KB  
Article
Lightweight Attention Refined and Complex-Valued BiSeNetV2 for Semantic Segmentation of Polarimetric SAR Image
by Ruiqi Xu, Shuangxi Zhang, Chenchu Dong, Shaohui Mei, Jinyi Zhang and Qiang Zhao
Remote Sens. 2025, 17(21), 3527; https://doi.org/10.3390/rs17213527 - 24 Oct 2025
Viewed by 402
Abstract
In the semantic segmentation tasks of polarimetric SAR images, deep learning has become an important end-to-end method that uses convolutional neural networks (CNNs) and other advanced network architectures to extract features and classify the target region pixel by pixel. However, applying original networks [...] Read more.
In the semantic segmentation tasks of polarimetric SAR images, deep learning has become an important end-to-end method that uses convolutional neural networks (CNNs) and other advanced network architectures to extract features and classify the target region pixel by pixel. However, applying original networks used to optical images for PolSAR image segmentation directly will result in the loss of rich phase information in PolSAR data, which leads to unsatisfactory classification results. In order to make full use of polarization information, the complex-valued BiSeNetV2 with a bilateral-segmentation structure is studied and expanded in this work. Then, considering further improving the ability to extract semantic features in the complex domain and alleviating the imbalance of polarization channel response, the complex-valued BiSeNetV2 with a lightweight attention module (LAM-CV-BiSeNetV2) is proposed for the semantic segmentation of PolSAR images. LAM-CV-BiSeNetV2 supports complex-valued operations, and a lightweight attention module (LAM) is designed and introduced at the end of the Semantic Branch to enhance the extraction of detailed features. Compared with the original BiSeNetV2, the LAM-CV-BiSeNetV2 can not only more fully extract the phase information from polarimetric SAR data, but also has stronger semantic feature extraction capabilities. The experimental results on the Flevoland and San Francisco datasets demonstrate that the proposed LAM has better and more stable performance than other commonly used attention modules, and the proposed network can always obtain better classification results than BiSeNetV2 and other known real-valued networks. Full article
Show Figures

Figure 1

23 pages, 20718 KB  
Article
PSLRC-Net: A PolInSAR and Spaceborne LiDAR Fusion Method for High-Precision DEM Inversion in Forested Areas
by Xiaoshuai Li, Huihua Hu, Xiaolei Lv and Zenghui Huang
Remote Sens. 2025, 17(19), 3387; https://doi.org/10.3390/rs17193387 - 9 Oct 2025
Viewed by 477
Abstract
The Digital Elevation Model (DEM) is widely used in fields such as geoscience and environmental management. However, the existing DEMs struggle to meet the current requirements for timeliness and accuracy, especially in forested areas where vegetation cover can lead to overestimation of elevation. [...] Read more.
The Digital Elevation Model (DEM) is widely used in fields such as geoscience and environmental management. However, the existing DEMs struggle to meet the current requirements for timeliness and accuracy, especially in forested areas where vegetation cover can lead to overestimation of elevation. To address this issue, this paper proposes a PolInSAR and Spaceborne LiDAR Regression/Classification Network (PSLRC-Net) for refining external DEMs. Additionally, a forest/non-forest classification labeling method for spaceborne LiDAR footprints is introduced to provide labeled data for the classification branch during the training phase. PSLRC-Net adopts a multi-task learning framework and uses an expert selection mechanism based on a gating network to provide targeted support for the regression and classification branches. The regression branch consists of two task towers, and their outputs are weighted and fused by the output of the classification branch. This approach directs the regression branch to focus on the feature differences between forested and non-forested areas, resulting in more accurate elevation predictions. The network was trained on SAOCOM data from two sites, and the fitting results are evaluated for accuracy using an airborne LiDAR-derived DEM. Compared to different DEM datasets, the RMSE decreased by 51.7–64.6% and 51.9–63.7% at the two sites, while the MAE decreased by 55.5–66.8% and 55.5–68.6%. The experimental results confirm the validity of the model and demonstrate the potential of spaceborne LiDAR fusion with spaceborne PolInSAR to improve DEM accuracy. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 31572 KB  
Article
Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data
by Xingjun Ju, Sihua Gao and Yongfeng Li
Sensors 2025, 25(19), 5968; https://doi.org/10.3390/s25195968 - 25 Sep 2025
Viewed by 591
Abstract
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, [...] Read more.
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, we propose an adaptive Polarimetric TSI (PolTSI) method that exploits dual-polarization Sentinel-1 data to achieve more reliable deformation monitoring in complex mining terrains. The method employs a dual-strategy optimization: amplitude dispersion–based optimization for Permanent Scatterer (PS) pixels and minimum mean square error (MMSE)-based polarimetric filtering followed by coherence maximization for Distributed Scatterer (DS) pixels. Experimental results from an open-pit mining area demonstrate that the proposed approach significantly improves phase quality and spatial coverage. In particular, the number of coherent monitoring points increased from 31,183 with conventional TSI to 465,328 using the proposed approach, corresponding to a 1392% improvement. This substantial enhancement confirms the method’s robustness in extracting deformation signals from low-coherence, heterogeneous mining surfaces. As one of the few studies to apply Polarimetric InSAR (Pol-InSAR) in active mining regions, our work demonstrates the underexplored potential of dual-pol SAR data for improving both the spatial density and reliability of time-series deformation mapping. The results provide a solid technical foundation for large-scale, high-precision surface monitoring in complex mining environments. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

25 pages, 10598 KB  
Article
PolSAR Image Modulation Using a Flexible Metasurface with Independently Controllable Polarizations
by Yuehan Wu, Junjie Wang, Jiong Wu, Guang Sun and Dejun Feng
Remote Sens. 2025, 17(16), 2870; https://doi.org/10.3390/rs17162870 - 18 Aug 2025
Viewed by 632
Abstract
Recent advances in time-modulated metasurfaces (TMMs) have introduced approaches for controlling target features in radar imaging. These technologies enable dynamic reconstruction of scattering center locations and intensities by flexibly manipulating radar echoes. However, most existing methods focus on amplitude and phase modulation, lacking [...] Read more.
Recent advances in time-modulated metasurfaces (TMMs) have introduced approaches for controlling target features in radar imaging. These technologies enable dynamic reconstruction of scattering center locations and intensities by flexibly manipulating radar echoes. However, most existing methods focus on amplitude and phase modulation, lacking joint control over the polarimetric scattering characteristics of targets. As a result, the modulated outputs tend to exhibit limited polarimetric diversity and remain strongly tied to the targets’ physical structures. To address this limitation, this paper proposes a modulation method for polarimetric synthetic aperture radar (PolSAR) images based on a flexible metasurface with independently controllable polarizations (FM-ICP). The method independently controls the echo energy distribution in two polarization channels, enabling target representations in PolSAR images to exhibit polarimetric characteristics beyond their physical geometry—for example, rendering a flat plate as a cylinder, or vice versa. In addition, the method can generate synthetic scattering centers with controllable locations and polarimetric properties, which can be precisely tuned via modulation parameters. This work offers a practical approach for target feature manipulation and shows potential in PolSAR image simulation and feature reconstruction. Full article
Show Figures

Figure 1

29 pages, 55752 KB  
Article
PolSAR-SFCGN: An End-to-End PolSAR Superpixel Fully Convolutional Generation Network
by Mengxuan Zhang, Jingyuan Shi, Long Liu, Wenbo Zhang, Jie Feng, Jin Zhu and Boce Chu
Remote Sens. 2025, 17(15), 2723; https://doi.org/10.3390/rs17152723 - 6 Aug 2025
Viewed by 473
Abstract
Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important applications in remote sensing. The impressive superpixel generation approaches can improve the efficiency of the subsequent classification task and restrain the influence of the speckle noise to an extent. Most [...] Read more.
Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important applications in remote sensing. The impressive superpixel generation approaches can improve the efficiency of the subsequent classification task and restrain the influence of the speckle noise to an extent. Most of the classical PolSAR superpixel generation approaches use the features extracted manually and even only consider the pseudocolor images. They do not make full use of polarimetric information and do not necessarily lead to good enough superpixels. The deep learning methods can extract effective deep features but they are difficult to combine with superpixel generation to achieve true end-to-end training. Addressing the above issues, this study proposes an end-to-end fully convolutional superpixel generation network for PolSAR images. It integrates the extraction of polarization information features and the generation of PolSAR superpixels into one step. PolSAR superpixels can be generated based on deep polarization feature extraction and need no traditional clustering process. Both the performance and efficiency of generations of PolSAR superpixels can be enhanced effectively. The experimental results on various PolSAR datasets show that the proposed method can achieve impressive superpixel segmentation by fitting the real boundaries of different types of ground objects effectively and efficiently. It can achieve excellent classification performance by connecting a very simple classification network, which is helpful to improve the efficiency of the subsequent PolSAR image classification tasks. Full article
Show Figures

Figure 1

24 pages, 29785 KB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 - 1 Aug 2025
Cited by 2 | Viewed by 665
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Graphical abstract

29 pages, 36251 KB  
Article
CCDR: Combining Channel-Wise Convolutional Local Perception, Detachable Self-Attention, and a Residual Feedforward Network for PolSAR Image Classification
by Jianlong Wang, Bingjie Zhang, Zhaozhao Xu, Haifeng Sima and Junding Sun
Remote Sens. 2025, 17(15), 2620; https://doi.org/10.3390/rs17152620 - 28 Jul 2025
Viewed by 519
Abstract
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and [...] Read more.
In the task of PolSAR image classification, effectively utilizing convolutional neural networks and vision transformer models with limited labeled data poses a critical challenge. This article proposes a novel method for PolSAR image classification that combines channel-wise convolutional local perception, detachable self-attention, and a residual feedforward network. Specifically, the proposed method comprises several key modules. In the channel-wise convolutional local perception module, channel-wise convolution operations enable accurate extraction of local features from different channels of PolSAR images. The local residual connections further enhance these extracted features, providing more discriminative information for subsequent processing. Additionally, the detachable self-attention mechanism plays a pivotal role: it facilitates effective interaction between local and global information, enabling the model to comprehensively perceive features across different scales, thereby improving classification accuracy and robustness. Subsequently, replacing the conventional feedforward network with a residual feedforward network that incorporates residual structures aids the model in better representing local features, further enhances the capability of cross-layer gradient propagation, and effectively alleviates the problem of vanishing gradients during the training of deep networks. In the final classification stage, two fully connected layers with dropout prevent overfitting, while softmax generates predictions. The proposed method was validated on the AIRSAR Flevoland, RADARSAT-2 San Francisco, and RADARSAT-2 Xi’an datasets. The experimental results demonstrate that the proposed method can attain a high level of classification performance even with a limited amount of labeled data, and the model is relatively stable. Furthermore, the proposed method has lower computational costs than comparative methods. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 12779 KB  
Article
An Improved General Five-Component Scattering Power Decomposition Method
by Yu Wang, Daqing Ge, Bin Liu, Weidong Yu and Chunle Wang
Remote Sens. 2025, 17(15), 2583; https://doi.org/10.3390/rs17152583 - 24 Jul 2025
Viewed by 343
Abstract
The coherency matrix serves as a valuable tool for explaining the intricate details of various terrain targets. However, a significant challenge arises when analyzing ground targets with similar scattering characteristics in polarimetric synthetic aperture radar (PolSAR) target decomposition. Specifically, the overestimation of volume [...] Read more.
The coherency matrix serves as a valuable tool for explaining the intricate details of various terrain targets. However, a significant challenge arises when analyzing ground targets with similar scattering characteristics in polarimetric synthetic aperture radar (PolSAR) target decomposition. Specifically, the overestimation of volume scattering (OVS) introduces ambiguity in characterizing the scattering mechanism and uncertainty in deciphering the scattering mechanism of large oriented built-up areas. To address these challenges, based on the generalized five-component decomposition (G5U), we propose a hierarchical extension of the G5U method, termed ExG5U, which incorporates orientation and phase angles into the matrix rotation process. The resulting transformed coherency matrices are then subjected to a five-component decomposition framework, enhanced with four refined volume scattering models. Additionally, we have reformulated the branch conditions to facilitate more precise interpretations of scattering mechanisms. To validate the efficacy of the proposed method, we have conducted comprehensive evaluations using diverse PolSAR datasets from Gaofen-3, Radarsat-2, and ESAR, covering varying data acquisition timelines, sites, and frequency bands. The findings indicate that the ExG5U method proficiently captures the scattering characteristics of ambiguous regions and shows promising potential in mitigating OVS, ultimately facilitating a more accurate portrayal of scattering mechanisms of various terrain types. Full article
Show Figures

Graphical abstract

33 pages, 9362 KB  
Article
Multi-Layer and Profile Soil Moisture Estimation and Uncertainty Evaluation Based on Multi-Frequency (Ka-, X-, C-, S-, and L-Band) and Quad-Polarization Airborne SAR Data from Synchronous Observation Experiment in Liao River Basin, China
by Jiaxin Qian, Jie Yang, Weidong Sun, Lingli Zhao, Lei Shi, Hongtao Shi, Chaoya Dang and Qi Dou
Water 2025, 17(14), 2096; https://doi.org/10.3390/w17142096 - 14 Jul 2025
Cited by 2 | Viewed by 845
Abstract
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial [...] Read more.
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial resolution quad-polarization (quad-pol) SAR data at five frequencies, including the Ka-, X-, C-, S-, and L-band. A preliminary “vegetation–soil” parameter estimation model based on the multi-frequency SAR data was established. Theoretical penetration depths of the multi-frequency SAR data were analyzed using the Dobson empirical model and the Hallikainen modified model. On this basis, a water cloud model (WCM) constrained by multi-polarization weighted and penetration depth weighted parameters was used to analyze the estimation accuracy of the multi-layer and profile SM (0–50 cm depth) under different vegetation types (grassland, farmland, and woodland). Overall, the estimation error (root mean square error, RMSE) of the surface SM (0–5 cm depth) ranged from 0.058 cm3/cm3 to 0.079 cm3/cm3, and increased with radar frequency. For multi-layer and profile SM (3 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm, 50 cm depth), the RMSE ranged from 0.040 cm3/cm3 to 0.069 cm3/cm3. Finally, a multi-input multi-output regression model (Gaussian process regression) was used to simultaneously estimate the multi-layer and profile SM. For surface SM, the overall RMSE was approximately 0.040 cm3/cm3. For multi-layer and profile SM, the overall RMSE ranged from 0.031 cm3/cm3 to 0.064 cm3/cm3. The estimation accuracy achieved by coupling the multi-source data (multi-frequency SAR data, multispectral data, and soil parameters) was superior to that obtained using the SAR data alone. The optimal SM penetration depth varied across different vegetation cover types, generally falling within the range of 10–30 cm, which holds true for both the scattering model and the regression model. This study provides methodological guidance for the development of multi-layer and profile SM estimation models based on the multi-frequency SAR data. Full article
Show Figures

Figure 1

31 pages, 6788 KB  
Article
A Novel Dual-Modal Deep Learning Network for Soil Salinization Mapping in the Keriya Oasis Using GF-3 and Sentinel-2 Imagery
by Ilyas Nurmemet, Yang Xiang, Aihepa Aihaiti, Yu Qin, Yilizhati Aili, Hengrui Tang and Ling Li
Agriculture 2025, 15(13), 1376; https://doi.org/10.3390/agriculture15131376 - 27 Jun 2025
Viewed by 819
Abstract
Soil salinization poses a significant threat to agricultural productivity, food security, and ecological sustainability in arid and semi-arid regions. Effectively and timely mapping of different degrees of salinized soils is essential for sustainable land management and ecological restoration. Although deep learning (DL) methods [...] Read more.
Soil salinization poses a significant threat to agricultural productivity, food security, and ecological sustainability in arid and semi-arid regions. Effectively and timely mapping of different degrees of salinized soils is essential for sustainable land management and ecological restoration. Although deep learning (DL) methods have been widely employed for soil salinization extraction from remote sensing (RS) data, the integration of multi-source RS data with DL methods remains challenging due to issues such as limited data availability, speckle noise, geometric distortions, and suboptimal data fusion strategies. This study focuses on the Keriya Oasis, Xinjiang, China, utilizing RS data, including Sentinel-2 multispectral and GF-3 full-polarimetric SAR (PolSAR) images, to conduct soil salinization classification. We propose a Dual-Modal deep learning network for Soil Salinization named DMSSNet, which aims to improve the mapping accuracy of salinization soils by effectively fusing spectral and polarimetric features. DMSSNet incorporates self-attention mechanisms and a Convolutional Block Attention Module (CBAM) within a hierarchical fusion framework, enabling the model to capture both intra-modal and cross-modal dependencies and to improve spatial feature representation. Polarimetric decomposition features and spectral indices are jointly exploited to characterize diverse land surface conditions. Comprehensive field surveys and expert interpretation were employed to construct a high-quality training and validation dataset. Experimental results indicate that DMSSNet achieves an overall accuracy of 92.94%, a Kappa coefficient of 79.12%, and a macro F1-score of 86.52%, positively outperforming conventional DL models (ResUNet, SegNet, DeepLabv3+). The results confirm the superiority of attention-guided dual-branch fusion networks for distinguishing varying degrees of soil salinization across heterogeneous landscapes and highlight the value of integrating Sentinel-2 optical and GF-3 PolSAR data for complex land surface classification tasks. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

30 pages, 5702 KB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 1191
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

23 pages, 17995 KB  
Article
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
by Chuanjun Wu, Jiali Hou, Peng Shen, Sai Wang, Gang Chen and Lu Zhang
Remote Sens. 2025, 17(13), 2140; https://doi.org/10.3390/rs17132140 - 22 Jun 2025
Viewed by 706
Abstract
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for [...] Read more.
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for sub-canopy terrain estimation based on a one-dimensional lookup table (LUT) that links forest height to unpenetrated depth. The approach begins by applying an optimal normal matrix approximation to constrain the complex coherence measurements. Subsequently, the difference between the PolInSAR Digital Terrain Model (DTM) derived from the Random Volume over Ground (RVoG) model and the LiDAR DTM is defined as the unpenetrated depth. A nonlinear iterative optimization algorithm is then employed to estimate forest height, from which a fundamental mapping between forest height and unpenetrated depth is established. This mapping can be used to correct the bias in sub-canopy terrain estimation based on the PolInSAR RVoG model, even with only a small amount of sparse LiDAR DTM data. To validate the effectiveness of the method, experiments were conducted using fully polarimetric P-band airborne SAR data acquired by the European Space Agency (ESA) during the AfriSAR campaign over the Mabounie region in Gabon, Africa, in 2016. The experimental results demonstrate that the proposed method effectively mitigates terrain estimation errors caused by insufficient signal penetration or the limitation of single-interferometric geometry. Further analysis reveals that the availability of sufficient and precise forest height data significantly improves sub-canopy terrain accuracy. Compared with LiDAR-derived DTM, the proposed method achieves an average root mean square error (RMSE) of 5.90 m, representing an accuracy improvement of approximately 38.3% over traditional RVoG-derived InSAR DTM retrieval. These findings further confirm that there exist unpenetrated phenomena in single-baseline low-frequency PolInSAR-derived DTMs of tropical forested areas. Nevertheless, when sparse LiDAR topographic data is available, the integration of fully PolInSAR data with LUT-based compensation enables improved sub-canopy terrain retrieval. This provides a promising technical pathway with single-baseline configuration for spaceborne missions, such as ESA’s BIOMASS mission, to estimate sub-canopy terrain in tropical-rainforest regions. Full article
Show Figures

Graphical abstract

Back to TopTop